Rouben Rostamian

MaplePrimes Activity


These are answers submitted by Rouben Rostamian

This skeleton example shows how to do what you want.  You can jazz it up as needed.

restart;

de := diff(x(t),t) = -3*x(t) + add(Dirac(t-i), i=1..3);

diff(x(t), t) = -3*x(t)+Dirac(t-1)+Dirac(t-2)+Dirac(t-3)

ic := x(0)=1;

x(0) = 1

dsol := dsolve({de,ic}, numeric);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([Array(1..13, 1..21, {(1, 1) = 1.0, (1, 2) = 2.0, (1, 3) = .0, (1, 4) = .0, (1, 5) = 2.999999600004, (1, 6) = .0, (1, 7) = 1.0, (1, 8) = undefined, (1, 9) = undefined, (1, 10) = 1.0, (1, 11) = undefined, (1, 12) = undefined, (1, 13) = undefined, (1, 14) = undefined, (1, 15) = undefined, (1, 16) = undefined, (1, 17) = undefined, (1, 18) = undefined, (1, 19) = undefined, (1, 20) = undefined, (1, 21) = undefined, (2, 1) = 2.0, (2, 2) = 2.0, (2, 3) = .0, (2, 4) = .0, (2, 5) = 2.999999999996, (2, 6) = .0, (2, 7) = 1.0, (2, 8) = undefined, (2, 9) = undefined, (2, 10) = 1.0, (2, 11) = undefined, (2, 12) = undefined, (2, 13) = undefined, (2, 14) = undefined, (2, 15) = undefined, (2, 16) = undefined, (2, 17) = undefined, (2, 18) = undefined, (2, 19) = undefined, (2, 20) = undefined, (2, 21) = undefined, (3, 1) = 3.0, (3, 2) = 2.0, (3, 3) = .0, (3, 4) = .0, (3, 5) = 3.000000000004, (3, 6) = .0, (3, 7) = 1.0, (3, 8) = undefined, (3, 9) = undefined, (3, 10) = 1.0, (3, 11) = undefined, (3, 12) = undefined, (3, 13) = undefined, (3, 14) = undefined, (3, 15) = undefined, (3, 16) = undefined, (3, 17) = undefined, (3, 18) = undefined, (3, 19) = undefined, (3, 20) = undefined, (3, 21) = undefined, (4, 1) = 4.0, (4, 2) = 2.0, (4, 3) = .0, (4, 4) = .0, (4, 5) = 3.000000399996, (4, 6) = .0, (4, 7) = 1.0, (4, 8) = undefined, (4, 9) = undefined, (4, 10) = 1.0, (4, 11) = undefined, (4, 12) = undefined, (4, 13) = undefined, (4, 14) = undefined, (4, 15) = undefined, (4, 16) = undefined, (4, 17) = undefined, (4, 18) = undefined, (4, 19) = undefined, (4, 20) = undefined, (4, 21) = undefined, (5, 1) = 5.0, (5, 2) = 2.0, (5, 3) = .0, (5, 4) = .0, (5, 5) = 1.999999700003, (5, 6) = .0, (5, 7) = 1.0, (5, 8) = undefined, (5, 9) = undefined, (5, 10) = 1.0, (5, 11) = undefined, (5, 12) = undefined, (5, 13) = undefined, (5, 14) = undefined, (5, 15) = undefined, (5, 16) = undefined, (5, 17) = undefined, (5, 18) = undefined, (5, 19) = undefined, (5, 20) = undefined, (5, 21) = undefined, (6, 1) = 6.0, (6, 2) = 2.0, (6, 3) = .0, (6, 4) = .0, (6, 5) = 1.999999999997, (6, 6) = .0, (6, 7) = 1.0, (6, 8) = undefined, (6, 9) = undefined, (6, 10) = 1.0, (6, 11) = undefined, (6, 12) = undefined, (6, 13) = undefined, (6, 14) = undefined, (6, 15) = undefined, (6, 16) = undefined, (6, 17) = undefined, (6, 18) = undefined, (6, 19) = undefined, (6, 20) = undefined, (6, 21) = undefined, (7, 1) = 7.0, (7, 2) = 2.0, (7, 3) = .0, (7, 4) = .0, (7, 5) = 2.000000000003, (7, 6) = .0, (7, 7) = 1.0, (7, 8) = undefined, (7, 9) = undefined, (7, 10) = 1.0, (7, 11) = undefined, (7, 12) = undefined, (7, 13) = undefined, (7, 14) = undefined, (7, 15) = undefined, (7, 16) = undefined, (7, 17) = undefined, (7, 18) = undefined, (7, 19) = undefined, (7, 20) = undefined, (7, 21) = undefined, (8, 1) = 8.0, (8, 2) = 2.0, (8, 3) = .0, (8, 4) = .0, (8, 5) = 2.000000299997, (8, 6) = .0, (8, 7) = 1.0, (8, 8) = undefined, (8, 9) = undefined, (8, 10) = 1.0, (8, 11) = undefined, (8, 12) = undefined, (8, 13) = undefined, (8, 14) = undefined, (8, 15) = undefined, (8, 16) = undefined, (8, 17) = undefined, (8, 18) = undefined, (8, 19) = undefined, (8, 20) = undefined, (8, 21) = undefined, (9, 1) = 9.0, (9, 2) = 2.0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .999999800002, (9, 6) = .0, (9, 7) = 1.0, (9, 8) = undefined, (9, 9) = undefined, (9, 10) = 1.0, (9, 11) = undefined, (9, 12) = undefined, (9, 13) = undefined, (9, 14) = undefined, (9, 15) = undefined, (9, 16) = undefined, (9, 17) = undefined, (9, 18) = undefined, (9, 19) = undefined, (9, 20) = undefined, (9, 21) = undefined, (10, 1) = 10.0, (10, 2) = 2.0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .999999999998, (10, 6) = .0, (10, 7) = 1.0, (10, 8) = undefined, (10, 9) = undefined, (10, 10) = 1.0, (10, 11) = undefined, (10, 12) = undefined, (10, 13) = undefined, (10, 14) = undefined, (10, 15) = undefined, (10, 16) = undefined, (10, 17) = undefined, (10, 18) = undefined, (10, 19) = undefined, (10, 20) = undefined, (10, 21) = undefined, (11, 1) = 11.0, (11, 2) = 2.0, (11, 3) = .0, (11, 4) = .0, (11, 5) = 1.000000000002, (11, 6) = .0, (11, 7) = 1.0, (11, 8) = undefined, (11, 9) = undefined, (11, 10) = 1.0, (11, 11) = undefined, (11, 12) = undefined, (11, 13) = undefined, (11, 14) = undefined, (11, 15) = undefined, (11, 16) = undefined, (11, 17) = undefined, (11, 18) = undefined, (11, 19) = undefined, (11, 20) = undefined, (11, 21) = undefined, (12, 1) = 12.0, (12, 2) = 2.0, (12, 3) = .0, (12, 4) = .0, (12, 5) = 1.000000199998, (12, 6) = .0, (12, 7) = 1.0, (12, 8) = undefined, (12, 9) = undefined, (12, 10) = 1.0, (12, 11) = undefined, (12, 12) = undefined, (12, 13) = undefined, (12, 14) = undefined, (12, 15) = undefined, (12, 16) = undefined, (12, 17) = undefined, (12, 18) = undefined, (12, 19) = undefined, (12, 20) = undefined, (12, 21) = undefined, (13, 1) = 12.0, (13, 2) = .0, (13, 3) = 100.0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (13, 8) = undefined, (13, 9) = undefined, (13, 10) = 0.10e-6, (13, 11) = undefined, (13, 12) = .0, (13, 13) = undefined, (13, 14) = .0, (13, 15) = .0, (13, 16) = undefined, (13, 17) = undefined, (13, 18) = undefined, (13, 19) = undefined, (13, 20) = undefined, (13, 21) = undefined}, datatype = float[8], order = C_order), proc (t, Y, Ypre, n, EA) EA[1, 8+2*n] := 1; EA[2, 8+2*n] := 1; EA[3, 8+2*n] := 1; EA[4, 8+2*n] := 1; EA[5, 8+2*n] := 1; EA[6, 8+2*n] := 1; EA[7, 8+2*n] := 1; EA[8, 8+2*n] := 1; EA[9, 8+2*n] := 1; EA[10, 8+2*n] := 1; EA[11, 8+2*n] := 1; EA[12, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, Array(1..12, 1..2, {(1, 1) = undefined, (1, 2) = undefined, (2, 1) = undefined, (2, 2) = undefined, (3, 1) = undefined, (3, 2) = undefined, (4, 1) = undefined, (4, 2) = undefined, (5, 1) = undefined, (5, 2) = undefined, (6, 1) = undefined, (6, 2) = undefined, (7, 1) = undefined, (7, 2) = undefined, (8, 1) = undefined, (8, 2) = undefined, (9, 1) = undefined, (9, 2) = undefined, (10, 1) = undefined, (10, 2) = undefined, (11, 1) = undefined, (11, 2) = undefined, (12, 1) = undefined, (12, 2) = undefined}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 12, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.18508082104752334e-1, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = 1.0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..1, {(1) = 1.0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = -3.0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = x(t)]`; YP[1] := -3*Y[1]+piecewise(X < 4999999/5000000, 0, X < 1, -24999995000000+25000000000000*X, X < 5000001/5000000, 25000005000000-25000000000000*X, 0)+piecewise(X < 19999997/10000000, 0, X < 2, -199999970000000/9+(100000000000000/9)*X, X < 20000003/10000000, 200000030000000/9-(100000000000000/9)*X, 0)+piecewise(X < 7499999/2500000, 0, X < 3, -18749997500000+6250000000000*X, X < 7500001/2500000, 18750002500000-6250000000000*X, 0); 0 end proc, -1, 0, 0, 0, 0, proc (t, Y, Ypre, n, EA) EA[1, 8+2*n] := 1; EA[2, 8+2*n] := 1; EA[3, 8+2*n] := 1; EA[4, 8+2*n] := 1; EA[5, 8+2*n] := 1; EA[6, 8+2*n] := 1; EA[7, 8+2*n] := 1; EA[8, 8+2*n] := 1; EA[9, 8+2*n] := 1; EA[10, 8+2*n] := 1; EA[11, 8+2*n] := 1; EA[12, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = x(t)]`; YP[1] := -3*Y[1]+piecewise(X < 4999999/5000000, 0, X < 1, -24999995000000+25000000000000*X, X < 5000001/5000000, 25000005000000-25000000000000*X, 0)+piecewise(X < 19999997/10000000, 0, X < 2, -199999970000000/9+(100000000000000/9)*X, X < 20000003/10000000, 200000030000000/9-(100000000000000/9)*X, 0)+piecewise(X < 7499999/2500000, 0, X < 3, -18749997500000+6250000000000*X, X < 7500001/2500000, 18750002500000-6250000000000*X, 0); 0 end proc, -1, 0, 0, 0, 0, proc (t, Y, Ypre, n, EA) EA[1, 8+2*n] := 1; EA[2, 8+2*n] := 1; EA[3, 8+2*n] := 1; EA[4, 8+2*n] := 1; EA[5, 8+2*n] := 1; EA[6, 8+2*n] := 1; EA[7, 8+2*n] := 1; EA[8, 8+2*n] := 1; EA[9, 8+2*n] := 1; EA[10, 8+2*n] := 1; EA[11, 8+2*n] := 1; EA[12, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..1, {(1) = 0.}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, x(t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

plots:-odeplot(dsol, t=0..4, view=0..1);


 

Download mw.mw

 

I have made many corrections and changes to your worksheet.  This may or may not be what you really need, therefore look at everything closely!

restart;

varepsilon := 300;

300

alpha := 15;

15

T := 5e6;

0.5e7

L := 2e4;

0.2e5

g := x -> piecewise(0 < x and x <= 5000, 0, 5000 < x and x <= 9000, 0.005*x - 25, 9000 < x and x <= 16000, (-1)*0.00286*x + 45.76, 16000 < x and x <= 20000, 0);

g := proc (x) options operator, arrow; piecewise(0 < x and x <= 5000, 0, 5000 < x and x <= 9000, 0.5e-2*x-25, 9000 < x and x <= 16000, (-1)*0.286e-2*x+45.76, 16000 < x and x <= 20000, 0) end proc

Em := 2*int(g(x)*sin(m*Pi*x/L), x = 0 .. L)/L;

-0.8105694688e-8*(1570796327.*m*cos(1.413716694*m)-2500000000.*sin(1.413716694*m)+2500000000.*sin(.7853981635*m))/m^2-0.1159114341e-8*(-0.1099557429e11*m*cos(1.413716694*m)+0.1000000000e11*sin(2.513274123*m)-0.1000000000e11*sin(1.413716694*m))/m^2

Note: I have inserted a negative sign in the exponent because I think that's what you want.

add(Em*exp(-m^2*Pi^2*t*(alpha - varepsilon*m^2*Pi^2/L^2)/L^2)*sin(m*Pi*x/L), m = 1 .. 60):
f := unapply(%, [x,t]):

plot(f(x,10), x=0..L, color="red");

plot3d(f(x,t), x=0..L, t=0..T);


 

Download mw.mw

 

 

Your f is a function of two variables.  What do you mean by "the derivative of f"?

The partial derivative of f with respect to its first variable (which is t) is written D[1](f).  To evaluate that derivative at the point (t[n-1],w[n-1]), we write
D[1](f)(t[n-1],w[n-1]).

If you need the derivative of f with respect to its second variable (which is y), then you will need
D[2](f)(t[n-1],w[n-1]).

I don't know which of two you need in your code because it's not clear to me what it is attempting to do.

 

In the first line of the image that you have attached, we see the input is
f := whatever
but the corresponding output is
f = whatever

Note the disagreement between the ":=" and "=" in the input versus the output.  This means that you have first executed the input without a colon and obtained the output, and then you have inserted the colon in the input but have not executed it!  As a result, f has not been assigned a value and therefore it appears as a plain f in the final result.

Execute the worksheet again without changing anything.  You should get the expected result.

 

 

Instead of plotting and then shifting, you may want to plot the arrows directly in the desired location.

For instance, to plot arrows originating at the point [3,4], you can do:

restart;
plots:-arrow([3,4], [[1,0], [0,1]]);

Moreover, as we see here, a single call to arrow is sufficient to plot any number of arrows.

With the unknown function u(x,y), the Dirichlet condition  u(0,y) = f(y) is entered as

u(0,y) = f(y);

The Neumann condition ∂u/∂x(0,y) = g(y) is entered as 

D[1](u)(0,y) = g(y);

The Neumann condition ∂u/∂y(x,0) = h(x) is entered as 

D[2](u)(x,0) = h(x);

The notations D[1] and D[2] refer to differentiation with respect to the first and second variables of u(x,y).

 

The presence of the cosine term is more of an effect of the geometry than physics, although I dislike putting a hard barrier between the two subjects.

The Pythagorean Theorem says that the square of the hypotenuse is the sum of the squares of the two other sides in a right triangle.  The generalization to an arbitrary triangle is known as the law of cosines.  I trust that you already know that but in the unlikely case, look it up in Wikipedia.

The law of cosines enters your calculations because the two vectors that you have shown are not perpendicular. The pearl's velocity is the sum of those two vectors.  Calculating the sum relies on the law of cosines.

restart;

Typesetting:-Settings(typesetdot):

 

# the horizontal vector labled a*(diff(phi(t), t))in the diagram
< a*diff(phi(t),t), 0 >:

# the slanted vector labeled a*(diff(theta(t), t)) in the diagram
a*diff(theta(t),t) * < -cos(theta(t)), sin(theta(t)) >:

# the sum of the two vectors above, which is the pearl's absolute velocity
v := %% + %;

Vector[column](%id = 18446884233678926542)

The pearl's kinetic energy

simplify(1/2*m*v^+ . v);

(1/2)*m*a^2*((diff(theta(t), t))^2-2*(diff(phi(t), t))*(diff(theta(t), t))*cos(theta(t))+(diff(phi(t), t))^2)

Download mw.mw

This works in Maple 2019.  It may require minor adjustments in older versions.

restart;

A := < 1, 2; 3, 4 >;

Matrix(2, 2, {(1, 1) = 1, (1, 2) = 2, (2, 1) = 3, (2, 2) = 4})

X := < x[1](t), x[2](t) >;

Vector(2, {(1) = x[1](t), (2) = x[2](t)})

sys := diff(X,t) =~ A . X;

Vector(2, {(1) = diff(x[1](t), t) = x[1](t)+2*x[2](t), (2) = diff(x[2](t), t) = 3*x[1](t)+4*x[2](t)})

dsolve(sys);

{x[1](t) = _C1*exp((1/2)*(5+33^(1/2))*t)+_C2*exp(-(1/2)*(-5+33^(1/2))*t), x[2](t) = -(1/4)*_C2*exp(-(1/2)*(-5+33^(1/2))*t)*33^(1/2)+(1/4)*_C1*exp((1/2)*(5+33^(1/2))*t)*33^(1/2)+(3/4)*_C2*exp(-(1/2)*(-5+33^(1/2))*t)+(3/4)*_C1*exp((1/2)*(5+33^(1/2))*t)}


 

Download mw.mw

As tomleslie said, there are many ways of achieving the result.  Here is a straightforwad "bare hands" way which may be more accessible to a beginner.

restart;

Angles of the two vectors with respect to the vertical, in radians:

a1 := convert(30.0*degrees, radians);
a2 := convert(60.0*degrees, radians);

.5235987757

1.047197551

The two vectors:

v1 := 1.0 * < sin(a1), cos(a1) >;
v2 := 1.5 * < sin(a2), cos(a2) >;

Vector(2, {(1) = .5000000001, (2) = .8660254037})

Vector[column](%id = 18446884770620611990)

Their sum:

v := v1 + v2;

Vector(2, {(1) = 1.79903810565, (2) = 1.6160254040000002})

v's length

sqrt(v[1]^2 + v[2]^2);

HFloat(2.418279597555689)

v's angle with respect to the vertical in radians and in degrees

arctan(v[1],v[2]);
convert(%, degrees);

HFloat(0.838936788996444)

HFloat(48.06753728147721)*degrees

 

 

 

Download mw.mw

Probably this is what you want:

for n in (10*2^i $i=0..4) do
    print(n);  # or whatever
end do;

or equivalently

for i from 0 to 4 do
    n := 10*2^i;
    print(n); # or whatever
end do;

or

n := 10; 
while n <= 160 do
    print(n); # or whatever
    n := 2*n;
end do;

Pick whichever you like.

 

 

Here is a possible way.

 

Example 1

 

restart;
ode:=3*diff(y(x),x)^2+diff(y(x),x)^3+sin(x)+y(x)=x*y(x)+x*diff(y(x),x);

3*(diff(y(x), x))^2+(diff(y(x), x))^3+sin(x)+y(x) = x*y(x)+x*(diff(y(x), x))

indets['flat'](ode,{`^`('identical'(diff(y(x),x)),'algebraic'),'identical'(diff(y(x),x))})

{(diff(y(x), x))^2, (diff(y(x), x))^3, diff(y(x), x)}

ode_wanted:= 3*diff(y(x),x)^2+diff(y(x),x)^3-x*diff(y(x),x)=-sin(x)-y(x)+x*y(x)

3*(diff(y(x), x))^2+(diff(y(x), x))^3-x*(diff(y(x), x)) = -sin(x)-y(x)+x*y(x)

selectremove(has, (lhs-rhs)~(ode), diff(y(x),x));
ode_new := %[1] = - %[2];
ode_new - ode_wanted;

3*(diff(y(x), x))^2+(diff(y(x), x))^3-x*(diff(y(x), x)), sin(x)+y(x)-x*y(x)

3*(diff(y(x), x))^2+(diff(y(x), x))^3-x*(diff(y(x), x)) = -sin(x)-y(x)+x*y(x)

0 = 0

 

 

Example 2

 

restart;
ode:=3*diff(y(x),x)^2+diff(y(x),x)=x*diff(y(x),x)+5;

3*(diff(y(x), x))^2+diff(y(x), x) = x*(diff(y(x), x))+5

indets['flat'](ode,{`^`('identical'(diff(y(x),x)),'algebraic'),'identical'(diff(y(x),x))})

{(diff(y(x), x))^2, diff(y(x), x)}

ode_wanted:= 3*diff(y(x),x)^2+diff(y(x),x)-x*diff(y(x),x)=5

3*(diff(y(x), x))^2+diff(y(x), x)-x*(diff(y(x), x)) = 5

selectremove(has, (lhs-rhs)~(ode), diff(y(x),x));
ode_new := %[1] = - %[2];
ode_new - ode_wanted;

3*(diff(y(x), x))^2+diff(y(x), x)-x*(diff(y(x), x)), -5

3*(diff(y(x), x))^2+diff(y(x), x)-x*(diff(y(x), x)) = 5

0 = 0

 


 

Download lhs_rhs-new.mw

 

I have made several changes to your worksheet and I hope that I have not introduced any errors.  Check to be sure.

The optimal diffusion coefficient turns out to be d = 0.14 (approximately).

restart;

t_number:=<0, 10, 20, 30, 40>:
m_number:=<11.50000000, 4.641182547, 1.273311993, 0.361845238, 0.288711649>:

 

Q:=proc(d)
    local pds, i, S, PDE, IBC,
          L := 2, Mx0 := 0.05, cx0 := Mx0/(1-Mx0),
          Mdb_i := m_number[1], ct0 := Mdb_i;

    if not type(d, numeric) then return 'procname(_passed)' end if;

    PDE := diff(C(x,t),t)=d*diff(C(x,t),x,x);
    IBC := {C(x,0)=ct0, C(0,t)=cx0, D[1](C)(L,t)=0};

    pds := pdsolve(PDE,IBC,numeric);
    S := 0;
    for i from 1 to 5 do
        # solution at the desired time

        pds:-value(t=t_number[i], output=listprocedure);
        eval(C(x,t), %);              # extract the C(x,t) at that time
        int(%, 0..2, numeric) / L;    # compute the average of C(x,t) at that time
        S += (% - m_number[i])^2;     # accumulate the residuals
     end do;  
     return sqrt(S);
end proc:

# Try out the proc

Q(0.1), Q(0.2), Q(0.5), Q(1.0);

HFloat(2.0125989798253805), HFloat(1.9268252656215228), HFloat(4.344399869795477), HFloat(4.74473396546933)

plot(Q(d), d=0.1 .. 0.3, numpoints=5, view=0..2);

# We conclude that the best choice of d is approximately 0.14

 


 

Download zz.mw

 

To plot the derivatives, add the output=operator option to your dsolve(), as in
p := dsolve(%, vars, numeric, output = operator);

Do odeplot() as before to plot the solutions.  To plot the derivative of y(t) (also those of x[1](t) and x[2](t)) do
eval(diff(y(t), t), Sys);
eval(%, p);
plot(%, t = 0 .. 1500);

As to the higher order derivatives, y'', y''', etc., these are not quite well-defined because the right-hand sides of your differential equations contain discontinuities, which means that y' is discontinuous.  You don't want to differentiate a discontinuous function, do you?

You can actually see the discontinuity in y' by changing the plot(%, t = 0 .. 1500) in what I have shown to plot(%, t = 500 .. 1500).

As to the plotting of the bar graph, I don't think it's difficult but I don't have the time to go into it right now.  Perhaps someone else will.

 

Of the two solutions returned by dsolve() one corresponds to positive y and the other to negative y.

restart;
de := diff(y(x),x) = abs(y(x)) + 1;
                         d                   
                  de := --- y(x) = |y(x)| + 1
                         dx                  
dsol := dsolve(de);
                       exp(-x)                           
      dsol := y(x) = - ------- + 1, y(x) = exp(x) _C1 - 1
                         _C1                             
odetest(dsol[1], de) assuming y(x)<0;
                               0
odetest(dsol[2], de) assuming y(x)>0;
                               0

Your differential equation has y(x) = 0 as a solution, and that's what
Maple returns by default.  However, for special choices of omega^2 there are
nonzero solutions.  Those special choices of omega^2 are called the problem's
eigenvalues, and their corresponding solutions are called the eigenfunctions.

Here is how we go about finding the eigenvalues and eigenfunctions.

We begin with a couple of self-evident observations.
   

1. 

If a function y(x) is an eigenfunction, then for any nonzero constant c
the function c*y(x) is also an eigenfunction.

2. 

The derivative "y '(0)" of an eigenfunction cannot be zero because the
conditions y(0) = 0 and "y '(0)=0" will imply that `&equiv;`(y(x), 0) which
is not possible since an eigenfunction is a nonzero function by definition.


Putting those two observations together, we may take "y '(0)=1" for
all eigenfunctions without a loss of generality.

This adds an extra boundary condition over and above what you
already have.  That gives us the flexibility of introducing a new
unknown in the system.  We take the new unknown to be the
constantomega and we solve the system for the unknowns {omega, y(x)}.

restart;

The differential equation

de := T*diff(y(x), x, x) + rho*omega^2*y(x) = 0;

T*(diff(diff(y(x), x), x))+rho*omega^2*y(x) = 0

The boundary conditions (note the extra third condition!)

bc := y(0) = 0, y(L) = 0, D(y)(0)=1;

y(0) = 0, y(L) = 0, (D(y))(0) = 1

dsol_tmp := dsolve({de,bc}, {y(x),omega});

{omega = Pi*(2*_Z1+_B1)*T^(1/2)/(rho^(1/2)*L), y(x) = L*sin(Pi*(2*_Z1+_B1)*x/L)/(Pi*(2*_Z1+_B1))}

Here omega and y(x) are expressed in terms of the arbitrary
constants _Z1 and _B1.  Let's see what they are:

about(_Z1);
about(_B1);

Originally _Z1, renamed _Z1~:

  is assumed to be: integer

Originally _B1, renamed _B1~:
  is assumed to be: OrProp(0,1)

OK then.  _Z1 is an integer and _B1 is either zero or one.  It follows
that the combination 2*_Z1+_B1 which enters the solution is an
arbitrary integer.  We call it n

dsol := eval(dsol_tmp, {2*_Z1+_B1=n});

{omega = Pi*n*T^(1/2)/(rho^(1/2)*L), y(x) = L*sin(Pi*n*x/L)/(Pi*n)}

Let's verify that this satisfies the differential equation

eval(de, dsol);

0 = 0


 

Download mw.mw

First 25 26 27 28 29 30 31 Last Page 27 of 58