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After substituting f1 () and f> ,(§) into (6.24) and (6.25), and subsequently sub-
stituting u1 , (x) and u2 , (x) into the first series in (6.11), we finally obtain the solu-
tion of the boundary-value problem of (6.7)—(6.10) in integral form

ui(x,y) = f/ (Zgn(x E)smvysmvn)fl(é mdgdn

/ / ( Zgu(x s)smvysmvn) fEndsdn, (x.y) € R0, (626)

and

w(x, y) = / / (Zg21<x %‘)smvysmvn)fl(é ndédr

/ [ ( > i S)smvysmvn) HEndEdn, (x.¥) € . (627)

Upon inspection of above integrals and recalling the relation in (6.6), where u; (x, y)
and fi(x,y), with i = 1,2 in (6.26) and (6.27), defining the components of the
vector-functions U(x, y) and F(x, y)

Ui(x,y)= ul(x y) (x y) 1 l:1,2,
O’ ('x’ y) ¢ le
and
] ’ ’ K Q.v .
Fi(x,y) = filwy). o) ey,
O’ (x’ y) ¢ 913
we recognize that the kernel-functions
2 o0
7 Zgl'-'j(x,é) sinvysinvy, i,j =1,2, (6.28)
n=1

in (6.26) and (6.27) represent the elements G;; (x, y; €, n) in the matrix of Green’s type
G(x, y; &, n) for the homogeneous boundary-value problem corresponding to (6.7)-
(6.10).

Upon close analysis we find that the series expansions in (6.28), with the expres-
sions for gf] (x, &) found earlier in this section, can be readily summed up with the aid
of the standard summation formula

Z o cosno = —3 In(1 —2g cosa + ¢?) (6.29)

n=1
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valid for ¢ < 1 and 0 < @ < 27, and was utilized repeatedly, earlier in our book.
Indeed, the expansion in (6.28) can be rewritten as

= .
Gij(x, yi&.m) = 5 3 iy (0. §) [eosv(y —m) —cosw(y + ], i,j =12,

n=1

and the summation ultimately yields the following compact closed formulas

1 |1 _ ew(z_f)l 1— /»\ |1 _ ea)(Z+E)|
0= M e " T A M= eeGD) |
A Il _ew(z—f)|
G s el )
12(2,§) (1 +X) n 11 _ew(z—§)|
1 |1 _ew(z_f)|
G ,0) =
21(2,¢) (1 +X) n |1 _ew(z—§)|
and
1 1 _ ew(z_f) 1 _ A 1 _ ew(z+E)
G11(z.0) = — nl - | nl |
o [1—e@C@E=D] 141 |1—e2G+d))

for the elements of the matrix of Green’s type G(x, y; £, n) for the homogeneous
boundary-value problem, corresponding to that in (6.7)—(6.10). Here = 7 /b. We
introduced complex variable notations z = x 4 iy and { = £ 4+ in for the field point
(x, ) and the source point (&, ), respectively, with the bar on ¢ denoting its complex
conjugate.

Clearly, the above expressions for the elements of the matrix of Green’s type are
computable immediately, since they represent real-valued functions, whilst the com-
plex variables are only used for compactness.

It can be readily seen that, for A equal to unity (that is, the materials occupying
the fragments €21 and 2, of Q2 are identical), the above expressions reduce to the
well-known closed form (refer to, for example, Chapter 2)

1|1 —e®GD)
G(z,0)=—In—F—F—

&0 = 3 M e
of the Green’s function for the Dirichlet problem for the Laplace equation in the infi-
nite strip 2 = {—o00 < x < 00,0 <y < b}.

Example 6.2. We continue with a mixed boundary-value problem for two Klein—
Gordon equations stated on the segments 27 = {—a < x < 0,0 < y < b} and
Qr ={0 < x < 00,0 <y < b} of the compound semi-infinite strip @ = {—a <
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x < 00,0 <y < b}. Let 21 and 2, be filled with materials whose conductivities
are defined by A1 and A,, respectively. Consider now the problem

V2ui(x,y) —kfui(x.y) = —fi(x.y), (x.y) € Qi i =12, (6.30)
M —Bui(—a,y) =0, lim uy(x,y) < oo, (6.31)
3)6 X—>00
(x, b
i (x,0) = 0, % —0, i=12, (6.32)
y

and

01 0.y) _ , u2(0.y)
0x ox

ul(O’ y) - MZ(O, J’)’ (633)

where f > 0and A = A5 /A;.

Due to the form of the conditions in (6.32), we can expand the unknown functions
u;(x, y) and the right-hand side terms f;(x,y), i = 1,2, from the above equation
into the Fourier series

> , 2n—r
ui(x,y) = ,;1 Ujp(x)sinvy, v= —p (6.34)
and
fi.y) =Y fin(x)sinvy. (6.35)

n=1

After substituting these expansions in the original formulation of (6.30)—(6.33),

we obtain the following set (n = 1,2,3,...) of three-point-posed boundary-value
problems
d?uq,(x
#() — (V2 kDU a(x) = —fin(x), x e (-a,0), (6.36)
d?uy ,(x
%() — (V2 +kuzn(x) = —fon(x), x€ (0,00, (637
d —
M —Buin(—a) =0, lim upx(x) < oo, (6.38)
dx ’ x—oo
d 0 d 0
u1,n(0) = uz,,(0), 14 (0) _ A 42.1(0) (6.39)
dx dx

for the coefficients 11, (x) and u3 ,(x) of the expansion in (6.34).
Clearly, fundamental sets of solutions for the homogeneous equations correspond-
ing to (6.36) and (6.37) can be composed of, for example, the functions

ehfx —hix

with i; = /v? —|—ki2,fori =1,2.

and e
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Hence, in accordance with the standard procedure of the method of variation of pa-
rameters, the solution of the boundary-value problem in (6.36)—(6.39) can be written
in the form

Uin(x) = Cin(x)e* + Dy p(x)e™™* i =1,2, (6.40)

where the coefficients C; ,(x) and D; ,(x) are to be determined. This yields the
following well-posed system of linear algebraic equations

chix  o—hix () 0 N
(hiehl’x —hie_h"x)( (x)) (_f,-,,,(x)) ST

for the derivatives of C; ,(x) and D; ,(x) of (6.40). After solving the above system,
we obtain

/() = —ie‘“ﬂn(x) [ax) = "Xﬁn(x) i=12.

Straightforward integration yiclds

cl,n(x)=—i _Ze"“gfl,n(s)dswl, (6.41)

Din(x) = 3= ’“éfln@)dswl, (6.42)

cz,n(x)=—i [ @ (6.43)
and

D2a) = 5= [ fon(ErdE + 2 (6.44)

Substituting these expressions in (6.40) and rearranging the integral terms appro-
priately, we obtain general solutions to the equations in (6.36) and (6.37) as

1
uin(x) =yt 4 fre” T 4 o [e—"“x D =M )dE (645
1

and
] X

uz,n(x)=)/2€h2x+5ze_h2x+ﬁ / [e™h2=H) _h=0) 5 (£)dE. (6.46)
2J0

The constant coefficients y1, y2, 81, and 63 in u1 ,(x) and uz_, (x) as written above,
can be obtained by imposing the boundary and contact conditions in (6.38) and (6.39).
The boundedness of u2 ,(x) as x goes to infinity allows one to directly find y» (see
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the second condition in (6.38)). In order to do this, it is convenient to transform the
expression for u3 ,(x) in (6.46) into the equivalent form
1

Uz.n (x) = [_%

/0 “ ek p (E)dE + 7/2] hox

R " —hax
+[2h2 /O e fz,n(s)dswz}e

from which it follows immediately that the factor of eh2X must be zero, since u 2.n(x)
is required to be bounded as x goes to infinity. This yields

1

© 2hs Jo

The remaining conditions in (6.38) and (6.39) lead us to the well-posed system of
linear algebraic equations

2 ek g ().

(hy — B)e™Ma —(hy + B)ehie o " 0
1 1 1 st =1 m (6.47)
hl —]’ll lhz 82 N

in y1, 61,and 8, with M and N in the right-hand side vector defined as

L [° i _ oty (&)ds+i/we—h25f ()de
J1,n 2]’12 0 J2.,n s

M=—
2y —a

[0 e 4 ot AT ot
N=o @ +e) f1nE)dE+ 5 | 72 fou(§)dE.
2 ). 2 Jo
The solution of the system in (6.47) now is found as

0
Y1 = hzthrAﬁ{ [(hy + Ah)e ™8 + (hy — Aho)e™E) f1 0 (E)dE
1 —a

oo
2 / e‘hzf.fz,n(s)ds}ez’““,
0

_ 0
8 = h21h1Aﬁ{ —a[(hl + Ah2)e™E  (hy — Aho)eM 8] 1 o (8)dE
+ 201 A / ot fz,n(s)ds}
0
and
0
8 = %{ [y = B)e"E + (hy + Bl 2D 1, (6)d g

_ /0 hlz_Tth[(hl + BT (g — B)eTE] £y (6)d E}’
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where
A = (hy + Ah2)(hy + B)e*M1® — (hy — Aha)(hy — B).

Upon substituting y1, ¥2, 81, and 8 in (6.41)—(6.44), the functions u; ,(x) and
U3 5 (x) can be rewritten in compact form as

0 )
Uin(x) = /_ (0 E) fra(E)dE + fo S ) fon®)dE  (648)

and

0 [’}
Uz (x) = / (. E) fun(E)IE + /0 S E) fonE)dE (649

—a

with the kernel-functions gl’?j (x, &) written as

{01+ Pl + Ah)e™ W 4 (hy — dhg)eh D2
+ (h1 = B)(hy + Ah)e ™ HE) 4 (hy — Ahg)e =ElT},

g1 (x, &) =

2h1A

€ia(0.6) = S(0hn + HEMCID 4 by — ek,

g21(x.8) = %[(hl = B)eME + (hy + e CatDehor,

and

{(h1 4 B)[(h1 + Ahp)e™m2X=El _ (hy — Ahy)e=h2(x+8))e2ia
— (= B) (i — Ahg) e 4 el

)’n —
822(x.§) 2hy A

Note that the variables x and & in g, (x, §) range between —a < x,£ < 0, while
for g7,(x,§) we have —a < x < 0 < § < oo. For g7,(x,£) the variables range
between 0 < x,§ < oo, whilst for g7, (x,&) wehave —a < § <0 < x < o0.

Recall that, in accordance with the fundamental rule for Fourier coefficients (Fou-
rier—Euler formulas), the coefficients f; ,(x) of the series in (6.35) can be written
as

Upon substituting f1,,(§) and f2 ,(§) in (6.48) and (6.49), and subsequently sub-
stituting u 1, (x) and uz ,(x) into the series in (6.34), we finally obtain the solution
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of the boundary-value problem of (6.30)—(6.33) in integral form

oo

b (0
)= [ [ (%Zg’fl(x,@sinvysinvn)fl(s,n)dsdn

=1
b oo 2 o) ' '
+/0 /0 (En;lg?z()ag)smvy s1nvn) frE n)dEdn.  (x.y) € Q,

and

b 0 2 o
e = [ (52g31<x,s>sinvysinvn) fil6.mdidy
-4 n=1

b oo o X
+/0 /0 (E Z g5, (x, &) sinvy sin vn) fE, ndEdn, (x,y) € Q5.
n=1

Thus, in compliance with the definition given in the introductory section of this
chapter, we conclude that the series

2 ¢ N
Gij(x,y;6,n) = 5 Z gij(x, &) sinvy sinvn (6.50)
n=1

1 w . .
=5 D g feosv(y —m) —cosv(y + ). ij =12
n=1

represents the elements Gj (x, y; &, n) of the matrix of Green’s type G(x, y; &, n) for
the homogeneous boundary-value problem corresponding to (6.30)—(6.33).

If we set k1 = 0 and k, = 01in (6.30) we obtain i; = h, = v. This transforms the
coefficients g7’ (x, §) of the series in (6.50) to

g 8) = 5= [0+ F(( + e 4 (1= Q)" FD)e2ve
+ (0= B)((1 + 1)e™ OO 1 (1 — pyerlx =),
A
gilz(x’%-) — = [(U + ﬁ)ev(Za-l-X) + (U _ ﬁ)e—UX]e—UE’
1
$1(0.6) = — (v = e + (v + e’ G e,
and
g (x.§) = [(v+ B)((1 + Vel — (1 — p)e (- +8))e2va

2vA*
+ (v = A1 = AT 4 TR

with A* = (1 4+ A)(v + B)e2¥® — (1 — A)(v — B).
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Upon close analysis, it is revealed that the expansions in (6.50), with the coefficients
g:’] (x, &), as written above, represent a series of the type

o n

Z q—cosna, whereg < land 0 < @ < 2,
n

n=1

which diverges for ¢ = 1 and « = 0. Hence, the series in (6.50) converges non-
uniformly (contains the logarithmic singularity) for the elements G11(x, y; &, 1) and
Gaa(x,y;6.1m).

In order to get an idea of the convergence of the series in (6.50), we have con-
ducted a numerical experiment. The accuracy level that we can attain by truncating
the series can be observed in Figure 6.2, where we depict a profile of the elements
Gi1(x,y;&,1n) and Ga1(x, y; &, ), with the series (6.50) truncated to its 10th partial
sum. We have chosena = n, b = 7, A = 0.01, and B = 2.5 and the source point is
placed at (—1.0, 1.5) € Q3.

Figure 6.2. Convergence of the series in (6.50).

Based on the resulting numerical data, we can conclude that, if we require accu-
rate values of G(x, y; &, n) in the entire region €2, then a series-only representation
of similar to (6.50) is not efficient and cannot be recommended. To enhance its com-
putability, we will implement the approach originally proposed in [43]. In doing so,
the coefficients g7, (x,§) of G11(x, y: &, n) are transformed as

n . p(x,f) 1 e~ 2va e—2va
g1 (x.§) = 2 [E_v(1+/\)+v(l+k):|
_ p(x,§) [(1 —A)(y—[j)e_zva —B(1+ 1) N e—2va ]
T2y (1l + A)A* (1 T s
where

p(x.§) = vp1(x.§) + Bp2(x.§)



280 Chapter 6 PDE Matrices of Green’s type

with
pr(x. &) = [(1 4 A)e I8 4 (1 — 1)erx+8))2ve
(14 A)e O+ 4 (1 — n)e vty 6.51)
and
p2(x.6) = [((1+ Ve 4 (1 - p)e"CFE)e2va
— (1 + )&+ 4 (1 = n)evIx—Ely,

This splits the series representation of G1(x, y; £, 1) into two segments, the first
of which

1 i P& [(1 =M (v = p)e™ — (1 + 1)
2b(1 4+ 24) = v2 (1 + M) (v + B)e?@ — (1 =) (v — B))
X [cosv(y —n) —cosv(y + n)] (6.52)

converges uniformly at the rate of

o0
Hence it is already in a computer-friendly form. With regard to the second series in
Gii1(x, y; &, n), written as

.\)IQ

cosno, whereqg <land0 <o < 2m.

2b(1 +4) 2 Z ig zga) [cos v(y =) = cosv(y + )]

we can split it into

p1(x 5)
2b(1 +x) Z De2va

[cosv(y —n) —cosv(y + 1)

p22( 215) [cosv(y —n) —cosv(y +n)], (6.53)
V

+2b(1+k)n§:

where the second expansion converges uniformly at the same rate as (6.52). Hence, by
combining the two, we obtain a uniformly convergent series component for

Gii(x,y;6,n) as
Z (1= —B)p1(x.£)e™"* — B(1 + L) p3(x. §)
2b(1 +)L) (1 + (v + Be?va — (1 —)t)(v—ﬂ))
X [cosv(y —n) —cosv(y + n)] (6.54)
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where
P30, £) = 2((1 + B)e™V &+ L (1 — g)erlx—¢l),
The non-uniform convergence of the first series in (6.53)

2b(1 +A) Z pi(zf ) [cos v(y —m) —cosv(y + )] (6.55)

is evident. The good news is, however, that it is completely summable. To prepare for
the summation, we substitute p;(x, &) from (6.51) in (6.55), and rewrite the latter as

1 L —v|x—§]
2b(1 4+ 1) {(1 +h) L; : [cos v(y —m) —cosv(y +n)] (6.56)
X o—v(2atx+§)
+ 2~ [eosv(y —m —cosv(y + 71)]]
n=1

eV (x+8)

+ (1= [cos v(y —n) —cosv(y + n)]

e—v(Qa—|x—£))

P
Z [cosv(y —n) —cosv(y + n)]]}.

Recalling the expression for v = (2n — 1)7/2b, we sum all of the above series
using the standard summation formula [1, 27]

©  2p—1 2
1 142

E q cos(2n — l)a = —In t2qeosat g
2n —1 4

1 —2gcosa + g2

Figure 6.3. Improvement of the convergence.
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yielding the following closed form for (6.56)
1 1+ 26208 cos(y — 1) + 20—
—— {1+ pm =
27'[(1 + A.) 1— zea)(x—é‘) cos(y — n) + eZw(x—‘;')

" 1 — 26?3 =8 cos(y + 1) + 20—
1 + 2e®0=6) cos(y + n) + e2@(x—£)

(6.57)

1+ 26w(2a+x+§) cos(y — 1) + e2w(2a+x+.§)

x 1 —2e@a+x+8) cos(y — n) + e20(2atx+§)

1 — zew(2a+x+$) cos(y + 1) + e2a)(2a+x+3;‘)
X 1+ 2e@(2a+x+§) cos(y +1) + e2a)(2a+x+é))

| 4+ 2e@&x+8) cos(y — 1) + 20(x+§)
1 —2e@C+6) cos(y — 1) + e20(x+6)

+(1 —ﬂ)ln(

1 — 2628 cos(y + 1) + 20*—E)
x
1 + 2e2&=8 cos(y + n) + e2@(x—)

1 + 2e@a—x+§) cos(y —n) + e20(2a—x+§)
x 1 — 2e@@a—x+8) cos(y — n) + e20a—x+8)

1— 26w(2a—x+§) cos(y +1) + eZw(Za—x+$)
X 1 4+ 2ew(2a—x+£) cos(y +1n) + e2w(2a—x+§) ) }’

where w = 7 /2b.

Hence, the sum of the uniformly convergent series in (6.54) and the expression in
(6.57) provide a computer-friendly formula of G11(x, y; &, 1) of G(x, y;€.n). The
improvement of the series convergence for the rest of the elements can be accom-
plished in a similar manner.

To illustrate the accuracy improvement attained by the development we have just
described, with regard to the convergence of the series representing elements of the
matrix of Green’s type, we depict, in Figure 6.3, the same profile of G(x, y; €, 7n) asin
Figure 6.2. We employed the computer-friendly elements of G(x, y; &, 1), with their
series components truncated to the 10th partial sum.

Example 6.3. Consider yet another problem where its matrix of Green’s type can be
obtained in closed series-free form. Let the half-plane Q2 = {a < r < 00,0 <
¢ < m}, reduced by a semi-circular cut-out of radius a, be filled with a conducting
(A7) isotropic homogeneous material. Let also 2> contain a semi-circular inclusion
Q2 ={0 <r <a,0 < ¢ < z} made out of a foreign conducting (1) isotropic
homogeneous material. To determine the potential field generated in 2 = €21 U2, by



