-

w.

} Xy

.‘I \ s

AND H.
L., “..")\ !

D. COMPTON RABIN

M,R, and N centers is the appeal in promoting a dccper understanding of a
broad class of defects in alkali halide crystals.

b ; \

gl

)
A.'

Ackno_wledgmenfs

~
The authors are indebted to Dr. C. C. Klick and Dr. James H. Schulman for many
stimulating discussions of the subject matter. Also, one of the authors (. D. C).
would like to acknowledge the partial support of the National Science Foundation during

the time this manuscript was in preparation.

-

, ¥ : .
Point-Charge Calculations of Energy Levels of Magnetic
- lons in Crystalline Electric Fields* e

"

M. T. HurcHINGS

= L]
The Clarendor. Laboratory, Ozford, England and
Yale University, New Haven, Connedia,zl)‘

v

—~—
-

1

. =
. Introduction. ........... S 5 Sk A 8 £ e £ B B e e e e s 815 227
. Determination of the Pcrturbmg Hamlltoman
1. Evaluation of the Crystalline Electric "Potential near a Magnetlc Ion in
Terms of Cartesian Coordinates

2. Evaluation of the Crystalline Electric Potential near a Magnetic Ton in’
Terms of Spherical Harmomcs

3. Number of Harmonics Occurnng in the Expression for the Potential

. Calculation of the Matrix Elements of the Crystalline Potentxal Perturbing
Hamiltonian. . . ... NN ST 5 S R g . o

4. Direct Integration................... ... el S T R S e 8
5. Use of Stevens’ “Operator Equivalents”- Method

6. Operator Equxva]ents for Cubic Potentials............ . ... St e St

247~
248
249
265

271

1v.

I Introduction

5
‘The caleulation of energy levels of magnetic ions in crystalline electric
_ fields is often the cause of considerable confusion. This confusion largely
arises, not through the fundamental theoretical principles which are now
-well established, but from the large number of different and often not fully
defined notations used, occasional errors, ‘and .the fact that one author
~seldom gives an example of calculation from start to finish. This discussion
contains no original contribution to the problem, but it is hoped that' by
“illustrating how the energy levels may be calculated on the basis of a simple
point-charge ionic model of the crystal lattiée the connection between the

- * This'work was supported by the U.S. Air Force, the U.K. Department of Scnenhﬁc
and Industrial Research,-and the U.S. Atomic Energy Commission.
1 Présent acdress: Yale Umyersib , New Haven, Connecticut.
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M. T. HUTCHINGS

various forms of crystal-field Hamiltonians will be clarified. Particular
reference will be made to fields of cubic symmetry.

If the crystalline electric field effects are taken as a perturbation on the
appropriate free-ion wave functions and energy levels, the problem becomes
that of finding the perturbing Hamiltonian and its matrix elements. The
energy levels in the crystal field can then be found from standard perturba-
tion theory. The simple point-charge model used to calculate the Hamil-
tonian is known to possess several weaknesses. It neglects the finite extent of
' charges on the ions, the overlap of the magnetic ions’ wave functions with

those of neighboring ions, and the complex effects of “‘screening” of the

magnetic electrons by the outer electron shells of the magnetic ion. How-

ever, it serves as af s a first ap approxxmatxon to illustrate the principles involved,

and may be used to calculate ratios of terms of the same degree in the

- Hamiltonian for lattice sites of high symmetry, since these ratios are in-

dependent of the model used and are determined solely by the symmetry.

Certain refinements of the ionic model for rare-earth compounds, for which

it is most applicable, have been discussed by Hutchison and Wong,!
Hutchings and Ray,? and Lenander and Wong.?

g Il Determination of the Perturbing Homiltonian

On the basis of a simple point-charge ionic model the determination
of the perturbing Hamiltonian is primarily the evaluation of the electro-
static potential V (r, 6, ) due to the surrounding point charges, at a point

(r, 6, ¢) near the origin at the magnetic ion in question:

V(r, 6, ¢)

where ¢; is the charge at the jth neighboring ion, a distance R; from the

origin.
If the magnetic ion has charge ¢: at (r:, 8;, ¢:), then the perturbing

crystalline potential energy will be
H 99 .
7o V. (1I1.2)

We are normally only concerned with Z over electrons in unfilled shells,
as the crystal ficld affects closed shells only in a high order of perturba—

q;
= 2(® -0 (1)

j 1 C. A. Hutchison and E. Y. Wong, J. Chem. Phys. 29, 754 (195S).
* M. T. Hutchings and D. K. Ray, Proc. Phys. Soc. (London) 81, 663 (1963).
3 C. J. Lenander and E. Y. Wong, J. Chem. Phys. 38, 2750 (1963).

! (1) When the charges arc placed at the corners of an octahedron
i (sixfold coordination).
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tion. This is also truc for ions in an S state, and throughout we shall omit
such ions from the discussion.

The crystalline potential, Eq. (II.1), may be calculated in Cartesian
coordinates, or directly in terms of spherical harmonics. These two methods
and their connection will be illustrated below for crystal ficlds of cubic

symmetry.

1. BvaLuaTioN oF THE CRYSTALLINE ELECTRIC POTENTIAL NEaAR 4
MagNEeTIic IoN 1IN TErMS OF CARTESIAN COORDINATES

As an illustration we shall calculate the potential at a point (z, 7, 2)
near the magnetic ion as origin for three arrangements of charges giving L
a cubic crystalline electric field, that is, near an origin of cubic point sym- l’
metry. The simplest three such arrangements are:

coordination).
(3) When the charges arc placed at the corners of a tetrahedron
(fourfold coordination).

We shall see later (Section 4a) that it is only necessary to cxpand the

|
(2) When the charges are placed at the corners of a cube (cightfold h
l!

potential up to terms of sixth degree. ,
|

a. Sizfold Cubic Coordmalzon

Consider the potential 1'(z, y, z) at a point P, (z, y, 2), due to point
charges of charge g at the corners of an octahedron; ie., at (a, 0, 0),
(—a, 0,0), (0, g, 0), (0, —a, 0), (0, 0, a), and (0, 0, —a), as shown in
Tig. 1. Then V(z,y,2) = V. + V, + V,, where

/] 2,y 92 1 1
-xtyYr o= [ ]
> 2 7 o (r* + a? — 2az)} G (r* + a* + 2ax)t S

V, =cte,andr? = 22+ 32 + 22 Nowlet A = (7 + a?), B = r¥/a’, and
2ax 2z 1 2ay 2az
g . Y=—7; Z= ;
A a(+B A’

Ixpanding up to terms of sixth degree, for R; = a > r: ’
| Viz,y,2) = (@ANA+ X+ 1 =X+ (1 + D)7 |
| +A-V+1+27+0-2)7)
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Now, )3 1

-
4
£

| 3 35 63
1+ X)- 4 1l —X)V=24 - X24 =X Za Xs,
(1L + XJ=h = ) +4 +G4 +G4.24’
Therefore, :
q 3 35 ,
Vv = b 2 (X2 72 2 2 Y 74 A
(2,9, 2) A,[6+4(\ +}+Z)+G4(/\ + Yi4 79

693

T

(X¢ + Yo+ 26)]

34 (1 + y? + 2)
4 a(l + B)2

QD

[6(1 + B) +

n 3516 (2' + y* + 2) . 693-64 (25 + y* + 2‘5)]
64 a‘(l + B)*® ' 64-24a® (1 + B)WP

I6_3(I2+yz+z:)+9(12+y2+22)2

[ a? 4 at

Q o

_E(x2+yz+22)3+($’+y’+zz)

8 as a?

x[s-DEALED Nl

2 a? 8 al

pEE B BIE )

4 8 a?

a4

693 .
tog @ty t 26)]-

Therefore, collecting terms,

Gg _ 21 2 3ag (' + y' + 2Y)
V(z, y, 2) =iaq—4—;£(.r2+y-+22)2+7—?—

2 2 2)3  231¢ (28 + 3° + 2°)
+QOQ(I +y.+z)+___q(_—J7_.__
8 a’ 8 a

3509 @+ v+ A +y + 2

8 a’
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Z
(0,0,0)

2P (x,y,z)
: XY,z

(&-00.0)

0 (0,0,0)

(0,0,0)

Y(0,0,-o)
Fia. 1. Sixfold cubic coordination.

We now make use of several expansions listed below. (These include also
some which will be required later.)

(z+y+2)2=22+y+224+2(zy+zz+ zy) =2+ 2(2y + 2z + z1)
(eHy+2=2 g+
+ 3(ay? + x2* + ya? + y2? + 227 + zy2) + Gayz
(+y+2)=r+4r(ay + yz + 2z) + 4(2%? + 22 + 2%2?)
] + 8(zy%z + 2%yz + 22%)
(x +y+2)% =25+ 98 + 28 + 15(a%* + 2% + y2t + % + 22 + 2%)
+ 9022y%? + terms where z, y, or z occur to an odd power.
=224 Yt + 22
=ty 42+ 2x2y_2 + 2y%% + 22%?
8 = af 4+ yb 4 28 4 3(a'y? + 22 + ya? + y'22 + 222 + 2'?)
+ Gx2%%.  (1.1)
Using these we find

6 (359 4 214
V(I, Y Z) == —g + <4—as>[(7}‘ + Yy + Z‘) = %r‘:l + ( = )

X [(284 8+ 25) + 12 (a2t + 222' + vt + v + 222 + 224) — 9]
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B(-0,0,0)

/ G,D_ ———————————— LCM 0,-0)
/ X ///J /////
/ // //
R i

/ /// ///

P
////////
gy
H'; D(0,0,0)

Fic. 2. Eightfold cubic coordination.

An alternative method of calculating this result is to make use of
Taylor's series, expanding up ton = 6:

n=6 3 J n i
e = SLLE) 4+ v(2) +- @) renn

b. Eightfold Cubic Coordination

We now repeat the same calculation for eight charges at the corners
of a cube; that is, we consider the potential at a point (z, ¥, z) due to eight
point charges ¢ at positions: (a, @, a), (—a,a,a), (a, —q,a), (g, aq, —a),
(¢, —a, —a), (—a, a, —a), (—a, —q, a), and (—a, —a, —a), as shown
in Iig. 2. _ o

In principle this is a similar case to that of sixfold coordination, but
requires more tedious algebraic manipulation. .

Choosing axes as shown in I'ig. 2, we calculate the potential V4, at a

point P, (z, ¥, ), duc to the charge q at A, (a, a, a). Consider the plane

A(o.o.cﬂ

F1o. 3. (See text.)
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containing the origin O, the point P, and the charge at A, when R, =
av3 > r (where 7?2 = 22 + y? 4 2%). Let AP = b (Fig. 3):

Va
b [(a—2)*+ (a—y)*+ (a —2)7]

_ +gq +q I

[A—2@=+y+2] A 0+ 1)
where A = 3a?+ r?and ¥V = —2a(z + y + 2z) /4. Expanding,

" 3 g B 5 g 99 63 . 231
(1+»})‘3=1—%Y+§5)--§)3+2—7Y4_—’)’a+_)e...'

23 210
Therefore,
- 1 alz+y+z2)  3a(z+y+2)?* 5Sa(x+y+2)3
Vi=g¢ [m + A3 + 2 A3l 9 A

Baxty+2* 03a(z+y+2)°
9 A T Az

231 a%(z + y + 2)f
24 AIJIE o

Now let X = r?/3a% ie, A = 3a’(1 + X). Then denoting each term in
the square brackets by Roman numerals, and expanding up to powers of
sixth degree, with 72 = 2? + y* 4 2%, we have

1 . 1 Tl (x4t 4 D)
= —— - = —— e P ST
L= G O P97 =5 [1 2 3@

+

§(x’+y'<’+3"')2__5_(1'2+y2+22)3+ ]

8 9a* 2 27a°
I = o Gy 21+ X7
a 2+ +Ntyt2)
- | - 2

o +y+)a+yt)+ ]
24a!
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" 2
I'he relevant terms in Vg onre, therefore
9

(e 4y + D1+ X))
| we'] v
|4 ‘ -1 - G g, 4 3 o’
3 o [ t Gy ! ,2(-'5'!’)"’ E+y+a) 4, (i3a?)hi? R 2)7‘
) a 5
9 i;;,,a)a,‘;l(-" tyt) - @A)yt [ L I
+ | —— = (2? + 4- 22)2
i (Ba?)' 8- Nat (a9 + 2)
| + : = e SV B L) R (i SIS SIS L SR 1 _3_ & 5, 3 5
‘ 8-9at ‘ B ' | 2 (3a)%7 G @ty t2) byt 2T
| ‘
! 5 gl 5 3h  df )
IV == = emt fp b NPT oo T N L 0
‘ 2 (3a7)'? (x + g+ 2*(1 + X)—n 2(3a?)in f . Ty (3a?)*2 bty 2)4_
‘5 n l =1 8 gty
(3a?)1/2 2! 27ab

X [(.r +y+2)P - (:—0—2 (e Ayt = 2?) (b o 2 o e I:
’ 3 a? 35
2 Gy g F VA Y2

1 V = 3_-1 a' (z+ y 4 24 Y)-o = 35 a
B 8 (3a?)%? X y+ 2)'(1 + X) ok (TaTm |
_ 35at 9 ,
J i 8(3a?)"/? 6a? fe? 4t + 2 lw 4 g+ 2)*
. x[(r+y+z)‘___"(I?+’J,+Z!)(~T+y+z)‘+...J;
" 231 at
( £ ? (_§a—7)le (r +y+ Z)“]’ + odd-degree terms.
03 : singe . . . . .
VIl = — %ﬁ z+y+201+--1 " I.Jsm;,' the expansions in Eqs. (1.1), and adding the contribution from
‘ 8 (3a?) all eight ions, we find, after cancellation of the remaining odd terms,

V(I, Y, 2) = (]<'8‘ + [_' 'ﬁ rt 4 ij.—877] + lz_'grc 3-5-8 |

. _ 231 at d 2d? 6’ 8l - 2. Gld r
‘ \II—?W(I‘FU‘}'Z)“U'{””'J ' )
. . B8 o g g
& n ekl art — ; 1
We must now add the potential due to each of the other seven charges. 8:9 da* YT )J}

IHowever, we note that the potential at (z, y, 2) due to charge at (—a,a,a), . ] )

for example, is Vg = ¢/[(—a — 2)* + (a — y)? + (a — 2)*], which is i [__ 5-8 " 3-8-35r 358 1

the same as that at (—z, y, z) due to g at (g, g, a). Therefore we need 1647 2d7-24 8 a2

merely add all the corresponding terms occurring in V4 with z — —x. ‘

all terms arising from j X [ + 41z + y222 + 2] + 7_97 l_s_p
(

For all the charges, the potential will be the sum of
/i the different combinations of 1z, =y, %2 The result is that all odd degree
terms cancel, as do all terms in which z, y, or z occurs to an odd power;
c.g., 7y, 7%z, cte. Terms in which z, , and z cach occur to an even power

will be the same for each charge, and simply add.

X [15r% — 14(2® + y* + 2%)
= 30(1.2!/4 + 222! + y7z‘ + y224 + 2t + z’y‘) ]])

~— === = vu. van vosuana, Prnceton, New Jersey, 1956
’ 5 ¥
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Prrcd = V3a = distance of the cight charges from the origin. The sixth-
degree term simplifies to

¢

[ &r8 3518 3% 35 ' :
’ " 2at 27~ op ~ar (22 ) — 20yt )]
71 . ;
+ g 7 (151 = 14 + 4 + 29 — 30y + ---)J}.
‘ Collecting terms, we find that the total potential, expressed in the same
form as for sixfold cubic coordination, is
: _ 8 70q —224¢
Vi(z, y, 2) —;-l-(— STF)UI‘+IJ‘+Z‘) - %r‘]+( oF )
‘- X L%+ g + 2% + 3B (2% + 2%t 4 yt + ' 4 22t + 2yY) — 131%]

(1.3)

¢. Fourfold Cubic Coordination

If the axes are chosen carefully, the potential at a point P near the
origin due to a tetrahedron of charges follows immediately from Section 1b.
In Fig. 2, if we consider the cube to be made up of two tetrahedra, AFHC
and EBGD, it follows that the contribution to the even-degree terms in the
potential from each of these is just half that from the total, as they are
equivalent except for a rotation of the axes of 90 deg about the z axis.
This rotation will not affect even terms in V because of the symmetry in
z,y, and z and the fact that they are each raised to even powers. There will
in this case be further odd-degree terms, but we shall sce in Section 4a
that these do not affect the energy levels if only one configuration is con-

sidered.

d. Summary: Cubic Potential in Carlesian Coordinales
The potential energy of a charge ¢’ at (z, y, 2) in the potentials we have
just calculated will be of the form

We=CL@*'+ y* + 2*) — 3] + D[ (z° + 3* + 2°)

+ 5 (ayt + 2%t + v+ 2 + 2+ 2y) — 1) (14)

where the coefficients are given in Table I; d is now the distance of the
point charges ¢ from the origin in each case (d > r). Axes are chosen in the
manner discussed above. The initial term in Eq. (1.3) only affects the zero
of energy and has been omitted.
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TapLe 1. CorrriciEnts Ci AND Dy (Eq. 1.4) For Tite THREE COORDINATIONS

Ci Ds

,/-DV) - ' 59 ’
// Eightfold coordination - Gl - 2Hay

T 9d* od

- o1

3 Sixfold coordination +30ﬂ _Egy

4d* 27
e P Srst

L_/—"7 Fourfold coordination 5 g ek
7 /'

A
The form of the expression for V. given in Eq. (1.4) isfrequently quoted,
but there is often confusion over the magnitude and sign of the cocflicients
[see, for example, Low,* p. 15. There is an error in sign of Dg in his Lq.
(5.5) ]. Before its matrix elements can be conveniently found from tables,
it must be rearranged as in Section 6a.

2. EvaLuaTiON OF THE CRYSTALLINE ELECTRIC POTENTIAL NEAR A
Mac~EeTIC IoN 1IN TERMS OF SPHERICAL HARMONICS

It is far more convenient to express the crystalline electric potential
due to surrounding point charges in spherical harmonics, or tesseral har-
monics, for two reasons. Firstly, a general formula for its evaluation can
easily be derived; secondly, it is far easier to calculate the matrix clements
of the potential energy in this form.

The method of calculation is discussed by Griffith, page 199, and
Prather,® page 6. It is based on the spherical harmonic addition theorem.
This expresses the angle w between two vectors r and R in terms of their

polar angles (6, ¢:) and (6, ¢;):

4 =
e~ —1)"Y (8, ¢;) Yam(6,, ¢:). 2.1
G r ) 2 (COREE 90 Tl 0. (21)
(See Griffith,® page 75, for example.) Here the Legendre functions, I’»"
(where we use’ the term Legendre functions to cover both the Legendre
polynomials P, and the associated Legendre polynomials P, (m # 0),

P.%(cosw) =

+W. Low, Solid State Phys. Suppl. 2, (1960).
s J.S. Griffith, “The Theory of Transition-Metal Ions.” Cambridge Univ. Press, London

and New York, 1961. ‘
s J. L. Prather, “Atomic Energy Levels in Crystals.”” N. B. S. Monograph No. 19, 1961.
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Tamy 1L Sone or e Monrk Commonty OccuniiNg LEaexvre FUNCFIONS
(ns defined by Eq. (2.2))

P2 (cos 0) = }(3cos?0 — |)

Py (cos 0) = 3(1 — cos? 0)

P (cos 0) = }(35 cost 0 — 30 cos? 0 + 3)

P (cos 0) = 21 — cos? 0)(7 cos?o — 1)

P& (cos 0) = 105(1 — cos?6)! cos 0

P& (cos 8) = 105(1 — cos? 9)?

P (cos 0) = y'§(231 cos® 0 — 315 cos* 0 + 105 cos? 0 — 5)
Pt (cos 0) = L138(1 — cos?0)(33 cos' 0 — 18 cos? 0 + 1)
P (cos ) = 355(1 — cos? 0)}(11 cos® 8 — 3 cos 6)

P! (cos 0) = 245(1 — cos? 6)?(11 cos? 6 — 1)

P (cos 0) 10,395(1 — cos? 0)?

and spherical harmonics, Y.™, are defined as

Po(u) = (1/2"n!) (d"/dp") (u* — 1)"
p = cos

Pmi(n) = (1 = ) imir2(dim /i) P (i)

- i <2n+1><n—lml>!]‘
)n (0, ¢) &= (—1)( T [ 2(n+ |m l)'

1

2n)} P,lml(cos 8) X exp(ime). (2.2)

X

Some of the more relevant Legendre functions, and spherical harmonics
are listed in Tables II and III. More complete lists are given by Prather,®
page 4 (with different normalization of the Legendre functions from those
defined in Eq. (2.2)), and also by Jahnke and Emde,” pages 107 and 110.

Now the potential V(r, 6, ¢), at a point (r, 0, ¢), due to a number of
charges ¢; at R; is given by Eq. (IL1):

q
Vo 9 = L

j

1 E. Jahnke and F. Emde, “Tables of Functions,” 4th ed. Dover, New York, 1945.
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Tanre 111, Some or TiHe Monk ComyonLy Occunring Seiericay, Harsoxnics
(a8 defined by Iiq. (2.2)) ’

1/5\!

Y,“ - :1'<;) (3 cos’ § — l)
1/15\}

Vo = ,(_> sin? 0 gtai

}'0 - 3 l 3" ‘0 2

o = lGx‘( 5 cos'§ — 30 cos? 6 + 3)

Y& = é i ‘sin’0(7 cos? 8 — 1)et2s
8\2x )

s s 1(2730\!
Yet? = — = sin? 6(33 cos' 8 — 18 cos? 6 + 1)c**®
am

i 1/2730\! .
Y8 = F—(——] sin® (11 cos’ & — 3 cos 0)et¥*
32\ 2r
Y2t 21713 ' 1 40(” 39 1)exlie
Sy (Mndh (¥ - i
T\, M s Je

231/ 13 \!
Yett = 5(2_3] ) sin® § %6
n

If w is the angle between r and R, then

l 0. N
mlTr)—l = 2 R(In+1) Pad(cos w) R>r (2.3)
n-0

(See, for example, Margenau and Murphy,® page 100.)
In order to avoid the use of imaginary quantities, we define tesscral

s [. Margenau and G. M. Murphy, “The Mathematics of Physics and Chemistry,”
2nd ed. Van Nostrand, Princeton, New Jersey, 1956.
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Zn(l = )'"0
Zr"m = (]/\/j)[)'"—"‘ _,I__ (__l)m)/'nm]l d
m > 0, (2.4)
Zewm = (i) [V — (=1)"Y,m]
that is,
Z_no = )'"ﬂ
(2n + 1) (n — m)!] cos mé

chm = n 25

[ 2 (n 4+ m)! (cos8) = (2.5)

2n4+1) (n — rrz)!]‘ sin m¢
Z’“"I = "
[ 2 (n+m)! loosll —x

Then from the spherical harmonic addition theorem, Eq. (2.1),

i=
P.0(cos w) = B D ? Zxa(1)Z0a(R), (2.6)

where the Z’s are evaluated for the points r and R, and the summation is
over a; that is, for each n, there are terms Z.,, Z%.., and Z*,. for all m.
Hence, if V (r, 8, ¢) is due to a charge g;, at R;, using Eqs. (2.3) and (2.6)
in (II.1),

= ™ 4=
i = Qj Zna b, é; Zna 6, ]
1(r, 6, ¢) q,§R§n+,,[§(2n+l) (65, 85) Zna(6, §)

and for & charges

I'(ry 0; ¢) = Z Z r"‘y’mZ"?(BJ ¢))

n=0 g
where
k 4 Z’Ia(ejv ¢)) (2
—: J 7)
‘YF"" E (271 + l) q R;.n-H)

This is a very convenient form in which to write the potential. If the
Z.. are expressed in Cartesian coordinates, there is an immediate cor-
respondence between them and Stevens’ “operator equivalents,” which
can be used for the evaluation of the matrix elements. These will be dis-
cussed in Section 5. The tesseral harmonics used here are identical with
those of Griffith,® page 200, and Prather,® page 4, although Prather uses
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the notation C,” = Z¢,,.; S, = Z,... Prather,® pages 4 and 5, gives ex-
pressions for the C,™ and S,™ up to order n = 6, m = 6, in tcrms of Car-
tesian coordinates (z, y, 2). A few of the more commonly occurring 7°
are listed in Table IV.

nm

TapLe IV. Some oF TiHE More ComyonLy OccUrrING TESSERAL HARMONICS
JoxPRESSED IN CARTESIAN COORDINATES®

S
Zn = ;(‘L‘)) [(322 — 72)/"2]
}
Zy = ( )[(22 -y /]
3(1 .
Zw = i—(—)[(&'}z‘ — 30z 4 3r4) /r]
’ ]
Zy = g(§> L2 — ) (=* — g)ir]
i
Zey = g(?—()) [z(::J — 3zy?) /rt]

70 ¥
Zr = z( )[z(sziy — )/

L
Zew = % )E(I‘ = 6z%y* + y')/r]
3 35\
Z'y = T [(4(zfy — y'z)/r']
1/13\}
Zgy = = oo\ 7 ) (2128 — 3152t + 10520 — 5r%) /r¢]
o A

2730\’ .
L1624 — 16(z* + y1)2* + (22 + y1)7) (=* — 7)) /r*]
VARES i(2730) [(1128 — 3zr?) (z* — 3zy?) /rt]

Zeg = "_l(l ) [(11z22 — 1) (z‘ _ 621 t 4y /rt]

Zeg = 23l<231 )[(z‘ 15z + 1§z2y‘ - ¥)/*]
I b’

o If required in polar coordinates, they can be found from Table III and Eq. (2.4).
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An alternative way of expressing V is to write it dircetly in spherical
harmonics, using the form of the spherical harmonic addition theorem in
1:q. (2.1). Dropping the 7’s,

I 47 i
- T4 X 2 (=1)nYan(8;, 6) Ym0, 9).

RY) (20 + 1)

Therefore,
V(r6,¢) = 2 20 m7'w¥am(6, 9), (2.8)
where

4 i
Vom = D, o (=Y (85 ¢5)-
7 (2n 4+ 1) Ri+D
To illustrate the use of Eq. (2.7) let us once again determine the po-
tential due to a cubic crystalline environment, using polar coordinates.
We shall see that in this case we really require only the following tesseral
harmonics:

1 3.
Zo = T Z4o=m(3300_s‘8—3000526+3)
1 /13\! , g B
Zeo = 2\ (231 cos® 6 — 315 cos*d + 105 cos?6 — 3)
D ¥4 ™
(2.9)
2=\1}
Ly = l <3——)> sint @ cos 4¢ \
16 \ 7 B _ 21‘ [/}_ » L
e 22 VI

11 cos?d — 1) sin‘(i(_:gs_ilq&

We shall first cohsx er the case of octahedral symmetry.

a. Sizfold Cubic Coordinalion
The surrounding ions are at positions (r, 6, ¢) of (a,0,0); (a, =, 0);
(a, /2, 0); (a, /2, 7); (o, 7/2, x/2); and (a, 7/2, 37/2). Only the an-
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gular coordinates vary from ion to ion. We must consider the contribution
to terms Zq, for all n and m, up to n = 6 (see Section 4a).

From the definitions of the Z,., we see that all 4*,.. with m = 2, 4,
and 6, will be zero because sin m¢ = 0 for cach charge: and considering
each other v.. in turn, it can easily be seen that most of them are cqual
to zero. I'or example,

1 /42\' _ .
2oy = § — ) (5cos?6 — 1) sin 6 cos ¢,

™

and therefore

. 1 /42\! 4r
Yu=g\e) T @

X [0+ 0+ (=111 4 (=1)-1:(=1) + 0+ 0] = 0

The only nonvanishing terms are found to be v, 40, Yeo, %4, and ¥%..
That is, there are only fourth- and sixth-degree terms, besides yq. Using
Egs. (2.7) and (2.9), the contribution to these terms is

[—

12 Vr
Yoo = q P
a
3 = 47rq 7\,1;q (/
= ——1[2:(35 — SLg il Sy Sl.LG 5
Y40 16\’7;[ (35 30 4+ 3) +4-3] o 3 o
1 /13\} 4r q 3/r\'q Y
= — (=) [2-(231 - 315 5 ve §) = e = = [—] -
L 32(1r>[ (23 2 & 15 =ia) s 2<1s> &
3 /35! | irg (Bx)lg
€y, = — | — 0 . - 5 . ————— i e 2.
Tu 16<7T>[+0+1l-f-ll-i-ll-i-lljgas 3 o
3 /91!
I [2:(11 = 1)-0 4+ (=1)-1-1 4 (=1)-1-1 4 (=1)-1-1

ir ¢ 3(7m ’q

+ (=D 11)3n = 7 <]3> S

Neglecting the Y¢® term, which will only affect the zero of energy, we
substitute these values in

V(r, 6, ¢) = riyao¥® + r(va/V2) (Y + Vi) + rfre Xe

+ rS(ye/V2) (Yt + Ye¥), (2.10)



:
W
d

i,

M. T. HUTCHINGS

and following the notation of Bleaney and Stevens® page 129 (for the
fourth-degree terms only), we have

V(r.8.9) = DJMYLO+ (5/1)N Y+ V9]
+ De'[ Ve — (7/2)}(Ye' + Y6 9)], (2.11)

where

N
Qm |»Q

7\

Di=%

3( ‘q
4 t— 2 [—) & ,6
i, and Ds 5 <13> 071 ;

b. Eightfold Cubic Coordinalion

Here all the ions are at the same distance d = V3aq, and again only the
angular coordinates differ for each ion. We have charges at (d, 6, 7/4);
(d, 81, 37/4); (d, 61, 5/4); (d, 0y, Tw/4); (d, (= — 61), 7/4); (d. (7 = 61),
37/4); (d, (r — 6)), 5n/4); and (d, (= — 6)), 7r/4), where 6, = tan™' V2.

We can sce immediately that there will be no contribution to v*n
when m = 4, or to ¥ am when m = 2 or 6, as sin m¢ and cos m¢ vanish in
respective cases for each ion. On summing over the coordinates of all cight
ions we can easily sce that once again we are left with contributions to
only Yoo, Y40, Yso, Y44, a0d Yes.

Substituting 6 and ¢ for each ion in these terms and summing, we find
that:

veo = (16V%/d)q (this is the coefficient of Yo = 1/(2 vr), and con-
tributes 8¢/d to the potential, but affects only the zero of encrgy);

5 ~q _ 327\
—sz—E \w-glg, ’Yso—g 13) 4’
8@mtq . _ 32 (Tr\ 0
,yc“_—___étz——-d—s, Y64 = 9 \13 d’

Substituting these values in Eq. (2.10) and writing the potential in
the same form as Bq. (2.11), we have

V(r 0, ¢) = DJIVE 4+ (/1Y + YY) ]
+ De'[Yes" — (7/2)4( Yot + Ye)], (2.12)

where

¢ V6
56 - qrt y 32 T\ -
D = . \’1?(—1—5-, and D' = o \13) @

s B. Bleancy and K. W. H. Stevens, Repl. Progr. Phys. 16, 108 (1953).

v
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¢. Fourfold Cubic Coordination

If we choose the axes as in Section 1.(c), then by similar symmetry
arguments we see that the even-degree terms in the potential are just

half those due to the full cube (eightfold coordination).

d. Summary: Cubic Polential in Spherical Harmonics

To summarize, we have for the potential energy 1. of a charge ¢’ at
(r, 6, ¢) in the potential due to charges g, at distances d from the origin
(d > r), and arranged with the three coordinations and axes chosen as in

Figs. 1 and 2:
W, = D/{YL(6, ¢) + (5/14)'[Y(6, ¢) + Yi'(6. ¢)])
+ D' {Y(6, ¢) — (7/2)'[Y'(6, ¢) + Ys'(6,9)]} (2.13)

where D, and D4’ are given in Table V.

TaBrLe V. CoerrFiciENTS D, AND Dy’ (EQ. 2.13) For THE THREE COORDINATIONS

D/ D¢
4 4 0 i
Eightfold coordination _38 e P KA i
27 a 9\13) o
A " s 7 (]q'r‘ 3fr Iq{]’rs
Sixfold coordination ~(r)i— (=)
et s t3 13) T
’ ' P
Fourfold coordination —§(r)lgq—rf +E foll
27 d 9g\13) &

This potential energy, written in a slightly different form, is given
by Low,! page 13 (with ¢’ = e, ¢ = +Ze; there is an error in sign of
his coefficient of (Y + Ys*), in the fourfold and eightfold coordination
expressions).

¢/ Cubic Potential Expressed with Respect to Other Chotces of Azes
The cubic potential is sometimes required referred to axes other than
the fourfold axes considered above, in particular when the polar axis z
is a twofold or threefold axis of symmetry. The results for these cascs,
found using the formulae and procedure discussed so far in Section 2, are
summarized below. '
The potential energy of a charge ¢’ at (r, 6, ¢), in the potential due to
charges g arranged in the three coordinations at distances d from the origin
¢+ (d > r), and with the z and z axes chosen to be twofold axes of symmetry

Mo
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and the y axis a fourfold axis, is given by

W, = D {mo, 8) — (10)[Ya(6, ) + Yii(6, 6)]

3(3\ -, B i
- 2(2) trew o + v, 03] + D {120, 9)
—(105)1 762 -9 — i Z ‘ 4

]
v, 01+ EL e, ) + v m}. (2.14)

where D/® = (—1/4)D{ and D¢® = (—13/8)Ds’; D{ and D¢’ are the
constants in the fourfold-axes potential energy, listed in Table V for the
three coordinations.

The potential energy of a charge ¢’ at (r, 6, ¢), in the potential due to
charges q arranged in the three coordinations at distances d from the origin
(d > r) and with the polar z axis an axis of threefold symmetry, may be
expressed in a concise form if the z axis is chosen consistently. For the
sixfold coordination, if we take Oz to lie in the [111] direction referred to
axes XYZ of Fig. 1, then we take Oz to lie in the plane 202 such that
/207 is acute. For the four- and eightfold coordination, if we take 0z
to lie along, say, OA in Fig. 2, then we take Oz to lie in the plane AOF
such that ZzOF is acute. The potential energy is then given by

) }
W, = D/® {Y."(o, $) — (% (Y6 ¢) — Y ¢)J}

S\
+ D¢@ {w’(e, $) + 1]’2 (%) [Ye2(6, ¢) — V5'(6,¢))

+ 2—14 (231)3[ Y 5(6, ¢) + Y6, ¢)]] (2.15)

where D/® = (—2/3)Dy' and D¢'® = (16/9)D¢’; Di' and Dy’ are the con-
stants in the fourfold-axes potential energy, listed in Table V for the
three coordinations.

3. NumBer oF Harmonics OCCURRING IN THE EXPRESSION FOR THE
PoOTENTIAL

We have seen ahove that the cocfficients of most of the tesseral har-
monics in the expansion of the potential are zero in the cases considered.

A 4 . e e e e

e o g2 g TrrT

axes are the symmetry axes of the point group, as was the case in our
_examples.
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In general the potential function must reflect the point symmetry of the
lattice site in question; that is, it must be invariant under the operations
of the point group. The less symmetric the site, the more potential terms
occur in the expansion. Prather,® page 10, lists the nonvanishing ¥’s for

very much on the axes chosen, and are in their simplest form when the

different point groups. It must be noted that the terms occurring depend %

There are two general rules which may be mentioned at this point.
Tirstly, if there is a center of inversion at the ion site considered there will
be no odd-n terms in the potential; and sccondly, if the z axis is an m-fold
axis of symmetry, the potential will contain terms Z,.. For some high
symmetry cases there exist relations between the coefficients of the tesseral
harmonics of the same n occurring in the potential as we have already seen
for the case of cubic fields.

It must be noted that not all the nonzero terms in the expansion of the
potential will affect the energy levels of the magnetic ion, as their matrix
elements may yet be zero.

As an example of the terms occurring in the expression for the crystal-
line potential, and giving nonzero matrix elements in general, we list below

the terms up to n = 6 (see Section 4.a) for a few common point groups.
(The V,™ are defined in Section 5.a).

Ca (ethyl sulfates; some
rare-earth trichlorides)
Cs, (double nitrates)

VO, VO, Ve, Ve, (V)

1'20, I-40, I'—,q"’, Ir(;u, 1753, 1756

Cubic (Cal, ThO,, etc.) VO Vi, Ve Vit
Cubic (fluosilicates') VOV VL Ve T
D, (garnets, rare-earth VO VR VO VE Ve VO T Tl 1

site)

o

[ ; . .
\ lll. Calculation of the Matrix Elements of the Crystalline Potential Perturbing
Nt Hamiltonian

We must now evaluate the matrix elements of the perturbing Hamil-
tonian between free-ion states. The matrix thus formed can then be di-
agonalized to find the energy levels and eigenfunctions of the ion in the
crystalline field. If the classical potential energy of the magnetic ion in the
crystalline electric field is, as in Eq. (11.2),

IV‘ = Z qu(Ifi Yi Z.‘),

1 The six H;O complex are usually treated as being octahedrally coordinated to first
order in these hydrated salts.
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the crg-stal-ﬁgld perturbing Hamiltonian operator, 3¢, will be formed from
thls‘ by applying the usual rules, ¥ = z.,, ¥ = yap, cte. That is. the Hamil-
tonian operator will simply be the classical potential energy

3. =W.= —|el Z V(zs, ys, 22, (I1L.1)

where we have put g; = —|e|, and the summation is over the magnetic
clectrons. The free-ion wave functions used will depend on the relative
size of 1V, to the intraionic interaction energies. For example, to a first
approximation for the 3d transition-group ions in ionic compounds, they
will be characterized by | L, S, L., S.), as IV, is larger than the spin-orbit
coupling; and in the 4f rare-carth group by | L, S, J, J.), as the spin-
orbit coupling is generally larger than 11°. In order to calculate the matrix
elements we may use one of two methods which are described briefly in
Sections 4 and 3.

4. DiIReCT INTEGRATION

This is the fundamental method and is clearly described in Bleaney
and Stevens,? page 129. The free-ion wave functions are expanded into
determinental product states involving single-electron wave functions ¢:
on which the corresponding terms 1" (z:, ¥s, z,) in 3C. act. The matrix ele-
ments, expressed in polar coordinates, therefore, reduce the sums of terms
of the form

f ¢'(riy el'r ¢l) r“)'l“(r"y 0‘1 ¢|‘)¢(Ti, 6‘1 ¢|) dT'
, \‘—_’_‘-—’J

As the radial part of the wave f unction f(r) is never accurately known, the
radial integral, which separates out, is often taken as a parameter

) = [ LT

There have been several theoretical calculations of \(_r'f) (for example, for
rare-earth ions, see I'reeman and Watson'). . .
If V(z,, y; 2:) is written in terms of spherical harmonics, thp matrix
clements and several quite general rules can be found from t11e1r~expan-
sion, using vector coupling coefficients (see EQmonds,” page 37), and
orthogonality properties. These rules have been discussed fully‘ by Bleaney
and Stevens,? pages 128 and 130 and will now be summarized. (Morle,
generally they follow from the Wigner-Eckart theorem, see Edmonds,*

page 75, for example.)

5. W : 2058 (1962).
w A J. Freeman and R. E. Watson, Phys. Rev. 127, ) -
n A. R. Edmonds, ‘‘Angular Momentum in Quantum Mechanics.” Princeton Univ.

Press, Princeton, New Jersey, 1957.

ENERGY LEVELS OF [ONE [N CUYSTAL FIELDS

a. Rules Limiting the Number of Nonzero Mealriz Flements

\\'.e l.mvc seen in Section 3 that the symmetry of the ervstalline ¢
field limits the number of terms occurring in the erpar;sion.of the potential
The rules listed below indicate which of these give nonzero matrix elcrm'x:‘

ectrie

(1) All terms of n > 2I, where I is the orbital quantum number of
tbe single magnetic electrons, vanish. Thus we need on]:.: >(‘on-
sider the expansion of the crystalline potential up to fourth
degree for the 3d-group ions and sixth degree for the 4f-group
ions. Or if we use the operator equivalents method (Seciion 5\‘
terms for which n > 2L or n > 2J, vanish; where, for emmp]oy
L and J are the coupled angular momentum for the 3d-group 0;
4f-group ions, respectively.
Operators of the form Z.. have zero matrix elements between
two states ¢;- and ¢;-+, unless I’ + I’ + n = even number. This
means that within a given configuration, i.e., given I, the matrix
elements of odd-n terms vanish, but that they may couple dif-
ferent configurations.
(1i1) Operators of the form Z,, have zero matrix elements between
two states ¢,™ and ¢,™", unless m = |m’ — m”| In the

coupled system, for example, this will mean that terms Z..
link states of AJ; (or AL.) = m.

(1

~—

A very useful check on all calculations may be made using the fact that
the number and types of the resulting encrgy levels can be found by group
theoretical methods, but the eigenvalues and eigenfunctions cannot be
found without full calculation in most cases.

There is a very important general theorem, dealing with the energy
levels of magnetic ions in a crystalline environment, which might be men-
jcioned here. Kramers theorem™ states that the energy levels of odd-electron
ions under electrostatic interaction of any nature are at least twofold
and evenly degenerate. A consequence of this theorem is that the matrices
of 3¢, between states of an odd-electron ion always factorize into at least
two similar matrices. (When Kramer'’s theorem does not apply, Jahn and
Teller** have shown that the surroundings of a magnetic ion will distort
and always tend to give nondegenerate energy levels. Thus, even-electron
jons tend to have singlet energy levels in crystals.)

5 Use OF STEVENS’ “OPERATOR IEQUIVALENTS” METHOD

This is by far the most convenient method, within its limitations, for
evaluating the matrix elements of the crystalline potential between coupled

13 H. A. Kramers, Koninki. Ned. Akad. Wetenschap., Proc. B33, 959 (1930).
14 H, A. Jahn and E. Teller, Proc. Roy. Soc. A161, 220 (1937).
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wave functions specified by one particular value of angular momentum J,
(or L), and will be that used in all further discussions here. It eliminates
the need to go back to single-clectron wave functions each time by the
use of an “operator equivalent” to 3C. consisting of angular momentum
operators which act on the angular part of the wave function in the coupled
system; this is really an application of the Wigner-Eckart theorem (see
IEdmonds,'2 page 73, for example). The method is described Tully by
Stevens,'® and Bleaney and Stevens,® page 131. The rules for determining
the operator equivalent to the Cartesian Hamiltonian, given by Eq. (II1.1),
.= — 2 i|elV(a, ys, 2:), are given by Stevens.!® If f(z, y, 2) is a Car-
tesian function of given degree, then to find the operator equivalent to
such terms as _.f(xy, ¥+, 2:) occurring in 3¢, one replaces, z, ¥, and z by
J., J,, aud J., respectively, always allowing for the noncommutation of
J: Jy, and J.. This is done by replacing products of z, y. and z by an ex-
pression consisting of all the possible different combinations of J., J,,
and J ., divided by the total number of combinations. In this way an opera-
tor is formed with the same transformation properties under rotation as
the potential. It must be noted that although it is conventional to use
J or L in the equivalent operator, when evaluating its matrix elements
all factors A are dropped.
Some simple examples are

Z (322 — 1) _\E/aJ<7'2>[3J12 = JJ+1]= aj<r2>020 N

2 (@t = y2) = a2 = I = ar(?)0: ‘,

i

ZI.y; aJ<72>[(Jsz i Jsz)/QJ
Z (2t = 62292 + 7)) = E ([(zxi + ) + (20 — 1y:)*]/2}

= By (rBLJ + J4] = Bs(r*)0s (5.1)
where Jy = J. £ 1J,. - . ‘

When the noncommutation effects cannot be 1mr.ned1ate.31y taken ac-
count of, the determination is more tedious, and will be illustrated in

Section 6a. '
We therefore have, for example, that the matrix elements of the sum

3 322 — r2) between coupled states | LSJJ,) are equal t.o th(?se of
«; ()0, between the angular part of the coupled wave functions; i.e.,

(LSJJ/ Y (322 — r2) | LSJJ.)

= a, () (L8JJ. | [372 — J(J + DI LSJJ.).
1 I W. H. Stevens, Proc. Phys. Soc. (London) A66, 209 (1952).
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The multiplicative factor «; is a numerical constant depending on ! (the
orbital quantum number of the electrons in the unfilled shell), n’ (the
number of them), and J (or L and S). The constant is denoted by B
for fourth-degree terms, and v, for sixth-degrec terms. These constants
are originally determined by returning to the direct integration method
of finding the matrix elements between single-electron wave functions in a
specific case. This method of determination is clearly described in Stevens, s
page 211 and Heine,' page 151. (An alternative method is given by Elliott
et al.," page 518, using fractional parentage coefficients.) Although Stevens’
paper relates mainly to matrix elements of rare-earth ions’ states charac-
terized by |LSJJ.), it can be used for d-electron ions, or between statcs
characterized by |LSL.S.), provided the correct numerical factors are
used; in these cases the operator J above is repl . The multiplica-
tive factors for rare-earth ions are listed in (I‘able VI; for 3d-group ions
(or for matrix elements between states charaeteri y L and §) they
can be found from the general formula of Bleaney and Stevens,? page 132,
given in Table VII.

To illustrate the method in general we shall again consider the crystalline
electric field Hamiltonian given by Eq. (IIL.1),

K = =lel X V(i vy 2.

If the electrostatic potential V (z, y, z) is determined from a point-charge
model as in Section 2, with the tesseral harmonics expressed in Cartesian
coordinates, we have,

V(xy Y, 2) = Z T"7naZna(x, Y, Z)~

In order to make full use of operator equivalents whose matrix elements
have been tabulated, we define Cartesian functions Jae(z, y, 2) which are
related to the Z..(z, y, z) by Zne = (const) fn./r". For the Z¢., listed in
Table IV, the fe,./r" are the functions in square brackets. It is thesc
functions fra(z, y, 2), (or rather fe,.(z, y, z)), so defined, which are directly
related to the most commonly used operator equivalents 0,™ by the rela-
tion that the operator

: chnm(xiy Yy, Z.‘) = On (r")olmi (:’2)

where 8. is the multiplicative factor; 6, = ay; 6 = B,; 65 = .
Some common O,™ are listed in Table VIII. The matrix elements of

18 V. Heine, “Group Theory in Quantum Mechanics,” p. 151. Pergamon Press, New

York, 1960.
17 J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc. Roy. Soc. A240, 509 (1957).

woodige  Phopreod Reuaw & V13 p. 5435 (1934)
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+ I+ I+ 'I‘I))o
d f(;fl:.,, 4})1'1;1‘ 4}\1(};,,, 4If"ms/‘ A;/SBTH,,,, app,
6 4 8 3 2 3
gr = JIIAT) s % T = = 5
-2 —2.13 —7 9,5 13 -1
ay o ]l 5.7 325811 310 3.5-11 32.5-7 F-11
2 —o ~26 17 21.7.17 2.13 2
b= WA 3%.5.7 3%.5-11° 3911 13 3.5.110-13 3t.5.7-11 33.5-11?
217 —5.17-19 29.17.19 . =i
*e= il il 0 3445-7-112413 3711013 33.7-112.13 30.7-11%+13
Dys+ Hot o Tms+ Yt
419 S H 52 4f10 8], 41" g 4f123H 4132
5 8
g9s = 1A ) g : g % ;
- 2 ] 2
il d Ll e 357 2-31.50 357 311 3.7
-2 -1 2 23 -
Bs= VNN  FE5Tm 73570 31.5-7-11-13 351l 35-7-11
n -5 23 =5 22
vV ST S TGRSO T3

e After R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. A218, 553 (1953).

TaBLe VII. SteviiNs' MuLTIPLICATIVE FAcTORS FOR 3d-

Grour IoNs, AND GENERAL FormuLase

? B = fo 2 2
e _2 . 2 2
a 21" G3 34 5D a 2 8 -
2 2 3d2 °F " \
a=—I(E' 6=_m 347 F a m, ﬂ=m
In genernl, o = 2(21 + 1 — 48)
(2= 12 +3) L= 1)
g o 3@ — 70 -2 =28 +1) +30 - 1) (I +2)]

where a’minus sign7is used in tho first half of the she

3d' 2D

(20 = 3) (20 — 1) (2L + 3) (2 +

5)(L = 1)@2L — 1)L — 3)
Il und o plus sign is uscd in the second half of the shell.

3d¢ tD
for

3d° 2D

3d3
for

3d8 3F

@ After B. Bleancy and X. W. H. Stevens, Rept. Progr. Phys. 16, 108 (1953).
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FooT~oTEs To TasLe VIII mp—_—
Repl. Progr. Phys. 16, 108 (1953); K. d
. - W. H. Stevens, Rept. v , B. Bleancy, an
i * After B. Bleancy and K(London) A65, 209 LIEaR; 4. M(j leal;xefr H. Stevens, 1bid.
w03, Proc. Phya. Sor: 1958); R. J. Elliott and . W. ker, and
. ' H. Stevens, Roy. Soc. A247, 141 (1958); 1955); D. A. Jones, J. M. Ba ;
z W. Hayes, Prog)' B. R. Judd, ibid. A227, 5522( - ?1959), .
5 : | £218, 553 (1953); - Phys. Soc. (London) 74, 24 rator equivalent to f*,., and 0,
\ 5 3 { F. D. Pope, Proc. f - represent the ope OF
\ D. n 0.7(s) to rep 5)
z S - s " - o b We use the notation 0, ivalent to feun (cf. Section 5).
\ : - < % S S 2 28 the conventional operator equiva ‘ :
‘ < - - 05 . =~ & &2 s the lated in severa
a E O 6 d Q 9\ 9\ 9\ < S < :L/ \:/ tant J or L haVe been tabu
o —g 9\ 8 f ;: ;: :k/ 3/ :l; \E ; ; ; o the O m bet“’een States Of eons dllC’ed in. Ta_b]CS IX—XIII h CI
a 2133 Lt R = [ ol have been repro 1 field with axes chos
S " 's, and these ha f a erystal fie :
(=] 2 g Q a QL @ I 1 apels; an X 5 4 the case o ] tron in
= oo p e implicity > gy of an elec
: b " “ : Considering for s 'p -express the potential energy ion of Stevens,
S & € re-expi . tation o
4 '; & = such that Yoam = 0, : : V(I y z) (followmg the no
- % ) :'T e ine Oten 14, ) ’
3 : £ 2 . Ellioty and o o Bibliography), as, (5.3)
‘:‘ 3 ORI ot aad Judd; = X A Foun(t, 3, 2),
£ s 3 2 —lelV(z,y,2) = -
25 e S B ey I + ; ‘
; o = 253 5& S - ients,
g 1E i =1 : o HIEE e have the connection between the coefficie \ 6
- = = o, ~ N P | - T w = E ave v i Zc"m ) J.
+ TZ ; j;l 74 : i S ram lf Ed where e (=lel) - (a numerical factor occurring i ;
53 | 2 A N . D= P 2 e, () m= e (=lel]) - for those Z¢,,
<3 % Lm At j > 2\5 . . LK + :T o " is that outside the square t.)raCkct;lc'try using the
ZE 8 S= s S + +93 L, o The numerical factor le, in the case of cubic sym )
E. | =+ o5 = '3 23 = 3 ; : IV. For example,
= 5 — 1 + 9 .S FCN 2 =2 . listed in Table ‘
Sql8lE 35 387 L0355 288 27 SE ¢ _ 53 22 4 g
B p-8 2 gz ~ S i»{ ,1 I oy S22+ T+ = 'I' —~ 1< ~ notation of Eq. (5.3), b B L 3r8) + Ad(z — 61, yE+ )
e z 5 - = - = o =° Hl S324 1 20 2
HHMNEEGEE S= L eslan g 1= V(zs v ) = Ad(3524 — 80r .z, -
‘RS e S 4 . - e T —|e|V(zi v, S22rd — 1)
EEl2 |3~ 1= s "+>‘+§°'”+:3++:+::- S, 0(23128 — 315242 + 1052:2r,
SE|a | o ;-+a_:,~+g;§;g3::3;+g Sy 2 + A0(231z (1167 = 12) (2 — 22y 4 )
&g gkasgga;_@?asaz\vf;f;ng + Ad(11z Syl
~ ) 2= palh ol - L & ~~ . - .
= 2 &= 465 =2 IR S =¥ I & 2 %, in the general potential V(z, y
g > L LT T+ 2T a3 : ¢ oo For a number of electrons, 1,
wE X ~ J
£ é ¥ ,f E Tul m & m B W = operator is |
. ' h h Y, 20
£ ¢ | e = —|e| 20 V(s ys 2),
gz ) , i
: a = n 0 m (55)
B = _ A7 (r)8,]0,m,
2 53 s Aty = DL
g K < N e = nm
2 E : % & 2 2
g g < G2 +
c z & a - - 2) and (5.3).
£ = N + i > R . of Egs. (5.
£ g & = & & where we have made use 9
£ H = @ I = -~
= < ~ + - & | ot ) lliott and Stevens
' P ! s g S i + 2 R j a. Note on Noia.ll ") (or ¥, in the notation of Elhottd tcrmined by
: 4 T ' : 3 ) T % o antities A4 field parameters,” and are usually dete
z 4 T o 4 =t o o “crystal field pa ) .
o N . a5 o S — - k W as the [ y 1903)
. 573 e kg 19, 387 (
-? S g 3 T & T I | ! "l | . I W. H. Stevens, Proc. Roy. Soc. A2 )
‘ = N T Y T > T > N & L S e o 18 R. J. Elliott and K. W. H.
i — = | o al = (i) <y = 3
- b, 2y B3 =4 = N R
o ) N N ] n
g ¢ w3 i AA80AG &
— = 2NN



Tanek INX. Matrix Beenests or 0.9, 0,0,

~ s i
s S T o ONSATANT ./
AND 0" WiITHIN A MANIFOIL.D oy StaTis or C

0.2 =[3J; —JWJ +1)]

(.
k)
¢

: . 5/2
Ly Eife AME  HR &% A0 A B2 =
' 172 0 0 - - _ _ == = -
5/2 3 =1 ! . _ - — ==
3/2 2 —4 -1 K - _ _ - —
| ...) o 3 -5 -3 1 7 - —
¥ /2 9 6 — -
9/2 6 =4 =3 —1 B P — — —
2 1 —35 —29 ~17 ! " >
11/2 5 - _®H o Z 13 -
13/2 6 -8 = 2 N 3 9 21 35
15/2 3 —-21 —-19 —-15 -9 =l A
Jo = 0 &1 +2 +3 +- +5 +6 sd - =
' 0 0 0 — — — — — - _ _ 3
1 1 -2 1 = - - _ _ - — i3
9 3 =2 —=1 2 kr _.‘ — =t — == S
3 3 —4 -3 0 2 e _ = £
: - -8 7 2 — - &
1 1 —20 —17 8 7 ) o _ _ _ =
S 3 -10 -9 —b -1 4 DY s = Q
6 3 =14 —13 —-10 -5 2 11 = ' - @
7 1 —36 —53 — 44 —29 -8 19 52 1 e
S D —24 —23 -20 -15 -8 1 12 o
08 = [B3J. = 30J(J + DJ7F + 2572 — 6I(J + 1) + 3J2(J + 1)7]
J F 39 5/2
J. = =R Ea w0 w1z 21y
1/2 0 0 s — = - - -
3/2 0 0 0 — = = - - B
5/2 GO 2 -3 1 — o= = - -
7/2 60 9 -3 —-13 7 — — — —
9/2 S4 18 3 —-17 —22 18 = == - N
112 12000 s 12 —13 —-33 —27 33 — —
13/2 60 108 63 —13 -92 —132 -77 143 —
15/2 60 189 129 23 —101 =201 __ =221 —91 273 s .
g, = 0 1 2 3 4 5 6 7 8
0 0 0 — — — — — - — =
1 0 0 0 — — = — - — _
2 12 6 —4 1 — — — — — —
3 60 6 1 -7 3 — — — — =
4 60 18 9 —11 —-21 14 — — o R
5 420 6 4 -1 -6 -6 6 = — . -
6 60 84 64 11 —54 —96 —66 99 — =
7 12 756 621 251 —249 —704 —869 —129 1001 —
8" 420 . 36 31 17 3 —24 -39 -39 —13 52 2
: ]
_ =
0 = [2317.8 = 315J(J + 1)J.¢ + 7357 ¢ + 105J3(J + 1)V 2 — 5257 (J + 1)J,2 + 2947 2 — SIUT + 1)* + 4002 + 1)1 — 60/(J +1)] S
; ; 5
Jo= +1/2 +3/2 +5/2 &7/2 92 xU/2 11312 455 2
1/2 0 0 s — = =y e _ _ o
3/2 0 0 0 — — == - — _ o
5/2 0 0 0 0 — — — == — "
7/2 1260 -5 9 -5 1 — — — — 5
~9/2 540 _ -8 6 10—y 3 — i - Y &
11/2 7560 —20 4 25 . o
17 25 11 31 11 — - Z
13/2 2160 —200 —-25 185 227 —11 -319 143 o
2 . - i — &
BR___as60 -75 5 87 59 —39 -7 g5 o
J, = f
f 0 b -
0 0 0 _1 ° 3 * ° . 7 8 E
1 0 0 0 — _ _ _ _ - - -
2 0 0 0 —_ —_ e _ _ z
o _ — — _ t
3 180 —20 15 -6 | - - S
4 1260 =20 1 29 —17 _4 _ — _ — “
5 2520 —40 -12 3 20 _ g g = e B
6 7560 —40 —20 22 :: N 5 BN == =
7 3780 200 |5 50 e - a3 == - -
8 13860 —120 e o 197 176 —55 — 286 143 —
8 2 93 128 65 —-78 - 169 104 *o
:,{?}‘;ZC;UK'b‘.Vl %I- Stevens, Proc. l’hyf. Soc. (London) AB5, 209 (1952)., ¢« Corrected val =
umbers in column /7 g re multiplying factors common to all clementy in the e value

row.



Taner: X. Matnix FLEmENTs oF 0y, 08, AND O¢, wiTHIN A ManiFoLp oF STATES oF CONSTANT J°

0F = §(J4* +J2)

J (1 || F1) (*21]0) (%3 || £1) (4[] £2) (£5 || £3) (6 || =4) (%7 |] £5) (£8 1] =6)
1 1 — == _ - — _ —
2 3 V6 — — - — — =
3 6 30 V15 — —_ — = =
4 10 310 /T 27 — — = =
5 15 V210 2./42 6+/3 35 — — -
6 21 2v/105 6+/10 330 V165 V66 = -
7 28 6+/21 15v3 5v/22 6v/11 3v/26 VIl .

N 36 6+/35 V1155 3110 2195 V546 3v/35 2v/30 =
J (£3/2 | F1/2)  (£5/21] £1/2)  (£7/2 || £3/2) (£0/2 || £5/2) (117211 £7/2) (£13/2 || £9/2) (£15/2 || £11/2)
3/2 V3 = = = - - = =
5/2 3v2 V10 - - = - — S
7/2 215 35 V21 = — — = e
9/2 5v/6 REVAL! 2v/21 6 — — — =
11/2 335 2/70 64/6 3v15 V55 — — 2
13/2 14v3 615 15v/2 V330 3v22 V78 =
15/2 127 3105 5v/33 24/165 613 V273 V105

02 =3[ =JWJ +1) =5](J+J2) + (J2+JINTJ: —JW +1) = 5]

J Fb (=1 || F1) (2] 0) (3 |1 1) (=4 || £2)  (£5]| %£3) (6] 24) (T £5) (S]] =6)

2 3 —4 V6 = — - - — —

3 3 —20 —+/30 615 — — — — —

4 3 —60 —11v/10 107 307 — — — —

5 21 —20 —/210 0 10v/3 125 — — —

6 3 —280 —22./105 —24+/10 23+/30 24+/165 45+/66 - -

7 3 —504 —94+/21 —130v/3 15+/22 116+/11 121/26 66+/91 =

8 7 —360 —54+/35 —6+1155  —3/110 124/195 15./546 78v/35 78+/30

J Foo(£3/21] F1/2) (&5/2 || £1/2) (£7/2 || £3/2) (£9/2 || £5/2) (11/2 Il £7/2) (£13/2 || 29/2) (x15/2 || +11/2)

5/2 3 —5/2 310 - - -
72 6 —4/15 V5 5421 — — _ _
9/2 21 —5/6 -4 2./21 18 — _ _
172 12 —8/35 —3v/70 5v/6 13v/15 9+/55 _ _
12/2 3 —210v/3 - —62/15 —15v/2 13+/330 95+/22 5578 _
/ 6 —1207 —23./105 —15/33 8v/165 80v/13 25273 39\7105 g
2 € 4
=
0 = 2337 = 18 (J +1) = 12872 + JAJ + 1) + 10/(J + 1) + 102](.* + J_3) 5
U2 IS~ 8T + 1) = 1208 + B+ D) 00+ 1) + 102]) =
<
b F c
ELIFL - @2010) @3 llal) (et 42)  511£3) (2610 (27| 45) (a5 20y ®
i 24 15 —24/30 3718 - = - — S
: goc S4e 0 =367 247 - — — _ S
: 1:3 §4e 22100 —11./42° —42y/3¢ —12+/50 - — _ &
¢ . @ 4;8 :;(2)5;(135 - 63\/;0 —84/30 —14+/165 704/66 — _ g
. —144/22 —21v11 »
g i ‘ ! 0 1191 =
630 78v/35 V1155 —42y110 —49105 —20+/516 39/35 1821/30 3
J r 3/2 . 3
(37211 F1/2) (£5/2]] £1/2) (x7/2 ] £3/2) (£9/2 || £5/2) (£11/2 || £7/2) (1372 £9/2) (15/2 11 £11/2) 5
7/2 24 TG —215 521 = =
2/3 240 V6 —-3v14 —5v21 21 _ _ — &
w2 1z — V70 ~35v/0 “livis 11/55 = - S
15/2 1320 3053 i e o s e e o ;
3v/105 —~7/33 —7165 —2113 VT3 134/105

:’,i\‘}l;t.cr D.bA. Joncs, J. M‘. Baker, a.nd D. F. D. Pope, Proc. Phys. Soc. (London) T4 249 (1939)
e numbers in column /' are multiplying factors common to all the clements in tt , ‘
< Corrected values. > therow S
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NSTANT JO*
038 AND O wiITHIN A ManiroLp oF StaTeEs oF Cons

TasLe XI. MaTrix ELEMENTS oF O s

08 = HJ.(J2 + J20) + (J2 + J0)J])
5)
3 AlEY s

J Fe @1 -1 @110 @l @li2) il - _

3 3 V10 5 _ _ -
5v/2 3v/35 5v/14 - _ =

: : o 6v/35 10v/21 i 9v/55 ~ ~

. 3 7v10 6/105 50v/3 v 2 94/286 114/91 -
42 25v/33 352 5 26+/35

o 3 146 15v/ 94/910 11/45

. 3 6+/70 3v/2310 254/77 71430 ! (15/2 || 9/2)
’ 13/2 || 7/2)

J o621 =12y a2l ©/2113/2) el _

5/2 3 V10 - — _ — =
3 4/5 24/35 _ _ —
o 3 5v/14 By Lt S v33 - =
1172 12y5 ke o 15/66 161/55 e 3455
14 10
B2 6 w05 5v/231 Sl sk v
0¢ = LA = 3LJ(T +1) = B9) (I 2 + J23) + (J3 + J_3) (1175 — I + 1) — 500,)]

J F 2|l -1) 31lo) “11) 61l 2) 61]3) 711 4) 81l 5)

2 0 0 - - = = = —

3 18 —3/10 25 — s = _ _

4 90 —7/2 —24/35 4/14 - = _ _

5 180 =67 —5+/35 —21 730 — — .

6 36 —-063v10 —43+/105 —175/3 14~/165 84/55 — —

7 90 —70+/6 —64+/42 —70~/33 —21v22 21./286 66~/91 -

8 198 —18+/70 —8+/2310 —50\/77 —7+/1430 3910 22./455 1044/35
J F 6721 —1/2) (7721 1/2) (972 ] 3/2) (1172 ] 5/2) (13/2 1| 7/2) (15/2 ] 9/2)
5/2 0 0 — — — — _
7/2 36 —7V5 2v/35 — - = —

9/2 360 —2v/14 —VI4 2v21 — - —
11/2 365 —27/14 —16/42 7v6 284/33 — —
13/2 360 —14/15 —29/6 —44/66 61/55 6+/286 —
15/2_ 1980 —-2/105 —24/231 =711 0 391 2\/455

* After B. R. Judd, Proc. Roy. Soc. A227, 552 (1955).

® The matrix clements of (=m | 0.3 —m’)=
¢ The numbers in column F are multipylin

—(m[O02]|m'), n =46
g factors common to gal] the elements in the row.
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NSTANT J*°
fw N A MaxiForp or States of Co»
Tapre XIL Matrix Eremexts or O;' aND O¢' WITHIN A

z
o' = Q(JJ + J") e
2) (T3 @114 =
. .. 1110 G111 @l =
J P @1 -2 @I -1) (] - N . 2
2 12 1 - - — _ — - =
3 12 ) V15 - - _ — -————
4 o 15 5vT Vi \/—;10"' . - _ _ &
T 35 5vI2 370 “ _ _ =
5 e i L 15v/14 51/66 3v/55 _
6 2 70 Al = 3 5v143 V1001
7 126 703 5462 153 \ 5v273 2./155
= 51/1001 V15015 e
S ° 210 6/1155 15+/154 \ i
) a |l 1/2) W/2113/2) (37211 5/2) as/2117/2)
J F (5/21] —3/2) (7/20] =1/2) ©/21411/2 _
52 12 V5 o - _ _ =
5 - \
72 12 5v/3 V3 _ — — )
9/2 27 5\/_3 e e 5v2 — 3_\/31 V165 — == ’
5 124/ 35 3v/105 5v2 _ i
12 12v2 A 35/6 15v/22 15v11 YIS - Ea
13/2 2 - 5. /49 5005 1363 d
15?;; 42v/15 104/231 15+/77 5+4/429 /50
O = Il =J( +1) = 38)(J,* + J_) + Ve I -5 +1) - 38)]
J F (2] =2) @l -1 10y (CHINY) 6112 (7 1] 3) Sl 4)
2 0 0 - . — — s -
3 60 -6 V15 = — — — -
4 180 —14 = /T 2/70 — — _ _ .
5 60 —16S —13v/42 12\/70 154210 — - — é
6 180 —168 —-35+/10 Sv/14 2166 28/35 — —_ é
7 60 —1260 —516+/3 —0\/4062 14733 1261/143 45+4/1001 —_ =
8 660 —252 —6v/1155 —6v/154 31001 2V15015 10273 120/435 >
.7 F (6/2 || =3/2) (721 =1/2) 97211 1/2) (1172 ] 3/2) (137211 572 (15/2 1] 7/2) _5_
3
5/2 0 0 - _— . _ _ 2
7/2 60 —-73 3v35 — — — - =
_9/2__60v7  —16y3 G2 30v2 - - 5 M)
/2 180v2 —-63 -105 13421 V165 = — Z
13/2 360 —=56+/5 =216 1322 464711 6715 - =
15/2- 660 —42/15 —64/231 3T T\/A420 31/5005 51/1365 2 _ka
¢ After J. M. Baker, B. Bleaney, and W. Hayes, Proc. Roy. Soc. A247, 141 (1958). g
* The numbers in column F are multiplying factors common to all the elements in the row. ?.
<
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y Proc. Roy. Soc. A219, 387 (1953).
plying factors common to all elements in the row.

¢ After R. J. Elliott and K. W. H, Stevens
® The numbers in column F are multj

¢ Corrected values.
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— fitting gc, to experimen:tal data, (V= js sometimes also ysed to denote
_j;’l y 3 ifoam (i, 4, 24), e.g., Stevens,”’ page 209.)
U T{ } The operator equivallent Hamiltonian 5, is often written
l/_] < b § i, = EB,.”'O,.”‘ (or 3¢, = > BympP.m), (5.6)
o g é nm nm
:’—’_7 < i f where B,m = A (rn )en?,'The B’s rather thap the 4's will be used in Seetion
o ; = < 6: (The A’s and B’s used by Bleaney and Stevens,? pages 128-129 4,6
-g _;5 different from t'hose used here, but can easily be related ¢ them.)
LI é cher notations commonly used, including some used in spin Hamil-
o l tonians of the form of Eq. (5.6), are listed below (Watanabe”}:
g _% bzo = 3.820 = D bss = 1260366
. % b? = 3B2 = 3 b = 608~
~ > O: b = 60BY = P b = 126084~
<
- g _ < be = 12608,
NP (l\’ 3 and, especially for cubje fields,
|
L—J b b = 60BY = 1., _ 1
E E 8 i 4 28 = 4¢
D & b = 12608, = 17
4
N ~
£ o
2 Zc, é_ 6. OPERATOR EQurvaLenTs FOR CuBic PoTENTIALS
~ I
o . As an example we shall now determine the operator equivalent ap-
:{J @ O bropriate to the cubje crystal-field Potentials found in Sections 1 ang 2
| R ? Snwe these differ only ir} the coefficients for the three different coordina-
- thns, we need only consxdq how the functions transform into the appro-
" = Priate operators. The Hamiltonian may of course be foung directly from
e vy Fos. (5.4), (5.5), and (2.7), )
QO ;
% Qé o a. Cubic Potentiq] Expressed in Cartesian Coordinates
N andl’i‘xslé)?’t ' = —|¢ [ in the expression derived jn Section 1, Eq. (1.4),
\rQ X = Z (Cllat + yo + 2 = 307 + Dy[(r + 4.+ 29)
J i
o ARy + 20 4 RS ST R R N 20 — Hre)

We rewrite the Cartesian functions,
| Egs. (1.1), in terms of the fe,n(z, Vi, 2:).
y ‘Into an operator equivalent in

‘ 19 H W

using the expressions listed in
These then immediately gO over
its usual form, ie, 08 0 0s, and 0s,
atanabe, Private communicstion, 1962.
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* ss listed in Table VIII, and whose matrix elements are tabulated. Now
[+ v+ 29 = 3] = ol (352" = 307 + 3r) + 5(zt + 3 — 629%)]
= &((352* — 301222 + 3r)
+ 5[ (z + i)' + (z — w))/2). (6.1)
We have seen in Section 5 that the matrix elements of

Z[(rx + o)t + (- iyf)‘]

9

are identical to those of 8;(r')0,* between the angular part of the wave
functions. We shall now consider the operator equivalent to

2o fu= 2 (3524 — 30r2z2 + 3r).
i i
This is a more lengthy application of Stevens' rules given in Section 5, and
we must make use of the commutation relations below:
Jedy — JyJ. = 1J,
JoJ. = J. T, =1J,
JJ: = JJ. =1,
{ ‘ These are used to bring all the different combinations of the operators

|

(measuring all angular momenta in units of A).

into similar form; for example, below we reduce them to squares of opera-
tors and the product J.J, /..

Considering each term in fyo scparately,

() 2!~ J (6.2)

z

(b) riet = 2%t 4 42 4 2
w2 JA+ T A+ JJJ A+ T

+ JJod S+ TR,
and using the commutation rclations,
JedolJeds = dolidy + Jod ) T e = iJed e + 2 8
JoJ o Jodo = T 00, + JJ) =400+ id 0+ T2
i (S = 1J.) + 4T+ JAT 2
= 2iJJyJ: + I+ T2,

ENERGY LEVELS OF IONS IN CRYSTAL FIELDS 267

Jdodode = J(Jde = id,)J,
= J 22 — 1J.J0yJ.
JA = 1T (T, — iJ.)
JAL2 = [(J.J, + i) ], — id 2]
J2Jt =[Sy = 1J.) + 002 — 0] 2]
JHI2 = iledy — S JE = J 2
JoJoJod e = JJ(Juds — iJ,)
JAE2 =i, — J2 - T2~ (i, + J.J.)J,
JAE =il = J2 T = J2 4 Iy
—iJ (TS, = 1J)
= JAIS = B lyd s~ BI3 4 BEE = J2
Adding, we find
a2 43T 2+ 3J 20,2 —2J2 + 3J,2 —2J.2] (6.3)
Similarly,
y2 > 3BIA2 +8J2 302~ 200 — 202] (64)

If we now use the fact that J.2 + J,2 4+ J,2 = J?, which when operating
on states within a manifold of given J gives a constant J(J + 1), whic}?
commutes with J,, and add Eqs. (6.2), (6.3), and (6.4) we find

PR 36J(J + 1)J2 + T2+ S - 4g 7],

Il

I

or

r2 A 36J(J + 1)J 2 + J(J+1) - 57,7, (6.5)

(C) T‘ - (x‘.' + y2 + 22) (1-2 + y2 +,z2)
= I" + y4 + Z‘ + 2(1.2!/2 + y?z'.' + Z"’Iz).
Now 2 J.4 etc., and in a similar manner as that used in (b) we can

show
2ty & 3[3J.00,2 + 3,00 = 20 (T 4 1) 4 572 (6.6)
Using Eqgs. (6.3), (6.4), and (6.6),
O RIBTAL + BTN 4 3203 4 80002 4 B2 + 30,00 1)
F IR LA T2+ ) 4 J b d e
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which reduces to

e [JJ+1)2=-3JJ 4+ D] (6.7)
Finally, using Eqs. (6.2), (6.5), and (6.7), we sce that
D (352 — 30222 + 3rd]

= B;(r')M357 4 — [30J(J +1) —25)J2—6J(J +1) +3J%(J + 1))

= B,()0L. (6.8)

If we now combine Egs. (6.1), (5.1), and (6.8), we see that the matrix
elements of

Z[Ii‘ + y.-‘ + 2z — %T.‘]

I

those of 58 (r*}[0& + 5047 (6.9)

Similarly,
(28 + v* + 28 + B (ahy* + 2% + ' + 2 + 20 4 2%Y) — 18]
= —o37{(2312% — 3152%2 + 10522 — 5r%) — 21(112* — r?)

X [z + )+ (x — )')/2},
using the Egs. (1.1), and the fact that .
o+ — 6yt = [(z + i)' + (z — w)')/2

The matrix elements of Y..(23128 — 315z 2 + 10522r# — 57.] between
coupled wave functions are the same as those of vs(r*)0¢ between the
angular part of the wave functions; and those of

iy “_4+(i_.‘.)4
E[(llz!,_ P + W) : 2 — 1y ]

1

are the same as those of v (r*)O¢'. Therefore, the matrix elements of

2 2,4y 15,6
S [(zd+ystzs) + 12 (zdydtzizd+yladydedteled+2yd) —1ar ]

= those of — Tiﬂj(ﬁ)[Oso — 2105‘] (6]0)

We thercfore have that for a crystal field of cubic symmetry,

3. = (C4/20)8, (F)[00 + 5047 — (De/224)75(* )08 — 2104,

or

{ scc = B.ﬂ[O‘u + 50(‘] + B_sn[Oeo == 2105‘] (611)
=9 I
nree cooralnavions, - -

ENERGY LEVELS OF IONS IN CRYSTAL FIELDS

TasLe XIV. CoerricienTs B anp B¢ (Eq. 6.11) For THE THREE CooRrbinATIONS

By B
Eightfold coordination 4L lelgy o _LIEe
ightfold co = B 5=y
4 3
Sixfold coordination — I ‘;sl qﬁ;(r‘) = | ;’ ‘IWM)
Fourfold coordination +.1 ﬂﬁl(rq) 1 e qw(r.)
' 36 d° 18 4

Where B¢ and B¢’ are given in Table XIV for surrounding point charges
of charge ¢, at distance d(d > r), in various coordinations about the
magnetic ion site, and axes are chosen as in Figs. 1 and 2. Thisis in the same
form as the Hamiltonian given, for example, in Baker et al.,? page 150.

We have put ¢ = —|¢| in the values listed in Table I, the signs of the
Bs, or v, factors are consistent with this.

b. Cubic Potential Expressed in Spherical Harmonies

To illustrate how one rewrites, in terms of operator equivalents, the
crystal-field Hamiltonian operator when the potential is expressed in
spherical or tesseral harmonics, we again consider the cubic easc. We first
express the Hamiltonian in terms of tesseral harmonies Zna Using Iq.
(2.13), with ¢’ = —|¢|,

e

TIDALYe + GOV + Y]

+ DY — (7/2)}(Ye' + Y]]
ZADIZ0 + (5/1)VZ4u] + Di[Zss — (1)1Z44]).

Let D{" = D{/r* and D¢’ = Dy'/7%. Then

3. = Z{D(’[r*zm + (5/7)Zeu] + D¢'[1°Ze — (T)%Z4]]  (6.12)

We now write r'Z<,, and 2%, in Cartesian coordinates, using the
values of Z¢,, from Table IV. The tesseral harmonics are directly pro-
portional to the fun(z, y, 2) which immediately go over into the operator

* J. M. Baker, B. Bleaney, and W. Hayes, Proc. Roy. Soc. A24T, 141 (1958).

YIG. 4. Sumnmary diagram.
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form. Thus we get

-
31 5\} 3 {35\
. = D' — — 4 0 ) e | 4 4 .
aJc 4 []6\;BJ<T )04 +(7) lb(ﬂ) /3_1(! )04]
I (13\} 21 (13\} J
ml [ = 6\).0 p 2 e 306 |,
+Ds [32 (w) s ()08 (7) 32 (71r) e 08
3 1 1Ay o oot
e = —=DJ/"B,r )08 + 508]+ — | — ) Di'v,(*)[08 — 210¢),
16 v 32 \r
(6.13)
and putting ¢' = —|¢ | in the values of D¢ and Dy’ taken from Table V,

we arrive once more at the values of B,° and B¢ listed in Table XIV.

c. Cubic Polential Operators Expressed with Respect to Other Choices of Azxes

As mentioned in Section 2.e, in some compounds the cubic-crystal
potential energy operator is required expressed with respect to axes other
than the fourfold axes considered above. Using Egs. (2.7), (5.4), and (5.5),
we can show that the operators corresponding to the potential energy qf
clectrons of charge —| ¢ | in the field due to charges in the various E:oordn-
nations will be given by the expressions below. Axes are chosen as in Sec-
tion 2.c.

When z is a twofold axis,

¥ = Btnm[0¢° — 2008 — 1504‘]”’ + BG"")EOJ, + )50’?'0“2
= 1;}35_004 .+_ 2&’"0601{2), (014)

where BO® = (—1/4)B and B® = (—13/8)Bs; Bs and B¢ are the
constants in the fourfold-axes Hamiltonian listed in Table XIV for the
three coordinations. (This operator may also be found from Eq. (6.11)
and the transformations given in Table XV.)

When z is a threefold axis,

e = BEV[OPO — 20\/20433(» + Bﬂom[ooo + (35\[2/4)063 +181065:](z),
(6.15)

where BO® = (—2/3)Bo and BS® = (16/9)Bs; B and By are the
constants in the fourfold-axes Hamiltonian listed in Table XIV for the
three coordinations.
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Tanre XV. TRANSFORMATION OF SpiN OPERATORS ON RoTaTiON OF THE 2z AXI3
INTO THE PERPENDICULAR PLANFE 2y S0 THAT 2’ MAKES AN ANGLE ¢ WITHH 7 AND

’
yous
PArALLEL TO 27

1 3
0P — — éoz" - 50:’

0y} — (%0;“ - :—]20:') cog 2¢ — 2i0,' sin 2¢
3 5 35
00 — §04° + 504’ + goc‘
08 —( - 200 - 200 + 200) con 26 + {200 + Y00 sin 2
() 3" P g 4 2 24 sin 2¢

1 1 1
0¢ — (‘8—0¢° o 5012 + §0¢') cos 44 — (0 — 10¢) sin 4¢

5 105 63 231
0 = — —0,0 — ! 0N =
O 160 g0 g0 - 550

1 17 3 33 [1 9 33 X
0¢ — (1_60'0 + :,;_206’ + l_ﬁo“ = 3—20;“) cos 2¢ — 1(;0;' + gO.‘ 4 EO.‘) 4in 24

1 5 13 11 1 5 11
Og — (— -]—GOJ’ s 3—20e’ + moo‘ = 3—201') cos 4¢ + '(—02 e+ BO&’ -~ TOO‘) sin 44
1 15 3 g (3 5 3 :
04 — (1—600" o 5}-20" + EC’.‘ - 5‘505‘) cos 6¢ — I(ZO.' - §0|' + gO.‘) sin G¢

* After D. A. Jones,
249 (1959).

J. M. Baker, and D. F. D. Pope, Proc. Phys. Soc. (London) 74,
IV. Summary

To summarize, we illustrate the different methods of caleulating the
crystal-field Hamiltonian, and its matrix element
in Fig. 4. The method, using a Cartesian e
tedious to be used in practice.

s, by the diagram shown
xpansion 1s, however, far too

Cartesion expression

-

Crystalline
potenlial energy

Direc! infegration

Carlesion foa (1y.2) Operotor equivalent Molrix

. —_—
which are related 10 method elements
operator equivalents

Direct integration

. ) using Vigner Cecfficients
Harmonic expression / .
{tesseral harmonics or
spherical harmonics)

F1c. 4. Summary diagram.




