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Fig. 1. Graphical representation of the present model.

Table 1
Thermophysical properties of GO, MgO, and silicone oil [47-53].

Physical properties Graphene Magnesium Silicone oil
oxide oxide

Density » (%) 1800 3560 818

Specific heat capacity C, (ﬁ) 717 955 1966

Thermal conductivity k (ﬁ ) 5000 45 0.1

Thermal expansion f x 1075 (:—<> 28.4 1.05 134

Electrical conductivity o (% ) 6.3x107 5392x107  15x10°

%:o aty=0for 0<x<04L,
T=T, aty=03L for 0.4L <x <06L,

%:o at y=0for 0.6L <x <L,

For bottom cut portion of h-shape cavity:
T=T, atx=04 & x=0.6 for 0 <y<0.3L,

T=T, atx=0for 0<y<0.6L,

For left wall of h-shape cavity: { ToT at 05L for 06L << L
=T, x=0. 6L<y<L,

For right wall of h-shape cavity: T =T, at x=Lfor 0<y< L,

For top wall of square cavity: 3—T =0aty=Lfor0<x<L,
y

For bottom wall of square cavity: (())_T =0aty=0for0<x<L,
y

For left wall of square cavity: T =T, at x=0for0<y< L,

For right wall of square cavity: T =T, at x=Lfor 0<y <L,

Nanoparticles are suspended in the base fluid to increase the ther-
mophysical properties of the base fluid. The thermophysical properties

of the hybrid nanofluid are shown below [54-56].
Thermal conductivity:
kg +(m—Dk,r — (m—1)pg(k,r — ko)
khnf = knf _ _ >
ks2 + (m 1)knf + ¢.v2(knf k.s‘Z)

where,

kyy=kyy [

kg +(m—Dky, —(m—1gky; — kxl)]
kg +(m—Dky, + b (kyp — k) ’

Density:

Py Py
Phnf = Ppy [‘I‘)xzi + (1- dp) <1 - Pat+ Pg 5L ) ]
Poy Pos

Dynamic viscosity:

_ _ 1
Hins = 1 [(1 = P - mﬁs] ’

Thermal expansion:

Py = PPy

(ﬂﬂ)sz
[¢S2 (ﬂﬁ)bf

(pﬁ)sl > ]
1- 1 - s
+ ¢SZ) < ¢.§1 + ¢sl (pﬁ)bf

Specific heat capacity:
Coyy = (0Cp)y s

[ (nC,),,

0,
52 (pcp)bf + - bg2) (1 - da+ ¢sl—> :| g

G,

Electrical conductivity:
Oyt 2O—nf - 2¢s2(o_nf - O—sz)]
O+ 20—)1/‘ + ¢S2(o_nf - O_SZ) ’

where,
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05+ 205 — 2¢5(0p — 041)
0+ 205 + $aloy — o) |’

Ouf = Opy

Thermal Diffusivity:
k hnf
0C) s '

Appfp =

The radiative flux is being modeled using the Rosseland diffusion
approximation [57]:
4o’ ot

3p, ox v

A
= 3_ﬁr o q = (4yy- 4y, 0). 5)

Arx =

The Taylor series is utilized to extend T* in measures of the low wall
temperature 7, and omitting higher-order components, yielding:

T* ~ 4TT, - 3T,*. (6)

Variables used to non-dimensionalize the governing equations:

tfa, L2
x=2Xy=2 ;= ;’-’,U:_”L, B N
L L L oy ayy Poray,
T-T A
9= £, a==2
T, -1, L

7

The following dimensionless equations are obtained from Egs. (1)—(4)
by combining Egs. (5)-(7):

oU aV
— + — =0, 8
X aYy ®
1 Py (0U U oU 1 0P My (02U  0°U
(L) (22 2
Pr ooy, (dr+ ax T dY) PrdX+/4bf <ax2+aY2)
_ ,“hnfﬁ
Hpy Da
9 n
+ ﬂHazsin2<% (Xcosy + Ysinw))
% A
x (Vsinycosy — Usin*y), 9)
1 Pans (OV 4 4 1 0P My [(02V | 02V
— (27 2 vy 28 gr 27
Propy, (()t +Ur)X+ ()Y) Pr()Y+ Hyy <dX2+¢)Y2
_ Hhns L (/’ﬁ)hn/ Ra 0
uyy Da oy
Ohnf 9. of 21 .
+ —— Ha“sin”| — (Xcosy + Ysiny)
Oy A
X (Usim//cusu/ - V(:().\'Zl[/) , (10)
wC),, [k 2 2
(ﬁ +ud +V%) =22 (—h"/ + iRd> <_a 6; + 90 Z)
ot X )4 (pCp)hnf ks 3 0X Y
(rC,)
+ —L ) 0. an
0Cp)ys

where, heat source/sink (Q), Prandtl number (Pr), Darcy number (Da),
thermal radiation (Rd), Hartmann number (H a), Rayleigh number (Ra)
are the pertinent parameters of this study:
12 v 46°T3
0= ul” p M Da=£2, Rd = —%
ayr (0Cy), @ L Kyrbr

o e (T, -T,) B, L3
Ha=ByL|—L, Ra 8= To) Aoy L7
Moy ®XbfVof

Non-dimensional initial and boundary conditions are expressed as fol-
lows:

Initial condition: 1 <0, 0< X <1, 0<Y <1 : U=V =0,60=0,

Boundary conditions: r >0, 0< X <1,0<Y <1 : U=V =0,
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For top wall of h-shape cavity: {9 =0aty =06for 0<X <05
- D4 a0 _ _
W—OatY—lfor 05<X<1,

For bottom wall of h-shape cavity:

g—ﬁ:o atY=0for 0<X <04,
f=1atY =03for 04<X <06,
j—ﬁ:o atY =0for 06 <X <1,

For bottom cut portion of h-shape cavity:
0=1atX=04& X=06for 0<Y <0.3,
For right wall of h-shape cavity: 9 =1at X =1 for 0<Y <1,

O0=0atX=0for 0<Y <£0.6,

For left wall of h-shape cavity: { 9=0atX=05for 06<Y <1

For top wall of square cavity: 3—19{ =0atY=1for0< X <1,

For bottom wall of square cavity: g—f, =0atY=0for 0<X <1,
For left wall of square cavity: =0, at X =0for0<Y <1,

For right wall of square cavity: 0 =1 at X =1for 0<Y <1,

The dimensionless form of local (Nu;) and average (Nu) Nusselt num-
ber at the right hot wall is written as:

Kpap 4 20
Nu, =-— — Rd ) — R 12
“L <k,,,- T3 >(ax>x=1 12
and
1
Nu = / Nujy dY. a3
0

3. Numerical procedure

The governing equations (1)-(4) with initial and boundary con-
ditions are solved using the Artificial Compressibility based Finite-
Difference Method (AC-FDM) with control volume and staggered grid
approach. The FDM is integrated with an artificial compressibility
technique to effectively compute the coupled pressure and velocity
distributions in this model. Various control volume points have been
utilized to ensure grid alignment with the velocity distributions. At the
center of the control volume, pressure and temperature components are
taken precisely. Different cell types (U-momentum, V-momentum, con-
tinuity, pressure, and temperature cells) are utilized to derive the corre-
sponding non-dimensional equations (8)-(11). The continuity equation
is adjusted using the artificial compressibility method, accounting the
compressibility parameter with pressure.

The non-dimensional continuity equation is expressed as follows
[46,58]:

1 /0P aUu  ov
Z(E>+ﬁ+6—Y—O, 14)

where £ is the artificial compressibility parameter.

Governing equations of fluid flow and energy are expressed as
follows:

14 H 2 2 Hins
U”+1=U"+A[ [i <_£+Pr<ﬂ> (d_U+()_U>_ hnf ﬂU)
Phng 0X Hay 0X2  9Y2 Uy Da

Pbs Ohns )
L7 Zhnf (PrHa2 sin? (2—”(X005w+Y51nq/))
Phns Cbf A
X (VSi[l\[/COS\[/—USinZI//)>

w _ U]
0X aY

(15)
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Table 2
Code validation with Nardini et al. [59] results for various values of Ra with
Pr=0.71.

Ra Nu [59] Nu (Present)

5.73E + 04 3.67 3.679477200191824
1.27E + 05 4.41 4.453612543583565
1.78E + 05 4.71 4.785488901327871
2.30E + 05 5.41 5.443663504496627

P HKhn 2 2 Hpn
V"+1=V"+Af|: bf <_()_P+Pr< hf><[)_V+[?_V>_ﬂﬂV
Phny aY Hyr X2  oY?2 uyy Da

()

+ pﬂ hnf Ra Pr 9)
(pﬂ)bf
Py ©

Pl <PrHaZ sin? <2—7[ (Xcosu/+YsinV/)>
Phns Chy 4

x (Usiny cosy — V cos? yr))

g V]|
X Y

(16)

WCyr (K 29 2
o+ =04 A | —22L (( LI iRd> (—‘) 0 +ﬁ> +Q9>
@y \ Ty ©3%) (52 " vz

< v &

20 20
0X aY ] ' a”n

This iteration process is continued until the convergence of points
U, V, and 0 is reached at the designated time step (4 + = 0.000001).
Iterative computing is carried out at each subsequent time increment
until the convergence criteria is reached.

n+l _
1]

n+1
Yij

Iy vl

< 107 (18)

where y represents U, V, and 6. The grid size 91 x 91 is employed for
the current numerical simulation of this study. In this study, the numer-
ical approach employed by Basha et al. is utilized to solve the governing
equations of fluid flow and heat transfer. This methodology involves
a well-established numerical scheme whose accuracy and reliability
have been thoroughly validated and verified in their work through
benchmark studies. For detailed information regarding the numerical
implementation and verification process, readers may refer to [46].

Nardini et al. [59] investigated the natural convection flow in a
square cavity heated by two hot strips in the side walls. Both ex-
perimental and numerical (Fluent simulations) methods are used to
analyze temperature distributions, Nusselt numbers, and flow patterns
at different Rayleigh number values for varying strip positions. A
comparative study is performed on average Nusselt number with the
results of Nardini et al. [59] to verify the efficiency of the present
numerical code at different values of Ra. Table 2 makes it clear that the
current findings closely resemble the experimental findings, suggesting
that the current code produces accurate results.

Grid independence test

To ensure numerical accuracy and eliminate errors associated with
mesh resolution, a grid independence test was performed. The average
Nusselt number was computed for both h-shape and square cavities for
fixed values of pertinent parameters across progressively refined grids
ranging from 51 x 51 to 101 x 101. From Table 3, it can be observed
that as the grid is refined, Nu values show a monotonic convergence
trend. For the square cavity, grid convergence is achieved as early
as the 71 x 71 mesh size, with percentage changes below 0.05%.
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Table 3
Grid independence test for h-shape and square cavities at Q = 1, ¢ = 0.05,
Rd=1,Da=10"2, Ra=10* Ha=25, y = 5, 4=0.25 and m=3.

Grid size Nu (h-shape cavity) Nu (square cavity)
51 x 51 2.077166 2.330125
61 x 61 2.091632 2.328838
71 x 71 2.102095 2.327969
81 x 81 2.110016 2.327347
91 x 91 2.116219 2.326881
101 x 101 2.121209 2.326519

However, for the h-shape cavity, the difference between successive
grids continues to decrease gradually, dropping below 0.3% only after
the 91 x 91 mesh size. Since the further refinement to 101 x 101
produces only a marginal improvement, and considerably increases
the computational cost. Hence, a 91 x 91 grid was selected as the
optimal mesh size. This choice ensures grid-independent results while
maintaining computational efficiency.

4. Machine learning analysis

The numerical simulation data of GO-MgO-silicone oil hybrid
nanofluid flow in the enclosure is utilized in this study to identify
the optimal cavity shape to improve the heat transfer efficiency using
machine learning techniques. By seamlessly integrating additional vari-
ables, machine learning algorithms present the multivariable models
of heat transfer in a simplified way. To substantially reduce computa-
tional requirements, machine learning algorithms can adjust scales to
efficiently manage various input and output features. To enhance pre-
dictive capability and model the average Nusselt number, four machine
learning models (multiple linear regression, support vector machine,
artificial neural network, and random forest) are trained and compared.
Python is utilized to write code by using libraries like NumPy, Pandas,
and Matplotlib to develop machine learning models. The statistical
data of the average Nusselt number have been collected at the hot
wall for different pertinent parameters, like Ha, Da, Q, Rd, Ra, and
¢ = ¢ +¢,. This data analyzes the h-shape and square cavities, aiming
to determine an ideal value for the key pertinent parameters to optimize
the heat transmission rate, which is crucial in many applications:
electronic cooling, building insulation, solar collectors, and industrial
furnaces. A dataset of 220 values has been employed to conduct
machine learning analysis. 80% of the data is used for training the
model, and 20% of the data is used for testing. The performance of the
four ML models is evaluated based on performance metrics (MAE, MSE,
RMSE, and R2). Based on the local minimum located through gradient
descent, the cost function is utilized to optimally select the pinpoint
biases and optimal weights for the present model [60].

Machine learning models

i. Multiple Linear Regression

Multiple linear regression is one of the types of supervised learning.
MLR forecasts the features of the target (dependent) variable. MLR
is a vital regression approach that depicts the linear relationship be-
tween several independent variables and a single continuous dependent
variable. It extends ordinary least-squares regression by incorporating
multiple independent variables to improve prediction accuracy. In
MLR, the goal is to find the best-fitting equation that explains how
the input variables (also called features or predictors) influence the
output. The model assigns each variable a coefficient, representing its
contribution to the prediction. These coefficients are estimated using
the least squares method. The least squares method involves choosing
the line (or hyperplane) that minimizes the sum of squared vertical
differences between the responses and the points predicted by the
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fitted line at values of the predictor variable. The major advantage of
using MLR is its capability to determine the impact of one or more
predictor variables on the criterion value and to understand outliers
or anomalies. The model heavily depends on the assumption that the
input data is accurate, complete, and relevant. Incomplete or missing
data can significantly skew the results, leading to biased or unreliable
predictions. In real-world situations, relationships between variables
are often non-linear; linear regression performs poorly when there are
non-linear relationships.

A correlation equation generated using MLR is written as follows:

Correlation equation for h-shape cavity:

Nu=-0.033213*Ra + 0.012888* Ha — 0.007168* Da + 0.038677*¢
—0.088369*Q + 0.294470* Rd + 1.995950, 19)
Correlation equation for square cavity:
Nu = 0.682424*Ra — 0.068516* Ha + 0.032452* Da + 0.030398*¢
—0.150848*Q + 0.308979*Rd + 2.524462. (20)

ii. Support Vector Machine

A support vector machine is a powerful supervised learning al-
gorithm used for both classification and regression tasks. It works
by identifying the optimal hyperplane that separates data points ef-
fectively. SVM is one of the most beneficial algorithms in detecting
complex patterns in data through the use of nonlinear kernel functions.
If the data is not linearly separable in its original space, a kernel func-
tion is used to implicitly map the data into a higher-dimensional feature
space where separation is easier. When implementing an SVM model,
users must specify the type of kernel function, which determines how
input data is transformed and compared, and the regularization param-
eter (C), which controls the trade-off between maximizing the margin
and minimizing classification errors. Common kernel functions include
linear, polynomial, and Radial Basis Function (RBF). Among these, the
RBF kernel is often the preferred choice for nonlinear problems due
to its flexibility; it projects the data into an infinite-dimensional space.
The C parameter plays a crucial role in model performance:

A low C value enables some misclassification and results in identifying
the decision boundary with a wider margin. As a result, the decision
boundary is simpler and more general.

«A high C value ensures a complete as well as correct classification
of the training data and yields the irregular decision boundary with
a smaller margin.

In regression tasks, the SVM is known as Support Vector Regression
(SVR). SVR aims to find a function f(x,) that approximates the actual
target values (2 as closely as possible, while maintaining a specified
tolerance e. The objective is to ensure the function is both accurate
and as smooth as possible, allowing for minor deviations within the
e-margin [61]. In this study, support vector regression with a ra-
dial basis function kernel was implemented. Key hyperparameters are
penalty factor, kernel coefficient, and epsilon (¢), which control model
complexity, margin width, and generalization capability.

iii. Artificial Neural Network

Artificial neural networks, inspired by the structure and function
of the human brain, are highly effective in learning from data and
predicting outcomes for unseen inputs. In recent years, the application
of artificial intelligence in fluid mechanics has gained significant at-
tention due to its strong predictive capabilities [21-23]. Motivated by
this, we adopted a neural network model to predict the average Nus-
selt number. The network architecture consists of three hidden layers
containing 128, 64, and 32 neurons, respectively. Fig. 2 illustrates the
graphical representation of the neural network. Each hidden layer uses
the Rectified Linear Unit (ReLU) activation function to introduce non-
linearity, enabling the model to capture complex relationships within
the data. The model is trained using the Adam optimizer, which inte-
grates the advantages of both adaptive gradient and root mean square

Energy 338 (2025) 138700

propagation to ensure efficient and adaptive learning. The training
process is conducted up to 5000 iterations, with a learning rate of
0.005, L2 regularization parameter of 0.001, and early stopping using a
15% validation split, to maintain a balance between convergence speed
and stability. This configuration is designed to improve the model’s
accuracy and generalization capability in predicting the rate of heat
transfer.

iv. Random forest regression

Random forest technique is widely recognized as a powerful and
versatile ensemble learning method used for both classification and
regression tasks across various fields such as healthcare, engineering,
agriculture, finance, and marketing. The operational process of the
random forest algorithm is depicted in Fig. 3. Random forest is built
upon the principles of bagging. It is an approach where multiple models
are created using the same learning algorithm but trained on different
randomly sampled subsets of the training data (with replacement). The
final prediction is derived by averaging the outputs of all individual
models in regression problems. It incorporates the random subspace
method, constructing multiple decision trees to achieve its goals. Each
tree branches through a series of decision nodes until it reaches a
terminal node, which generates the tree’s prediction. Unlike traditional
decision trees that select the best feature from all inputs when splitting
the data, random forest trains each tree using a random subset of
features. This approach results in each tree providing a slightly different
approximation of the model, and the overall prediction is obtained by
averaging the predictions of all trees [62]. One of the main advantages
of the random forest algorithm is its ability to effectively handle large
datasets with high dimensionality, maintaining strong performance
even when the data contains noise or missing values. Averaging mul-
tiple decision trees reduces overfitting and generally achieves better
accuracy and generalization than a single decision tree. Further, ran-
dom forest can assess the importance of different features, which helps
in feature selection and dimensionality reduction. However, random
forest has some drawbacks. It can be computationally intensive, espe-
cially with very large datasets or when many trees are used, leading to
longer training and prediction times as well as increased memory usage.
In addition, compared to simpler models like decision trees, random
forest models can be less interpretable, making it more challenging
to understand the reasoning behind specific predictions. Despite these
limitations, its adaptability, accuracy, and ability to handle complex
datasets make it a popular choice for many practical applications [63].
In this study, a random forest regressor combining 100 decision trees
via bootstrap aggregation is employed to train the model.

Model performance

Model evaluation is a way of evaluating the performance of predic-
tion models. For regression models, evaluation metrics describe how
near the prediction is to the target value. The following metrics are
used in the present work [61,64]:

i. Mean Square Error (MSE)

Mean square error determines the accuracy of the model. MSE is
derived from the square of the Euclidean distance. Its value is always
positive, which decreases as the error tends to zero. It is defined as

2
MSE = (NuNumerical(n) - NuMLR(n)) (21)

I |-
M-

Il
—

i

where n is the data set number.

ii. Coefficient of determination (R?)

The R? determines how much variation in the dependent variable
is predicted by changing the independent variables. If the R? value is
near 1, the model can predict the variance in the dependent variable.
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Fig. 3. Visualization of random forest learning framework.

R? is defined as

2
R2 - 1- Z;‘:l (NuNumerlcal(n) - NuMLR(n))

3 (22)
n
Zi=1 (NuNwm)rical(n) - NuNumerial meun(n))

iii. Mean Absolute Error (MAE)

Mean absolute error calculates the average absolute difference be-
tween predicted and actual values. MAE gives equal weight to all errors
as it uses absolute value, unlike RMSE and MSE which squares the
errors, which means larger errors have disproportionately more impact.
The expression for MAE is:

n

1
MAE = ; Z |NuNumerwul(n) - N“MLR(n)l
i=1

(23)

iv. Root Mean Square Error (RMSE)

Root mean square error is the square root of the MSE, which
measures the mean of the squared differences between actual and
predicted values, then applying a square root. RMSE is often preferred
over MSE because it expresses errors in the same scale as the actual
values, making it more interpretable and reliable.

n

1 2
; Z (N UNumerical(n) — N “MLR(n))
i=1

RMSE = VMSE =

(24)

Machine learning result

Figs. 4 and 5 illustrate parameter attributes and their interactions
in the h-shape and square cavities, respectively. The distribution of
each feature is shown in diagonal profiles, whereas scatter profiles
show the correlations between pairs of parameters. As noticed from
the figures, Ra and Da attain their peak at their lower values. ¢ is
fixed at 0.05 and indicates its peak at the largest value. The scatter
plot shows that an increase in Rd rises Nu. In addition, Rd and QO
exhibit greater influence on target values in the sample of h-shape
cavity, while Ra and Rd exhibit greater influence on target values
in the square cavity. Fig. 6 presents a correlation matrix heatmap
that displays the pairwise Pearson correlation coefficients among the
variables. This heatmap provides insight into the strength and trend of
linear relationships between these variables. The range of the variables
in the correlation matrix heatmap lies between —1 and 1, where 1
indicates a perfect positive correlation, 0 indicates no correlation, and
-1 indicates a perfect negative correlation. When the sensitivity is
positive, the output response increases while amplifying the value of
the input parameters, whereas the opposite trend is observed when the
sensitivity is negative. As seen in the figure, there is a strong positive
correlation between Rd and Nu in the h-shape cavity and Ra and Nu
in the square cavity, with a coefficient of 0.92 and 0.91, respectively.
This demonstrates that the radiation parameter and Rayleigh number
are the most sensitive parameters in the h-shape and square cavity,
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Fig. 4. Correlation of average Nusselt number with key parameters in the h-shape enclosure dataset.

Table 4
A comparison of performance metrics (R, MSE, RMSE, and MAE) for h-shape and square cavities.
Model  Cavity RrR? MSE RMSE MAE
Training Testing Training Testing Training Testing Training Testing
MLR h-shape  0.9848 0.9597 0.0015 0.0034 0.0392 0.0583 0.0183 0.0318
Square 0.9977 0.9965 0.0014 0.0032 0.0379 0.0568 0.0259 0.0382
SVM h-shape  0.9552 0.9462 0.0045 0.0045 0.0673 0.0674 0.0589 0.0546
Square 0.9881 0.9730 0.0075 0.0250 0.0867 0.1580 0.0634 0.0849
ANN h-shape  0.9978 0.9925 0.0002 0.0006 0.0150 0.0252 0.0109 0.0189
Square 0.9985 0.9965 0.0010 0.0033 0.0310 0.0571 0.0170 0.0318
RF h-shape  0.9989 0.9904 0.0001 0.0008 0.0105 0.0284 0.0062 0.0164
Square 0.9986 0.9891 0.0009 0.0101 0.0293 0.1003 0.0160 0.0638

respectively. The average Nusselt number is negatively sensitive to the
Rayleigh number and heat source/sink parameter in the h-shape cavity,
while it is negatively sensitive to the Hartmann number, Darcy number,
and the heat source/sink parameter in the square cavity.

Overfitting and underfitting are major causes of concern in ML,
which can be identified using several performance measures on testing
and training data. The characteristics of training and testing data need
to be very close to ensure that the model fits well. Table 4 presents
a comparative analysis of four machine learning models (MLR, SVM,
ANN, and RF) used to predict heat transfer in h-shape and square cavi-
ties. Each model is evaluated using performance metrics, the coefficient

of determination, mean square error, root mean square error, and mean
absolute error on both training and testing datasets. A high R? value
(close to 1) indicates that the model explains most of the variance
in the data, while lower MSE, RMSE, and MAE values suggest better
prediction accuracy. The ANN and RF models demonstrate superior
performance, achieving R? values of about 0.99 and extremely low er-
ror metrics for both cavities, with minimal difference between training
and testing results. This indicates excellent generalization and model
stability, without signs of overfitting. In contrast, the SVM model shows
relatively higher error values and slightly lower R? value. Overall,
the results show that the models, especially ANN and RF, effectively
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Fig. 7. Performance comparison of machine learning models in (A) h-shape and (B) square cavities.

capture the underlying physical patterns, with testing and training
metrics closely aligned.

The bar charts in Fig. 7 visually illustrate the performance of four
machine learning models (MLR, SVM, ANN, and RF) in predicting heat
transfer characteristics for two geometries: (A) h-shape cavity and (B)
square cavity. The models are evaluated using key statistical metrics:
mean square error, root mean square error, mean absolute error, and
coefficient of determination on both training and testing datasets. For
the h-shape cavity as seen in Fig. 7(A), RF and ANN models achieve
better performance, indicated by the lowest MSE, RMSE, and MAE val-
ues, as well as high R? values near 1, reflecting strong predictive power
and minimal overfitting. SVM shows the poorest performance with high
error values and the lowest R? value, suggesting it is unsuitable for
this configuration. In the square cavity Fig. 7(B), a relatively similar
pattern is observed: RF and ANN again outperform the other trained
models, maintaining low error values and a high R? value. While MLR
performs moderately, SVM exhibits significantly higher error values
and underperforms in generalization. The values of the performance
matrix of machine learning analysis are presented in Table 4.

Fig. 8 provides a visual representation of the prediction accuracy of
various machine learning models compared to the actual average Nus-
selt number. The blue line represents actual value of average Nusselt
number. It is noticed that RF and ANN show close alignment with the
actual values, with minimal deviation across the sample range. In h-
shape cavity, MLR and SVM exhibit slightly larger deviations from the
actual Nu value, reflecting their lower capacity to capture nonlinear
relationships between the variables. While in square cavity, MLR and
SVM show comparatively better performance in predicting the average
Nusselt number value. The plots clearly demonstrate that random forest
and ANN provide superior predictive performance in both cavities.
They effectively capture both smooth and abrupt variations in aver-
age Nusselt number, reinforcing earlier findings from the performance
matrices.

Based on the comprehensive evaluation of performance matrices
(MSE, RMSE, MAE, and R?) in Table 4 and Fig. 7 and the visual com-
parison between actual and predicted average Nusselt number values
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in Fig. 8, random forest emerges as the most accurate and reliable
regression model for predicting heat transfer rate in h-shape and square
cavities. It consistently demonstrates the lowest error values and the
highest R? value, indicating strong generalization and predictive per-
formance. Therefore, considering both quantitative metrics of the table
and the visual representation of figures, the random forest is selected
as the optimal model for predicting heat transfer characteristics in both
cavities. A comparison of the numerical values and those anticipated
by the random forest is shown in Fig. 9. The performance metrics
in Table 4 demonstrate that the suggested models accurately predict
the heat transfer properties of hybrid nanofluid in different enclosures.
The model’s overall good fit efficiently handles the minor variance in
forecasting even higher Nu values, as seen in this figure.

Fig. 10 illustrates error plot (I) and residual error plot (II) for
the random forest model predictions in h-shape (A) and square (B)
cavities. Fig. 10(I)-(A) and (I)-(B) show the error between actual and
predicted average Nusselt number values, which are plotted across
the considered number of samples. For both cavities, the error range
approximately lies between —0.2 and 0.2. The magnitude of the error
remains low, showcasing high accuracy and generalization capability
of the RF model. Fig. 10(I)-(A) and (I)-(B) show the residuals against
the predicted average Nusselt number. For the h-shape cavity, the
residuals are tightly clustered around zero, forming a horizontal band,
which suggests that the model error is consistent across the prediction
range. For the square cavity, while the residuals remain mostly centered
around zero, a slight spread is noticed, particularly at higher predicted
values, indicating slightly increased variance but within an acceptable
range.

Fig. 11 illustrates the impact of pertinent parameters on Nu in
different cavity shapes using a visual pie-chart representation. The am-
plitudes of these characteristics are measured using RF, transformed to
absolute values, and represented as percentages. Radiation parameter
dominates the heat transfer, contributing 62.0219% of the total varia-
tion in Nu within h-shape cavity. Heat absorption/generation follows
with 18.6124%, while nanoparticle volume fraction and Rayleigh num-
ber contribute 8.1461% and 6.9954%, respectively. Hartmann number
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Fig. 9. Comparison of actual and predicted Nusselt number values for h-shape (A) and square (B) cavities using RF model.

and Darcy number have minimal influence, contributing only 2.7146%
and 1.5097%, respectively. Where, Rayleigh number becomes the most
dominant factor within the square cavity, contributing 53.5816% of the
total variation in Nu, followed by radiation with 24.26%, and heat
absorption/generation with 11.844%. Hartmann number, nanoparti-
cle volume fraction, and Darcy number, have smaller contributions,
5.3796.%, 2.3868%, and 2.5480%, respectively. The outcomes demon-
strate that Rd and Q have a significant impact on Nu in case of the
h-shape cavity, while Ra and Rd have a significant impact on Nu in
case of the square cavity. As Ra rises, the influence of the buoyancy
force increases and as a result, the convective mode of heat transfer
dominates, which in turn increases the Nu.

Table 5 reports the sum of squares (Sum?), degrees of freedom (df),
F-value, and p-value, for each governing parameter: Rayleigh number,
Hartmann number, Darcy number, nanoparticle volume fraction, heat
absorption/generation, and thermal radiation. A small p-value (<0.05)
means the effect is statistically significant. The ANOVA test elucidates
that the training and testing data have a high variance level, as illus-
trated in the table. RF effectively captures the influence of the dominant
parameters, as indicated by the high F-values and extremely low p-
values. From the above table, it is clear that radiation and heat source &
sink parameters have a significant impact on regulating the heat trans-
fer rate in the h-shape cavity, while Rayleigh number and radiation
effects have a predominant effect in the square cavity compared with
other considered effects. Among the pertinent parameters that arise
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Table 5
Statistical analysis of governing parameter for h-shape and square cavities.
Shape Parameter Sum? df F-value p-value
Ra 0.131439 1.0 64.497973 1.353275x 10712
Ha 0.018382 1.0 9.020402 3.324586 x 1073
h-shape Da 0.004952 1.0 2.430036 1.219831 x 107"
P 0.128020 1.0 62.820480 2.307794 x 10~12
Q 0.815957 1.0 400.396630 5.922980 x 1038
Rd 8.315548 1.0 4080.504699 4.888470 x 10~
Residual 0.218052 107.0 * *
Ra 51.517847 1.0 26748.572875 2.863883 x 107122
Ha 0.416324 1.0 216.159485 1.229261 x 1072¢
Square Da 0.088345 1.0 45.869562 9.109324 x 1010
q ¢ 0.084690 1.0 43.971714 1.773873x10~°
Q 1.784340 1.0 926.447065 4.659617 x 10752
Rd 8.124748 1.0 4218.449106 5.599594 x 10-83
Residual 0.190674  99.0 * *

from this investigation, Ra and Rd are the most influential factors in
the square and h-shape enclosures, respectively.

5. Result and discussion

This study helps to optimize the cavity and nanoparticle shapes
and identifies the optimum pertinent parameter values to enhance the
FF and HT in the considered cavities. The hybrid nanofluid of this
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Fig. 12. Streamlines in (A) h-shape and (B) square cavities for distinct values of heat sink/source parameter (i) O = -1, (ii) 0 =0, (iii) 0 = 1.

study is synthesized by suspending the magnesium oxide and graphene
oxide nanoparticles in the silicone oil. The computational simulation
outcomes of heat transmission and hybrid nanofluid flow are shown
in this section in the form of isotherms and streamlines. Average and
local heat transmission rate results are discussed for the pertinent
parameters. A range of governing parameters have been selected from
the literature to examine the fluid flow and heat transfer characteristics
of this investigation. The parameters range is fixed as follows: thermal
radiation 0 < Rd < 1, Rayleigh number 10° < Ra < 10°, heat
absorption/generation coefficient -1 < O < 1, Hartmann number
0 < Ha < 50, magnetic field inclination £ < y < Z, Darcy
number 1073 < Da < 107!, period of magnetic field 0.25 < 4 < 0.75,
nanoparticle volume fraction 0 < ¢; + ¢, < 0.05, and empirical shape
factor 3 < m < 16.1576. The pertinent parameter’ s fixed values
are: Q = 1, ¢=¢; + ¢; = 0.05, Rd = 1, Da = 1072, Ra = 10%,
Ha = 25, w = £, 1 = 0.25, and m = 3; unless otherwise specified
and the Prandtl number is considered as 16.08.

Impact of heat sink/source variation on streamlines and
isotherms:

Fig. 12 illustrates the influence of the heat sink/source parameter
on the streamlines within two different cavities: an h-shape cavity Fig.
12(A) and a square cavity Fig. 12(B). As Q varies from —1 to 1, notable
changes in fluid flow patterns are observed. A heat sink is a passive heat
exchanger that transfers heat generated by a mechanical or electrical
device to a coolant fluid in motion, whereas a heat source actively
generates thermal energy. At O = —1, corresponding to a heat sink,
circulating cells are densely formed near the top-right side and the
bottom-left side of the h-shape cavity. In contrast, in the square cavity,
central circulation cells dominate the flow structure. As Q increases
to 0, indicating the absence of heat generation or absorption, the size
and intensity of the eddies slightly increase in both cavities. At 0 =1,
representing a heat source, the circulation becomes slightly more. The
enhanced thermal energy leads to increase fluid velocity as Q increases.
Notably, the square cavity exhibits higher flow intensities and fluid
velocities compared to the h-shape cavity for all values of Q. This
indicates that the square cavity facilitates stronger convective flow
under similar thermal conditions.
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Isotherm contours are useful indicators for assessing the efficiency
of heat transmission in fluid flow. Fig. 13(A) and (B) present the
influence of the heat source/sink parameter on isotherms within h-
shape and square cavities, respectively. The h-shape cavity exhibits
a slightly higher magnitude compared to the square cavity. As the
value of Q increases, it has a slight effect on the isotherm distribution
in both the cavities, indicating a slight enhancement in convective
heat transfer. The region of higher magnitude isotherms is slightly
extended, indicating heat is transferring from the hot to the cold wall.
Further noticed that in the square cavity a curvy pattern of isotherms is
observed, indicating intensified convective heat transfer. This suggests
that convection plays a more dominant role in heat transfer within the
square cavity as Q increases.

Impact of Darcy number variation on streamlines and isotherms:

Darcy number value is directly proportional to the permeability
of a porous medium; thus, a lower Darcy number signifies a porous
medium with lower permeability. As permeability increases, fluid flows
more easily through the medium, enhancing fluid flow within the
porous domain. The volume of fluid infiltration and flow in the porous
domain is determined by viscous resistance and inertial forces. When
porous medium permeability is at a low level (i.e., Da = 10~3), viscous
resistance dominates over inertial force, significantly impeding fluid
flow. However, as the permeability of the porous medium increases,
the influence of inertial forces becomes more prominent, reducing the
effect of viscous resistance. Consequently, fluid flow within the porous
medium increases with increasing Darcy numbers. Fig. 14(A) illustrates
the effect of the Darcy number on fluid flow within the h-shape cavity.
At Darcy number Da = 1073, circulation cells are densely formed near
the top-right and bottom-left sides of the cavity. As the Darcy number
increases to Da = 1072, the strength of the circulation cells magnifies
significantly. For a higher value of Da = 1071, the circulation cells
exhibit a high magnification in magnitude, which represents a more
pronounced flow that develops inside the cavity. Fig. 14(B) depicts
the transport characteristics of nanofluid flow in the square cavity. A
central circulating flow pattern, with the vortex core located at the
cavity’s center, is observed in the square cavity. As the Darcy number
increases, the magnitude of the circulation cells increases. Notably, the
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fluid flow is stronger in the square cavity compared to the h-shaped
cavity, as seen through the high magnitude value of the streamlines of
the square cavity.

Fig. 15(A) and (B) illustrate the isotherms for various values of
Darcy number within h-shape and square shape cavity respectively. The
isotherms provide insight into the effective heat transfer features, hence
playing an important role in examining the thermal performance of
nanofluids. In the h-shape cavity, increasing the Darcy number does not
lead to any significant changes in the isotherm patterns and magnitude,
indicating limited enhancement in heat transfer. In contrast, the square

B

Fig. 14. Streamlines in (A) h-shape and (B) square cavities for distinct values of Darcy number (i) Da = 1073, (ii) Da = 1072, (iii) Da = 1071,
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cavity exhibits a considerable variation in heat transfer features inside
the cavity. As the Darcy number increases from Da = 1073 to Da =
1071, the heat transfer becomes dominant inside the cavity as seen
through the curvy isotherm profiles. The curvy outline of the isotherms
indicates the pathways of heat flow, illustrating the HT impact in those
areas. These results are consistent with previous studies [57].

Impact of Hartmann number variation on streamlines and
isotherms:

The Hartmann number defines the ratio of magnetic to viscous
forces in magnetohydrodynamic flows. As the strength of the applied
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Fig. 15. Isotherms in (A) h-shape and (B) square cavities for distinct values of Darcy number (i) Da = 103, (ii) Da = 1072, (iii)) Da = 1071.

B

Fig. 16. Streamlines in (A) h-shape and (B) square cavities for distinct values of Hartmann number (i) Ha = 0, (ii) Ha = 25, (iii) Ha = 50.

magnetic field increases, the fluid velocity decreases in the cavity,
which is reflected by the diminished magnitude of eddies. This reduc-
tion in flow velocity is due to the intensified effect of the Lorentz force.
The Lorentz force arises from the interaction between the magnetic
field and the motion of the electrically conductive nanofluid. These
results are consistent with previous studies [57]. In the h-shape cavity,
as shown in Fig. 16(A), as Ha increases, the circulation cells extend
toward the center of the cavity, while the magnitude of the streamlines
diminishes. This trend highlights the suppressing effect of the magnetic
field on fluid motion. Fig. 16(B) illustrates the streamlines for the
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square cavity. A dominant vortex forms at the cavity’s center, with
circulation sensitivity localized at the center of the cavity. At Ha = 0,
the vortex exhibits a slight inclination toward the bottom-right corner
of the cavity. As Ha increases to 25, there is no inclination in the
circulating cells of the cavity. For Ha 50, the vortex is slightly
inclined toward the bottom-left corner of the cavity. Compared to the
h-shape cavity, the square cavity demonstrates higher fluid velocity in
the cavity for all the values of Ha. Further, compared to the h-shape
cavity, the impact of magnetic field is predominantly elucidated in the
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Fig. 17. Isotherms in (A) h-shape and (B) square cavities for distinct values of Hartmann number (i) Ha = 0, (ii) Ha = 25, (iii) Ha = 50.

square cavity, which is noticed through the strong deduction in the
magnitudes of streamlines.

Fig. 17(A) and (B) illustrate the isotherms for varying Hartmann
numbers, showing the influence of magnetic field strength on heat
transfer characteristics. In the h-shape cavity, there is no significant
difference in the isotherms by varying the value of Ha. Conversely, in
the square cavity, the nature of heat transfer varies considerably as Ha
increases; the curviness of the isotherms in the top-right corner reduces.
This is due to the impact of the Lorentz force, which arises when
charged particles in the electrically conductive fluid travel through
magnetic and electric fields. This force acts to slow down fluid motion,
and thereby the heat transfer nature within the enclosure is affected.

Impact of Rayleigh number variation on streamlines and
isotherms:

The Rayleigh number is defined as the ratio of inertia force to
viscous force, influenced by various factors, including fluid velocity
fluctuations, and characterizes the strength of natural convection in the
fluid flow. The impact of Ra on streamlines is elucidated in Fig. 18(A)
and (B) for h-shape and square cavities, respectively. With increasing
Ra, the magnitude of streamlines increases in both the cavities due
to enhanced buoyancy-driven flow, and the rotational strength of the
circulating cells increases accordingly. In the square cavity, a dominant
central vortex is observed across all values of Rayleigh number, and
circulation sensitivity is located at the center of the cavity. At Ra = 103,
this vortex shows a slight inclination toward the bottom-left corner. As
Ra increases to 10%, the inclination disappears. At Ra = 10°, the size of
the innermost circulating cell enlarged, and the vortex inclined toward
the bottom-right wall of the enclosure.

Fig. 19(A) and (B) in order, represent the isotherms for varying
Rayleigh numbers 103< Ra <10° for h-shape and square cavities. At
Ra = 103, conduction dominates as the primary mode of heat transfer.
There is no significant change in the magnitude of isotherms in both
cavities while increasing the Rayleigh number. As Ra varying from
10% to 104, there is minimal change in the isotherm patterns for
h-shape cavity, while in the square cavity, isotherms start forming
a curvy pattern, showing that the convective mode of heat transfer
effect magnifies. A significant enhancement in heat transfer is observed
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when the Rayleigh number increases from 10* to 105. This is due to
the growing influence of buoyancy-driven convection, which becomes
increasingly dominant at higher values of Rayleigh number, leading
to stronger thermal gradients and more pronounced convective heat
transfer is noticed in square cavity. For nanoparticles of spherical
and non-spherical shapes, Table 6 demonstrates the outcomes of av-
erage Nusselt number in h-shape and square cavities. Comparative
percentage increase of average Nusselt number are presented in three
forms in the table: variation with shape factor (I), variation with
cavity shape (II), and variation between spherical and non-spherical
nanoparticles (III). The results show that non-spherical nanoparticles
consistently enhance heat transfer performance. It is noticed that Nu
increases progressively as the shape factor rises. Square cavity exhibits
higher heat transfer than h-shape cavity for all nanoparticle shapes,
although the relative improvement decreases slightly for larger values
of shape factor. Further, highest average Nusselt numbers are achieved
when lamina-shaped nanoparticles are suspended in the base fluid. In
contrast, spherical shape nanoparticles yield the lowest Nu in both
the cavities. Among all configurations, the square cavity containing
lamina-shaped nanoparticles exhibits the most efficient heat transfer
performance, while the h-shape cavity with spherical nanoparticles
provides the lowest heat transfer rate. Overall, both cavity shape and
nanoparticle shape exert a strong influence on heat transfer rate. Fig. 20
illustrates the variation of the average Nusselt number for the h-shape
and square cavities for different period of MF. The results demonstrate
that 4 plays a minute role in enhancing the average heat transfer rate.
The percentage increase in Nu for each cavity shape is depicted in
the figure. For 4 = 0.25, 4 = 0.5, and 4 = 0.75, average Nusselt
numbers for the h-shape cavity is 2.115714, 2.117939, and 2.117686,
and for the square cavity it is 2.326881, 2.327504, and 2.329404,
respectively. These values confirm that the square cavity consistently
exhibits higher heat transfer performance. This result is consistent with
the results of [32]. The influence of thermal radiation on the average
Nusselt number Nu for h-shape and square cavities is illustrated in Fig.
21. As the radiation parameter increases, the rate of heat transfer is
significantly enhanced. This is due to the contribution of radiative heat
transfer, which becomes increasingly dominant at higher values of Rd.
In this figure, the percentage of increase in Nu for the h-shape and
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Fig. 18. Streamlines in (A) h-shape and (B) square cavities for distinct values of Rayleigh number (i) Re = 103, (i) Ra = 104, (iii) Ra = 10°.
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Fig. 19. Isotherms in (A) h-shape and (B) square cavities for distinct values of Rayleigh number (i) Ra = 103, (ii) Ra = 10%, (iii) Ra = 10°.

square cavities are illustrated. For Rd = 0, Rd = 0.5 and Rd = 1,
average Nusselt number for the h-shape cavity is 0.821149, 1.46473,
and 2.115714, and for the square cavity, it is 1.111755, 1.706436, and
2.326881, respectively. These results indicate that the square cavity
consistently yields higher heat transfer rates compared to the h-shape
cavity. However, both geometries exhibit a strong positive correlation
between the radiation parameter and heat transfer rate, demonstrating
the amplifying effect of thermal radiation on heat transfer rate within
the enclosures. These results are consistent with previous studies [57].
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Table 7 illustrates the effect of the Rayleigh number on the average
Nusselt number Nu for the h-shape and square cavities. It is noticed
that for the h-shape cavity, the average heat transfer slightly decreases
as Ra increases, dropping from 2.248158 at Ra = 1000 to 1.901541 at
Ra = 45 000. However, beyond this value of Ra, the heat transfer starts
to increase slightly as Ra rises, reaching 2.11058 at Ra = 100 000. This
behavior is consistent with observations reported in the literature [65],
where geometric complexity can lead to localized flow recirculation
and unstable convection patterns at moderate buoyancy forces. Con-
versely, in the square cavity, Nu increases steadily with rising Ra,



