I would like to calculate the following quantity:
Where F is the SU(2) field strength tensor given by:

The gauge field V (in my code A) is defined as
where rj is the unit vector in spherical coordinates.
I tried to calculate it with maple, however, the result is not correct. I should get a scalar function, but my result still contains dependencies on x,y,z. And I really don't know why. I have defined the gauge field in (11) and the field strength tensor in (14). I could imagine that SumOverRepeatedIndices() in (16) does not work as I think (For each a = (1,2,3) I would like a summation over mu and nu). Greek letters are my spacetime indices and lowercase letters are my space indices. Do I perhaps have to use SU(2) indices instead of the space indices? But how exactly does a SU(2) index differ from a space index?



|
(1) |
 

![[coordinatesystems = {X}, signature = `+ + + -`, spaceindices = lowercaselatin, spacetimeindices = greek, su2indices = uppercaselatin]](/view.aspx?sf=238694_question/a5017204f96e45f65fe9b4b06e0833a7.gif)
|
(2) |
![Setup(realobjects = {g, diff(x, x), diff(y(x), x), diff(z(x), x), f__A(X[1])})](/view.aspx?sf=238694_question/fe74267dd443da8052aaaa31b646ded5.gif)
![[realobjects = {g, phi, r, rho, theta, x, `x'`, y, `y'`, z, `z'`, f__A(r)}]](/view.aspx?sf=238694_question/7b01c0daa1287258bda16e60fa063174.gif)
|
(3) |


|
(4) |


|
(5) |


|
(6) |
This ist my unit vector:
![{Physics:-Dgamma[mu], Physics:-Psigma[mu], R[a], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}](/view.aspx?sf=238694_question/7d91dec0c5699ccd34ffe827cd65f489.gif)
|
(7) |
![R[definition]](/view.aspx?sf=238694_question/151dce8343e32f7f06e77c8be12dc3f2.gif)
![R[a] = [`x'`/r, `y'`/r, `z'`/r]](/view.aspx?sf=238694_question/c54fbe580bdc49c2534c0bf6b7a4b77f.gif)
|
(8) |


|
(9) |
!["Define(A[mu,~a] =(1-`f__A`(X[1]) )/(g*X[1])*LeviCivita[a, mu,j,4]* R[j] ) "](/view.aspx?sf=238694_question/9aee074b9fdf83dd799f2bd93e191edb.gif)
![{A[mu, `~a`], Physics:-Dgamma[mu], F[mu, nu, a], Physics:-Psigma[mu], R[a], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}](/view.aspx?sf=238694_question/2d44fd61d5fa6380069201c0660bc68e.gif)
|
(10) |
![A[definition]](/view.aspx?sf=238694_question/967ab8508b0696ad1f7e5f3fe34d01f2.gif)
![A[mu, `~a`] = (1-f__A(r))*Physics:-LeviCivita[4, a, j, mu]*R[j]/(g*r)](/view.aspx?sf=238694_question/c35850d0294e19dc799082e53b5e9c95.gif)
|
(11) |
![A[]](/view.aspx?sf=238694_question/2c5d6c182ab0e485a52c626024625294.gif)
![A[mu, a] = Matrix(%id = 36893489989479580364)](/view.aspx?sf=238694_question/fd88cf8f12827135458e885a1c60a311.gif)
|
(12) |
![Define(F[mu, nu, a] = d_[nu](A[mu, a])-d_[mu](A[nu, a])+LeviCivita[a, b, c, 4]*A[mu, `~b`]*A[nu, `~c`])](/view.aspx?sf=238694_question/efee294af7c030af25e947349334f696.gif)
![{A[i, `~a`], Physics:-Dgamma[mu], F[mu, nu, a], Physics:-Psigma[mu], R[a], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}](/view.aspx?sf=238694_question/92e9d4c615b9db352190b9aaabbd0a36.gif)
|
(13) |
![F[definition]](/view.aspx?sf=238694_question/b31fad1c8420086b3b1fd2cec3d976a6.gif)
![F[mu, nu, a] = -Physics:-d_[nu](A[a, mu], [X])+Physics:-d_[mu](A[a, nu], [X])-Physics:-LeviCivita[4, a, b, c]*A[mu, `~b`]*A[nu, `~c`]](/view.aspx?sf=238694_question/4c5fb52197ca0821cc7091680e7173d5.gif)
|
(14) |
![simplify(F[])](/view.aspx?sf=238694_question/584187ed760aeb6262ae2903ca597e68.gif)
![F[mu, nu, a] = _rtable[36893489989585113204]](/view.aspx?sf=238694_question/1c8effcaf395ca691ad2f76af71d2e76.gif)
|
(15) |
!["-1/(4)Simplify(SumOverRepeatedIndices(F[mu,nu,a]*F[~mu,~nu,a])); "](/view.aspx?sf=238694_question/9ff9481b81f60970b168bde31e3b10b9.gif)

|
(16) |


|
(17) |
|
Download SU(2)-field-strength-tensor_.mw