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Theory of Fractional Order
Generalized Thermoelasticity
In this work, a new model of thermoelasticity theory has been constructed in the context
of a new consideration of heat conduction with fractional order, and its uniqueness
theorem has been approved also. One-dimensional application for a half-space of elastic
material, which is thermally shocked, has been solved by using Laplace transform and
state-space techniques. According to the numerical results and its graphs, conclusion
about the new theory of thermoelasticity has been constructed.
�DOI: 10.1115/1.4000705�
Introduction
Recently, a considerable research effort has been expended to

tudy anomalous diffusion, which is characterized by the time-
ractional diffusion-wave equation by Kimmich �1�

�c = �I�c,ii �1�

here � is the mass density, c is the concentration, � is the diffu-
ion conductivity, i is the coordinate symbol, which takes the val-
es 1, 2, and 3, the subscript “,” means the derivative with respect
o xi, and notion I� is the Riemann–Liouville fractional integral is
ntroduced as a natural generalization of the well-known n-fold
epeated integral Inf�t� written in a convolution-type form as in
efs. �2,3�

�I�f�t� =
1

�����
0

t

�t − ���−1f���d�

I0f�t� = f�t�
� 0 � � � 2 �2�

here ���� is the gamma function.
According to Kimmich �1� Eq. �1� describes different cases of

iffusion where 0���1 corresponds to weak diffusion �subdif-
usion�, �=1 corresponds to normal diffusion, 1���2 corre-
ponds to strong diffusion �superdiffusion�, and �=2 corresponds
o ballistic diffusion.

It should be noted that the term diffusion is often used in a more
eneralized sense including various transport phenomena. Equa-
ion �1� is a mathematical model of a wide range of important
hysical phenomena, for example, the subdiffusive transport oc-
urs in widely different systems ranging from dielectrics and
emiconductors through polymers to fractals, glasses, porous, and
andom media. Superdiffusion is comparatively rare and has been
bserved in porous glasses, polymer chain, biological systems,
ransport of organic molecules and atomic clusters on surface �4�.
ne might expect the anomalous heat conduction in media where

he anomalous diffusion is observed.
Fujita �5,6� considered the heat wave equation for the case of

���2

�CT = kI�T,ii �3�

here C is the specific heat, k is the thermal conductivity, and the
ubscript “,” means the derivative with respect to the coordinates
i.

Equation �3� can be obtained as a consequence of the non local
onstitutive equation for the heat flux components qi is in the form
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qi = − kI�−1T,i, 1 � � � 2 �4�
Povstenko �4� used the Caputo heat wave equation defined in the
form

qi = − kI�−1T,i, 0 � � � 2 �5�
to get the stresses corresponding to the fundamental solution of a
Cauchy problem for the fractional heat conduction equation in
one-dimensional and two-dimensional cases.

Some applications of fractional calculus to various problems of
mechanics of solids are reviewed in the literature �7,8�.

2 Theory of Fractional Order Generalized
Thermoelasticity

The classical thermoelasticity is based on the principles of the
theory of heat conduction, which is called the Fourier law, which
relates the heat flux components qi to the temperature gradient as
follows:

qi = − kT,i �6�
In combination with the energy conservative law, this leads to the
parabolic heat conduction equation, which is considered by Pov-
stenko �4�

�CṪ = kT,ii �7�

where the dotted above T means the derivative with respect to the
time t.

Recently, in the nonclassical thermoelasticity theories, Fourier
law �6� and heat conduction �7� are replaced by more general
equations; these have been formulated. The first well-known gen-
eralized of such a type is that of Lord and Shulman �9�, and it
takes the form

qi + �oq̇i = − kT,i �8�
which leads to the hyperbolic differential equation of heat conduc-
tion of Lord and Shulman �9�

�C�Ṫ + �oT̈� = kT,ii �9�

where �o is a non-negative constant and is called the relaxation
time.

According to Eq. �9�, Kaliski �10� and Lord and Shulman �9�
constructed the theory of generalized thermoelasticity.

Now, a new formula of heat conduction will be considered tak-
ing into account considerations �4�, �5�, and �8� as follows:

qi + �oq̇i = − kI�−1T,i, 0 � � � 2 �10�

where I is an integral operator, which is defined in Eq. �2�.
In the context of the generalized thermoelasticity, the governing

equations for isotropic medium are defined as follows.

For the equation of motion,
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�ij,j + �Fi = �üi �11�
For the constitution relation,

�ij = 2	eij + �
ekk − ���ij �12�

here 
 and 	 are Lamé’s constant; ui is the displacement com-
onent; Fi is the body force component; �= �T−To� is the incre-
ent of the dynamical temperature, where To is the reference

emperature; �= �3
+2	��T, where �T is called the thermal ex-
ansion coefficient, where ij is the Kronecker delta symbol; �ij is
he stress tensor such that �ij =� ji; and eij is the strain tensor that
atisfies the relations

eij = 1
2 �ui,j + uj,i� and e = e11 + e22 + e33 �13�

For the heat flux equation,

qi,i = − �C�̇ − To�ė �14�

he entropy increment equation per unit volume takes the form

�To� = �C� + To�e �15�

here � is the entropy increment of the material.
For the heat flux-entropy equation,

qi,i = − �To�̇ �16�
For the heat equation without any heat sources

qi + �o

�qi

�t
= − kI�−1�,i, 0 � � � 2 �17�

y using Eqs. �15�–�17�, we have the heat equation in the form

kI�−1�,ii = 	 �

�t
+ �o

�2

�t2
��C� + To�e� 0 � � � 2 �18�

here

0 � � � 1 for weak conductivity

� = 1 for normal conductivity

1 � � � 2 for strong conductivity

The Uniqueness Theorem
Let V be an open regular region of space with boundary S

ccupied by the reference configuration of a homogeneous isotro-
ic linear thermoelastic solid. S is assumed closed and bounded.
e supplement the equations of two temperature-generalized ther-
oelasticity �11�–�18� by prescribed boundary conditions as in
ef. �11�

ui = ūi on S1 � �0,�� �19�

pi = p̄i = � jinj on S − S1 � �0,�� �20�

�i = �̄i on S �21�

here S1�S.
In addition, we have prescribed initial conditions

ui = ui0, u̇i = u̇i0, � = �0 in V at t = 0 �22�

Theorem
Given a regular region of space V+S with volume V and bound-

ry S, then there exists at most one set of single valued functions
ij�xk , t� and eij�xk , t� of class C�1�, ui�xk , t�, and �i�xk , t� of class
�2� in V+S, t�0, which satisfy Eqs. �11�–�18� and conditions
19�–�22�, where k, C, 
, 	, �, To, �, and �o are all positive.
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5 Proof

Let there be two sets of functions �ij
�I� and �ij

�II�, eij
�I� and eij

�II�, ��I�

and ��II�. . ., etc. and let �ij =�ij
�I�−�ij

�II�, eij =eij
�I�−eij

�II�, �=��I�

−��II�. . ., etc.
By virtue of the linearity of the problem, it is clear that these

differences also satisfy the above-mentioned equations �with Fi
=0� and homogeneous counterparts of conditions �19�–�22�,
namely, they satisfy the following field equations in V� �0,��:

�ij,j = �üi �23�

�ij = � ji �24�

qi,i = − �To�̇ �25�

�ij = 2	eij + �
ekk − ���ij �26�

qi + �oq̇i = − kI�−1�,i, 0 � � � 2 �27�

�To� = �C� + To�ijeij �28�

kI�−1�,ii = �C��̇ + �o�̈� + �T0�ėkk + �0ëkk� �29�

and

eij = 1
2 �ui,j + uj,i� �30�

together with the following boundary conditions:

ui = 0 on S1 � �0,�� �31�

pi = � jinj = 0 on S − S1 � �0,�� �32�

�i = 0 on S �33�

where S1�S.
In addition, we have the initial conditions

ui = ui0, u̇i = u̇i0, � = �0 in V at t = 0 �34�

Now, we will consider the integral

�
v

�ijėijdv =�
v

�iju̇i,jdv = −�
v

�ij,ju̇idv �35�

Upon inserting Eq. �23� the latter equation is reduced to

�
v

��ijėijdv + �u̇iüi�dv = 0 �36�

Using Eq. �26�, we get

�
v

��2	eij + 
ijekk − ��ij�ėij + �u̇iüi�dv = 0 �37�

This can be written as follows:

d

dt�v
�1

2

ekk

2 + 	eijeij +
�u̇iu̇i

2
�dv −�

v

��ėkkdv = 0 �38�

Substituting for ėkk in Eq. �29�, we get

T0
d

dt�v
�1

2

ekk

2 + 	eijeij +
�u̇iu̇i

2
+

�C

2T0
�2�dv − k�

v

�I�−1�,iidv

+ �o�C�
v

��̈dv + �T0�o�
v

�ëkkdv = 0 �39�

where vI�−1f�v , t�dv= I�−1vf�v , t�dv �v and t are independent
variables�.
Integrating by parts, we obtain
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T0
d

dt�v
�1

2

ekk

2 + 	eijeij +
�u̇iu̇i

2
+

�C

2T0
�2�dv + k�

v

�,iI
�−1�,idv

+ �o�C�
v

��̈dv + �T0�o�
v

�ëkkdv = 0 �40�

rom the well-known inequality of the second law of thermody-
amics

− qi�,i � 0 �41�
y using Eq. �27�, we get

k�
v

�,iI
�−1�,idv + �o�

v

q̇i�,idv � 0

ntegrating by parts, we obtain

k�
v

�,iI
�−1�,idv − �o�

v

q̇i,i�dv � 0 �42�

nserting Eqs. �25� and �28� in the last equation, we get

k�
v

�,iI
�−1�,idv + �o�C�

v

��̈dv + �To�o�
v

�ëkkdv � 0 �43�

ence, we have

d

dt�v
�1

2

ekk

2 + 	eijeij +
�u̇iu̇i

2
+

�C

2T0
�2�dv � 0 �44�

he integral in the left hand side of Eq. �44� is initially zero since
he difference functions satisfy homogeneous initial conditions.
y inequality �44�, however, this integral either decreases �or

herefore becomes negative� or remains equal to zero. Since the
ntegral is the sum of squares, only the latter alternative is pos-
ible, that is,

�
v
�1

2

ekk

2 + 	eijeij +
�u̇iu̇i

2
+

�C

2T0
�2�dv = 0, t � 0 �45�

It follows that the difference functions are identically zero
hroughout the body and for all time this completes the proof of
he theorem.

One-Dimensional Application
We will consider a half-space filled with an elastic material,

hich has constant elastic parameters. The governing equations
ill be written in the context of the fractional ordered generalized

hermoelasticity theory.
The heat conduction equation takes the form

kI�−1�,ii = 	 �

�t
+ �0

�2

�t2
��C� + �T0e�, 0 � � � 2 �46�

he constitutive equation takes the form

�ij = 2	eij + 
ekkij − ��ij �47�
he equation of motion without body force takes the form

�ij,j = �üi �48�

ow, we will suppose elastic and homogenous half-space 0�x
�, which obey Eqs. �46�–�48� and initially quiescent, where all

he state functions are dependent only on the dimension x and the
ime t.

The displacement components for the one-dimensional medium
ave the form

ux = u�x,t�, uy = uz = 0 �49�

he strain component takes the form

ournal of Heat Transfer
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e = exx =
�u

�x
�50�

The heat conduction equation takes the form

kI�−1�2�

�x2 = 	 �

�t
+ �0

�2

�t2
��C� + �T0e�, 0 � � � 2 �51�

The constitutive equation takes the form

� = �xx = �2	 + 
�e − �� �52�
The equation of motion takes the form

��

�x
= �ü �53�

or

�2�

�x2 = �ë �54�

For simplicity, we will use the following nondimensional vari-
ables:

x� = c0�x, �� = c0
2��, �0� = c0

2��0, �� =
T − T0

T0
, �� =

�

2	 + 


�55�

where c0
2= ��2	+
� /�� and �=�C /k.

Hence, we have �for simplicity, the primes have been dropped�

I�−1�2�

�x2 = 	 �

�t
+ �0

�2

�t2
�� + �e� �56�

� = e − �� �57�

�2�

�x2 = ë =
� ü

�x
�58�

where �=� /�C and �=�T0 / �
+2	� are nondimensional con-
stants.

Taking the Laplace transform for the both sides of Eqs.
�56�–�58�, this is defined as follows:

L�f�t�� = f̄�s� =�
0

�

f�t�e−stdt

we obtain

1

s�−1

d2�̄

dx2 = �s + �0s2��̄ + �s + �0s2��ē �59�

where the rule for the Laplace transform of the Riemann–
Liouville fractional integral reads from Ref. �4�

L�Inf�t�� =
1

snL�f�t��, n � 0 �60�

�̄ = ē − ��̄ �61�

d2�̄

dx2 = s2ē = s2dū

dx
�62�

where all the initial state functions are equal to zero.

Eliminating ē and �̄ from Eqs. �59�, �61�, and �62�, we obtain

d2�̄

dx2 = L1�̄ + L2�̄ �63�

where

L1 = �s� + �0s�+1��1 + ���, L2 = ��s� + �0s�+1�
and

JUNE 2010, Vol. 132 / 061301-3
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d2�̄

dx2 = M1�̄ + M2�̄ �64�

here

M1 = �s2, M2 = s2

hoosing as a state variable the temperature of heat conduction �̄
nd the stress component �̄ in the x-direction, then Eqs. �63� and
64� can be written in matrix form, as in Ref. �12�, as follows:

d2V̄�x,s�
dx2 = A�s�V̄�x,s� �65�

here

V�x,s� = ��̄�x,s�
�̄�x,s�

� and A�s� = �L1

M1
��L2

M2
�

he formal solution of system �65� can be written in the form

V̄�x,s� = exp�− �A�s�x�V̄�0,s� �66�

here

V�0,s� = ��̄�0,s�
�̄�0,s�

� = ��̄0

�̄0
�

here for bounded solution with large x, we have canceled the
art of the exponential that has a positive power.

We will use the well-known Cayley–Hamilton theorem to find
he form of the matrix exp�−�A�s�x�. The characteristic equation
f the matrix �A�s� can be written as follows:

k2 − k�L1 + M2� + �L1M2 − L2M1� = 0 �67�

he roots of this equation, namely, k1 and k2, satisfy the following
elations:

k1 + k2 = L1 + M2 �68�

k1k2 = L1M2 − L2M1 �69�

ow, we can write the spectral decomposition of A�s�, as in Ref.
13�

A�s� = k1E1 + k2E2 �70�

here E1 and E2 are called the projectors of A�s� and satisfy the
ollowing conditions:

E1 + E2 = I �71a�

E1E2 = zero matrix �71b�

Ei
2 = Ei for i = 1,2 �71c�

hen, we have

�A�s� = �k1E1 + �k2E2 �72�

here

E1 =
1

k1 − k2�
�L1 − k2� L2

�k1 − L1��L1 − k2�
L2

�k1 − L1� � �73�

nd

E2 =
1

k1 − k2�
�k1 − L1� − L2

�k1 − L1��k2 − L1�
L2

�L1 − k2� � �74�
hen, we get

61301-4 / Vol. 132, JUNE 2010
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B�s� = �A�s� =
1

�k1 + �k2
��k1k2 + L1 L2

M1 �k1k2 + M2
� �75�

The Taylor series expansion for the matrix exponential in Eq. �66�
is given by

exp�− B�s�x� = �
n=o

�
�− B�s�x�n

n!
�76�

Using the Cayley–Hamilton theorem, we can express B2 and
higher orders of the matrix B in terms of I, B, where I is the unit
matrix of second order.

Thus, the infinite series in Eq. �76� can be reduced to the fol-
lowing form:

exp�− B�s�x� = b0�x,s�I + b1�x,s�B�s� �77�

where b0 and b1 are coefficients depending on s and x.
Consider the characteristic roots p1 and p2 satisfy the charac-

teristic equation of the matrix B�s�, which takes the form

P2 − P��k1 + �k2� + �k1
�k2 = 0 �78�

which gives

P1 = �k1 and P2 = �k2 �79�

By the Cayley–Hamilton theorem, the roots of matrix B must
satisfy Eq. �77�; thus, we have

exp�− p1x� = b0 + b1p1 �80�

and

exp�− p2x� = b0 + b1p2 �81�

By solving the above linear system of equations, we get

b0 =
1

p1 − p2
�p1e−p2x − k2e−p1x� �82�

and

b1 =
1

p1 − p2
�e−p1x − e−p2x� �83�

Hence, we have

exp�− B�s�x� = Lij�x,s�, i, j = 1,2 �84�

where

L11 =
1

k1 − k2
�e−�k2x�k1 − L1� − e−�k1x�k2 − L1��

L12 =
L2

k1 − k2
�e−�k1x − e−�k2x�

L22 =
1

k2 − k1
�e−�k1x�k2 − M2� − e−�k2x�k1 − M2��

L21 =
M1

k1 − k2
�e−�k1x − e−�k2x�

We can write the solution of Eq. �65� in the following form:

V̄�x,s� = LijV̄�0,s� �85�

Hence, we obtain

�̄ =
1

k1 − k2
��k1�0 − L1�0 − L2�0�e−�k2x − �k2�0 − L1�0

−�k1x
− L2�0�e � �86�
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�̄ =
1

k1 − k2
��k1�0 − M1�0 − M2�0�e−�k2x − �k2�0 − M1�0

− M2�0�e−�k1x� �87�
ow, we will use the boundary conditions on the boundary plane
=0, which is given by the following:

�1� Thermal boundary condition
We will suppose that, the boundary plane x=0 is sub-

jected to a thermal shock as follows:

��0,t� = �0 = �0
0H�t� �88�

where H�t� is called the Heaviside unite step function and
�0

0 is constant.
By using Laplace transform as we defined before, we get

�̄�0,s� = �̄0 =
�0

0

s
�89�

�2� Mechanical boundary condition
We will consider that the boundary plane x=0 traction

free, so we have

��0,t� = �0 = 0 �90�
the above equation gives, after using the Laplace transform,
the following equation:

�̄�0,t� = �̄0 = 0 �91�
Hence, we can use conditions �89� and �91� into the Eqs.
�86� and �87� to get the solutions as follows:

�̄ =
�0

0

s�k1 − k2�
��k1 − L1�e−�k2x − �k2 − L1�e−�k1x� �92�

�̄ =
�0

0M1

s�k1 − k2�
�e−�k1x − e−�k2x� �93�

From Eq. �62�, we have

ū =
1

s2

d�̄

dx
�94�

Substituting from Eq. �85� into Eq. �86�, we get

ū =
− �0

0M1

s3�k1 − k2�
��k1e−�k1x − �k2e−�k2x� �95�

Those complete the solution in the Laplace transform
domain.

Inverse Laplace Transforms
In order to invert the Laplace transforms, we adopt a numerical

nversion method based on a Fourier series expansion in Ref. �14�.
By this method the inverse f�t� of the Laplace transform f̄�s� is

pproximated by

f�t� =
ect

t1
� 1

2
f̄�c� + R1�

k=1

N

f̄	c +
ik�

t1

exp	 ik�t

t1

�, 0 � t1 � 2t

�96�

here N is a sufficiently large integer representing the number of
erms in the truncated Fourier series, chosen such that

exp�ct�R1� f̄	c +
iN�

t1

exp	 iN�t

t1

� � �1 �97�

here �1 is a prescribed small positive number that corresponds to
he degree of accuracy required. Parameter c is a positive free
arameter that must be greater than the real part of all the singu-

arities of f̄�s�. The optimal choice of c was obtained according to

he criteria described in Ref. �14�.
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8 Numerical Results and Discussion
The copper material was chosen for purposes of numerical

evaluations, and the constants of the problem were taken from
Refs. �12,15� as follows:

k = 386 N/K s, �T = 1.78 � 10−5 K−1, C = 383.1 m2/K

� = 8886.73 m/s2, 	 = 3.86 � 10−10 N/m2


 = 7.76 � 10−10 N/m2, � = 8954 kg/m3, �o = 0.02 s

To = 293 K, � = 1.60861, � = 0.0104, �0
0 = 1

Figures 1–3 display the temperature distribution q, the stress dis-
tribution s, and the displacement distribution u for wide range of x

Fig. 1 The temperature distribution at t=0.2

Fig. 2 The stress distribution at t=0.2
Fig. 3 The displacement distribution at t=0.2
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0�x�1� at a small value of time t=0.2, and it is noticed that �
as a significant effect on all the fields.

In Fig. 1, for a weak conductivity 0��=0.5�1, the particle
ransports the heat to the other particle with difficulty, which

akes the particles keep the temperature within itself for a longer
ime interval, which makes this curve lie above the other two
urves. For a normal conductivity �=1.0, the results coincide with
ll the previous results of applications that are taken in the context
f the generalized thermoelasticity, as in Refs. �9,12,15�. For
trong conductivity �superconductivity� 1��=1.5�2, the par-
icles transport the heat to the other particles easily and this makes
he decreasing rate of the temperature greater than the other ones.

In Fig. 2, the stress field has the same behavior as the tempera-
ure except at discontinuous points. To explain that discontinuous
oints, the effect of the thermal shock on the boundary generates
wave for small interval 0���0.19; after this another wave is

enerated as a reaction of the first wave in inverse direction.
In Fig. 3, the displacement distribution has been affected by the

alue of �, where the maximum point of the displacement in-
reases when the value of increases. During the same interval 0
��0.19, all the displacements increase with a very great rate

ntil the maximum point at x=0.19.
Figures 4–6 display the temperature distribution q, the stress

istribution s, and the displacement distribution u for wide range
f time t �0� t�0.2� at x=0.5, and it is noticed that � has sig-
ificant effects on all the fields. It is noticed that all the waves
each the steady state depending on the value of �.

Fig. 4 The temperature distribution at x=0.5
Fig. 5 The stress distribution at x=0.5
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9 Conclusion
In general, we have the following system of equations that

cover four theorems.
For the equation of motion,

�
�2ui

�t2 = �Fi + �
 + 	�uj,ij + 	ui,j j − �	� + �
��

�t



,i
�98�

For the generalized heat conduction equation,

kI�−1�,ii = �C	 ��

�t
+ �o

�2�

�t2 
 + �To	 �ui,i

�t
+ no�o

�2ui,i

�t2 
 �99�

where

0 � � � 1 for weak conductivity

� = 1 for normal conductivity

1 � � � 2 for superconductivity

and no is a constant parameter.
For the constitutive equation,

�ij = 
ekkij + 2	eij − �	� + �
��

�t

 �100�

eij = 1
2 �ui,j + uj,i� �101�

The previous equations constitute a complete system of fractional
order generalized thermoelasticity. This model can be applied to
both classical generalizations, the Lord–Shulman theory �n0
=1, �0�0, �=0, �=1� and the Green–Lindsay theory �n0
=0, �0�0, ��0, �=1�, as well as to the coupled theory ��0
=�=0, �=1�.

Nomenclature
� � the mass density
c � the concentration
� � the diffusion conductivity
C � the specific heat
k � the thermal conductivity

qi � the heat flux components
T � the temperature

�o � the relaxation time

 ,	 � Lame’s constants

ui � the displacement component
Fi � the body force component
� � �T−To� is the increment of the dynamical

temperature
To � the reference temperature

Fig. 6 The displacement distribution at x=0.5
�T � the thermal expansion coefficient
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ij � the Kronecker delta symbol
�ij � the stress tensor such that
eij � the strain tensor
� � the entropy increment
c0

2 � �2	+
� /�
� � � /�C
� � �T0 / �
+2	�
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