Example 6.2. We continue with a mixed boundary-value problem for two Klein—
Gordon equations stated on the segments 2, = {—a < x < 0,0 < y < b} and
Qy; = {0 < x < 00,0 <y < b} of the compound semi-infinite strip 2 = {—a <



x < 00,0 <y < b}. Let Q7 and €2 be filled with materials whose conductivities
are defined by A1 and A, respectively. Consider now the problem

V2ui(x,y) —kfui(x.y) = —fi(x.y), (x.y)€Qi,i=1.2, (6.30)
dui(—a.y
M — Buy(—a.y) =0, lim us(x,y) < oo, (6.31)
ax X—>00
u; (x,0) = 0, w —0, i=102 (6.32)
}.'

and
duq1(0, y) _ du2(0, y)
ox dx ’

u1(0,y) = uy(0,y),

where B = 0and A = A2/A;.

Due to the form of the conditions in (6.32), we can expand the unknown functions
u;i(x,y) and the right-hand side terms f;(x,y), i = 1,2, from the above equation
into the Fourier series

(6.33)

ad (2n —1)m
ui(x,y) = Z Ui n(x)sinvy, v = 5 (6.34)
n=1
and
oo
fite,y) = fin(x)sinvy. (6.35)
n=1

After substituting these expansions in the original formulation of (6.30)-(6.33),
we obtain the following set (n = 1,2,3....) of three-point-posed boundary-value

problems

d?uq ,(x)
T = 02 kD) = — fia(x). x € (<a.0), (6.36)
d?us ,(x
%“ — (P + )z n(x) = —fan(x), x€(0,00), (637
d _
din(=a) g (Cay=0.  lim usp(x) < oo. (6.38)
dx ’ x—»oco
d 0 d 0
U1 2 (0) = w3, (0), ”;;”( ) _ 344220 (6.39)
X dx

for the coefficients u; , (x) and u5 ,(x) of the expansion in (6.34).
Clearly, fundamental sets of solutions for the homogeneous equations correspond-
ing to (6.36) and (6.37) can be composed of, for example, the functions

eh,—x —h;x

with hj = \/v2 + k?, fori = 1,2.

and e



Hence, in accordance with the standard procedure of the method of variation of pa-
rameters, the solution of the boundary-value problem in (6.36)—(6.39) can be written
in the form

Uin(X) = Cin(x)e"* + Dip(x)e™*, i =12, (6.40)

where the coefficients C; ,(x) and D; ,(x) are to be determined. This yields the
following well-posed system of linear algebraic equations

ehix e—hix C;’n(x) _ 0 i—12
hiehix —pje~hix D;,n(x) —fin(x) )~ o

for the derivatives of C; »(x) and D; ,(x) of (6.40). After solving the above system,
we obtain

I 1 _
Cl(x) = _2_h;~e X fin(x),  Dj,(x)= me i* fin(x), i=1.2.
Straightforward integration yields
L[
Cla0) = =i [ e fia@ds + . 641)
—d
L[r
Diav) = 3= [ M fra@)ds + b1 (642)
—a
Loro,
Canl6) =~ [ 7 fon@dt + 72 643)
and
Lor,
D2a() = 5= [ fon@d + 2. 644

Substituting these expressions in (6.40) and rearranging the integral terms appro-
priately, we obtain general solutions to the equations in (6.36) and (6.37) as

X
mx g e g [ ene-d _ehG0) 4 6)ds (6.45)

U (x) = yie o )

and
1 X
Hz,n(x) _ },Zehzx + Sze—kgx + ﬂ_/ [e—hz(x—EJ _e!:z[;rc—E}']f”1 (E)dE. (6.46)
2 Jo
The constant coefficients y1. y2, §1. and §2 in u1 »(x) and uz , (x) as written above,

can be obtained by imposing the boundary and contact conditions in (6.38) and (6.39).
The boundedness of 13 ,(x) as x goes to infinity allows one to directly find y, (see



the second condition in (6.38)). In order to do this, it is convenient to transform the
expression for 13 ,(x) in (6.46) into the equivalent form

1

iy () = [_% fo ek | (©)dE + n] ehax

L * hy§ —h>x
+ g [t funteras + )

from which it follows immediately that the factor of eh2* must be zero, since u 2.n(x)

1s required to be bounded as x goes to infinity. This yields
1
27 20, Jy
The remaining conditions in (6.38) and (6.39) lead us to the well-posed system of
linear algebraic equations

et f, , (£)dE.

(h— By —(hy + pea 0 V1 0
1 1 -1 1 |=| M (6.47)
hy —hy Ahy 82 N
in y1,d1,and 85, with M and N in the right-hand side vector defined as
1 [ 1 [®
M= [ ot fa@de+ o [ e pa@e,
2h1 J—q 2h2 Jo

Nz L [0 et ety g (&)ds+ifme_”sz ()t
> 1.n ) o 2.n -

—da
The solution of the system in (6.47) now is found as

i+ B
"= SnA

0
{ j (1 + Ah2)e ™ & (hy = Ah2)eE] fun(§)dE

oo
+2ma [ e—”szz,n(s)ds}e”““,
0

By — 0
1= e | L0+ e )b f )

+oma f ” E_thfz,n(‘E)df}
0
and

0
5 = %{ [y — BYE + (hy + Py @a+D] 1, (E)dE

—d

— [T+ e = e fo i



where
A = (hy + Ah2)(hy + B)e*M® — (hy — Ah2)(hy — B).

Upon substituting yq, y2.8;. and &, in (6.41)—(6.44), the functions u; ,(x) and
U3 »(x) can be rewritten in compact form as
0 (%]
Up,n(x) =[ gf1(X-E)f1.n(E)d’§+f g12(x, &) f2,n(E)dE (6.48)
0

—a

and

0 oo
Uz n(X) =j ggl(x,f)fl,n(é)dEJr/; 852(x.8) f2.n(§)dE (6.49)

—a

with the kernel-functions g;}(x, &) written as

1
gl(x.8) = m{(le + B)[(h1 + Ahz)e—h||x—&'| + (hy —lkz)ehl(x+5}]e,2h'“
+ (1 = B)[(h1 + Ah2)e ™ OFE) 4 (g — ahy)et*=Elpy,

g’fz(x.f;‘) = %[(hl + ﬁ}eﬁl(Za—{-xJ + (hl _ ﬁ)e—,‘nx]e—hzf‘
1

g21(x.§) = [0 - Bye™ME 4 (hy + p)eh12a+)ig—hax
and
1
332(1.5) = A A{(hl + B)[(hy + )Lhz)e—hﬂx—fl — (hy — lhz)e_k3(x+f}]ezhlﬂ
2

— (k1 = B)(hy — Ahg)[e™20HE) 4 emhal=l)y,

Note that the variables x and £ in g¥, (x,£) range between —a < x,§ < 0, while
for g¥,(x,§) we have —a < x < 0 < § < oo. For g3,(x,£) the variables range
between 0 < x, £ < oo, whilst for g5,(x.£) wehave —a < £ <0 < x < cc.

Recall that, in accordance with the fundamental rule for Fourier coefficients (Fou-
rier—Euler formulas), the coefficients f; ,(x) of the series in (6.35) can be written
as

b
fim(®) = %f FEmsinvndn, i=1.2.n=1.23. ..,
0

Upon substituting f1 ,(&) and f2 ,(£) in (6.48) and (6.49), and subsequently sub-
stituting 1 »(x) and u5 ,(x) into the series in (6.34), we finally obtain the solution



of the boundary-value problem of (6.30)—(6.33) in integral form

b 0 o0
ui(x,y) =jo j_ (% Zg?l(x,é)sinv}* sinvn) fi1(E,n)d&dn

f f ( Zgu(x §)sinvy bmvn) f2(E.mdédn.  (x.y) € Q.

and

b 0 2 o0
tfz(x,y)zjo j_ (nggl(x,E)sinv}-‘sinvr]) f1(E, n)d&Edn

[ [ ( 2822(" §)sinvy bmvn) f2(€,m)ydédn, (x,y) € Qa.

Thus, in compliance with the definition given in the introductory section of this
chapter, we conclude that the series

2 — _ .
Gij(x,y:&.n) = —Zg:}(x,é)smvysqu (6.50)

n=1
| =2
_EZ U(x,f)[COSU(y—T})—cosv(_}f—}—n)], i,j =1,2,

represents the elements G;; (x, y: &, ) of the matrix of Green’s type G(x, y: &, n) for
the homogeneous boundary-value problem corresponding to (6.30)—(6.33).

If we set ky = 0 and k5 = 01n (6.30) we obtain i; = h, = v. This transforms the
coefficients g;} (x, &) of the series in (6.50) to

Sh.8) = [0+ A1+ e TH 4 (1 - e D)
+ (0= A1+ )T 4 (1 p)erlEl,
gha(x.§) = R N CE:) S T
g6 = B + (v + pePatPe,
and
85200, 6) = (v + (1 + W)™ 8 — (1 = e (¥ D)2

+ (v = B)(1 — )T et
with A* = (1 + 1)(v + B)e?® — (1 — 1) (v — p).



Upon close analysis, it 1s revealed that the expansions in (6.50), with the coefficients
g;} (x, £), as written above, represent a series of the type

X n
1 cosne, whereqg <land0 <« < 2m,

n=1 n
which diverges for ¢ = 1 and ¢ = 0. Hence, the series in (6.50) converges non-
uniformly (contains the logarithmic singularity) for the elements G1;(x, y; &, n) and
Gzz(x. y: E, ?jr).

In order to get an idea of the convergence of the series in (6.50), we have con-
ducted a numerical experiment. The accuracy level that we can attain by truncating
the series can be observed in Figure 6.2, where we depict a profile of the elements
Gi1(x,y:&,n) and Gaq(x, y: &, ), with the series (6.50) truncated to its 10th partial
sum. We have chosena = n, b = 7w, A = 0.01, and B = 2.5 and the source point is
placed at (—1.0, 1.5) € ;.

-
2
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Figure 6.2. Convergence of the series in (6.50).

Based on the resulting numerical data, we can conclude that, if we require accu-
rate values of G(x, y; &, n) in the entire region €2, then a series-only representation
of similar to (6.50) is not efficient and cannot be recommended. To enhance its com-
putability, we will implement the approach originally proposed in [43]. In doing so,
the coefficients g{, (x,§) of G11(x, y: £, ) are transformed as

n _p 1 e Ve e
ghin.6) =" [F T Tuig l)]

_pxETA=) =B — B+ 1) . o—2va
—] 21} U(] + A)A* U(] + ;{) »

where

p(x.§) = vpi(x,§) + Bp2(x,§)



with
p1(x,€) = [(1 4+ A)e™"F=El 4 (1 — )er(x+8))e2va
+ (14 2)e™OFE) (1 - nyevEl) (6.51)
and
pa(x.£) = [((1 + X)e ¥ =8l (1 — 1)eVx+8))e2va
— (14 A)e™CHD 4 (1 — p)e =€),

This splits the series representation of G1(x, y: &, 1) into two segments, the first
of which
i p(x.8) [(1 =) = Be™" — p(1 + 4)]
Zb(l +A) — (1 + ) (v + Ble2ve — (1 —2)(v —p))
X [cosv(y —n) —cosv(y + n)] (6.52)

converges uniformly at the rate of
Z — cosna, whereg < land 0 < o < 2.

Hence it is already in a computer-friendly form. With regard to the second series in
Gi1(x, y; &€, 1), written as

pi 2:’1 [cosv(y —n) —cosv(y + n)]

2b(1+1) Z

we can split it into

1 > x,
2b(1+ ) Z piii.,f ) [cos v(y — ) = cos vy + )]

2b( l +2) E pzz( zfz) [cosv(y —n) —cosv(y +7)]. (6.53)

where the second expansion converges uniformly at the same rate as (6.52). Hence, by
combining the two, we obtain a uniformly convergent series component for

Gri(x, y;§.n) as
1 Z (1= —B)p1(x.£)e 2" — B(1 + 1) p3(x.§)
2bh(1 +}.) (1 + A)(v +ﬁ)32”a—(1—l)(v—ﬁ))
X [cosv(y — 1) —cosv(y + )] (6.54)




where
p3(x, £) = 2((1 + B)e™ &+ L (1= gyer—Fl),

The non-uniform convergence of the first series in (6.53)

1 o0 _
2b(1 + 1) ; p;:z(uf) [cosv(y —n) —cosv(y + n)] (6.55)

is evident. The good news is, however, that it is completely summable. To prepare for
the summation, we substitute pj(x,£) from (6.51) in (6.55), and rewrite the latter as

1 ®  L—v|x—§]
WA+ A) =(1 + B) [; = [cosv(y —n) —cosv(y + n)] (6.56)
% —v(2a+x+§)
+2 T feosuly — ) —cosviy + n)]]
o0 eu(x-i—E)
+(1-p) |: [cosv(y —n) —cosv(y + )]
n=1

+ Z — [cosv(y —n) —cosv(y + r})]j| }

Recalling the expression for v = (2n — 1)x/2b, we sum all of the above series
using the standard summation formula [1, 27]

i g*"1 ] 1. 142gcosa + g2
cos(2n — 1) = —In 5
n=12n—l 4 1—-2¢gcosa+g

Figure 6.3. Improvement of the convergence.



yielding the following closed form for (6.56)

1 4+ 2e2=H cos(y — n) + 2095

6.57
1 — 2e@(x=8) cos(y — n) + e2e(x—§) 6.57)

m{“+ﬁ““(

5 1 — 2e@(x—§) cos(y + 1) + e2w(x—£)
1 + 2e@(x=¥§) cos(y + 1) + e2o(x—§)

1+ zem(2a+x+{=) cos(y _ U) + eZw(2a+x+E}

. 1 — 2e2(2a+x+8) cog(y — ) + e2@(a+x+§)

1 — 26m(23+x+$) cos(y + 7':") + 62m(2a+x+’§)
x 1+ Jew(2a+x+§) Cos(y + 7]') + eZw(2a+x+E))

1 4+ 2e@(x+§) cos(y —n) + e2w(x+§)
1 — ew(x+£) cos(y —n) + e2w(x+§)

+(1-p) ln(

" 1 —2e?=%) cos(y + ) + 2G5
1 + 2e2x=8) cos(y + n) + e22(x—8)

1 + 2e@(2a—x+£) cos(y — 1) + e20(2a—x+E)
* l _ 26w(2&—x+§) Cos(y — U) + eZw(Za—x+§}

1 — zem(Za—x—i—E) cos{y +1n)+ eZa)(za—x-i-f)
% 1 + 2e@(2a—x+8) cos(y + n) + ezm(2a—x+5})}'

where w = /2b.

Hence, the sum of the uniformly convergent series in (6.54) and the expression in
(6.57) provide a computer-friendly formula of G11(x, y; &, n) of G(x, y:&,7). The
improvement of the series convergence for the rest of the elements can be accom-
plished in a similar manner.

To illustrate the accuracy improvement attained by the development we have just
described, with regard to the convergence of the series representing elements of the
matrix of Green’s type, we depict, in Figure 6.3, the same profile of G(x, y; &, ) as in
Figure 6.2. We employed the computer-friendly elements of G(x, y: £, n), with their
series components truncated to the 10th partial sum.



