Hiker96

15 Reputation

One Badge

12 years, 90 days

MaplePrimes Activity


These are replies submitted by Hiker96

@Alejandro Jakubi 

I haven't looked at Mathematica yet. Would it handle this type of problem any better?

@Alejandro Jakubi 

I haven't looked at Mathematica yet. Would it handle this type of problem any better?

@Alejandro Jakubi 

I don't imagine Maple will be adding a "ProductTools" package in time to be useful to me. I don't really have the time necessary to figure out how to do such a package. I guess I should look at Maxima in more detail.

@Alejandro Jakubi 

I don't imagine Maple will be adding a "ProductTools" package in time to be useful to me. I don't really have the time necessary to figure out how to do such a package. I guess I should look at Maxima in more detail.

 

The attached file shows that simply assigning a value to Nop causes simplify to give the correct answer. Is there some algebraic rule that I am missing that requires this. Shouldn't the simplify (7) equal zero like simplify (11)?

restart

constants := constants, N__op, `Ω__stop`, h, c, A

false, gamma, infinity, true, Catalan, FAIL, Pi, N__op, `Ω__stop`, h, c, A

(1)

`ρ__rta` := proc (lambda) options operator, arrow; product(rho[i](lambda), i = 1 .. 4) end proc

proc (lambda) options operator, arrow; product(rho[i](lambda), i = 1 .. 4) end proc

(2)

`ρ__ham` := proc (theta, lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

proc (theta, lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

(3)

`ρ__aft` := proc (lambda) options operator, arrow; product(rho[i](lambda), i = 6 .. N__op) end proc

proc (lambda) options operator, arrow; product(rho[i](lambda), i = 6 .. N__op) end proc

(4)

`ρ__fix` := proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

(5)

`ρ__sys` := proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(rho[i](lambda), i = 1 .. N__op)) end proc

proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(rho[i](lambda), i = 1 .. N__op)) end proc

(6)

simplify(`ρ__fix`(lambda)*RVS(theta, B)-RVS(theta, B)*(product(rho[i](lambda), i = 1 .. N__op)))

RVS(theta, B)*(rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[i](lambda), i = 6 .. N__op))-product(rho[i](lambda), i = 1 .. N__op))

(7)

N__op := 10

10

(8)

simplify(`ρ__fix`(lambda)*RVS(theta, B)-RVS(theta, B)*(product(rho[i](lambda), i = 1 .. N__op)))

0

(9)

``

``



Download RadiometricEquations.mw

The attached file shows that simply assigning a value to Nop causes simplify to give the correct answer. Is there some algebraic rule that I am missing that requires this. Shouldn't the simplify (7) equal zero?

 

Thanks Alejandro, I made the fix, still don't get zero for equations 9 and 10. See reply above your answer in MaplePrimes.  I am still getting use to the interface.

 

         

Thanks Alejandro, I made the fix, still don't get zero for equations 9 and 10. See reply above your answer in MaplePrimes.  I am still getting use to the interface.

 

         

Thank you Alejandro. I've been caught by the index subscript versus name subscript enough times, I hoped I would be doing it right by now.

I did the fix and still don't get expressions 9 and 10 to equal zero as I would expect unless I set Nop to a numeric value. See attached fixed file.



`ρ__rta` := proc (lambda) options operator, arrow; product(rho[l](lambda), l = 1 .. 4) end proc

proc (lambda) options operator, arrow; product(rho[l](lambda), l = 1 .. 4) end proc

(1)

constants := constants, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`

false, gamma, infinity, true, Catalan, FAIL, Pi, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`

(2)

`ρ__ham` := proc (lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

proc (lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

(3)

`ρ__aft` := proc (lambda) options operator, arrow; product(rho[l](lambda), l = 6 .. N__op) end proc

proc (lambda) options operator, arrow; product(rho[l](lambda), l = 6 .. N__op) end proc

(4)

`ρ__fix` := proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

(5)

expand(`ρ__fix`(lambda))

rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))

(6)

`ρ__sys` := proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(rho[l](lambda), l = 1 .. N__op)) end proc

proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(rho[l](lambda), l = 1 .. N__op)) end proc

(7)

simplify(`ρ__sys`(theta, lambda)-(product(rho[l](lambda), l = 1 .. N__op))*RVS(theta, B))

0

(8)

simplify(`ρ__sys`(theta, lambda)-`ρ__fix`(lambda)*RVS(theta, B))

RVS(theta, B)*(-rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))+product(rho[l](lambda), l = 1 .. N__op))

(9)

simplify(product(rho[l](lambda), l = 1 .. N__op)-`ρ__fix`(lambda))

-rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))+product(rho[l](lambda), l = 1 .. N__op)

(10)

``



Download RadiometricEquations.mw

 

Thank you Alejandro. I've been caught by the index subscript versus name subscript enough times, I hoped I would be doing it right by now.

I did the fix and still don't get expressions 9 and 10 to equal zero as I would expect unless I set Nop to a numeric value. See attached fixed file.



`ρ__rta` := proc (lambda) options operator, arrow; product(rho[l](lambda), l = 1 .. 4) end proc

proc (lambda) options operator, arrow; product(rho[l](lambda), l = 1 .. 4) end proc

(1)

constants := constants, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`

false, gamma, infinity, true, Catalan, FAIL, Pi, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`

(2)

`ρ__ham` := proc (lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

proc (lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

(3)

`ρ__aft` := proc (lambda) options operator, arrow; product(rho[l](lambda), l = 6 .. N__op) end proc

proc (lambda) options operator, arrow; product(rho[l](lambda), l = 6 .. N__op) end proc

(4)

`ρ__fix` := proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

(5)

expand(`ρ__fix`(lambda))

rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))

(6)

`ρ__sys` := proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(rho[l](lambda), l = 1 .. N__op)) end proc

proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(rho[l](lambda), l = 1 .. N__op)) end proc

(7)

simplify(`ρ__sys`(theta, lambda)-(product(rho[l](lambda), l = 1 .. N__op))*RVS(theta, B))

0

(8)

simplify(`ρ__sys`(theta, lambda)-`ρ__fix`(lambda)*RVS(theta, B))

RVS(theta, B)*(-rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))+product(rho[l](lambda), l = 1 .. N__op))

(9)

simplify(product(rho[l](lambda), l = 1 .. N__op)-`ρ__fix`(lambda))

-rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))+product(rho[l](lambda), l = 1 .. N__op)

(10)

``



Download RadiometricEquations.mw

 



`ρ__rta` := proc (lambda) options operator, arrow; product(rho[l](lambda), l = 1 .. 4) end proc

proc (lambda) options operator, arrow; product(rho[l](lambda), l = 1 .. 4) end proc

(1)

constants := constants, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`

false, gamma, infinity, true, Catalan, FAIL, Pi, N__op, `Δt`, c, h, A, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`, N__op, `Δt`, `Ω__stop`, `#mi("c",fontstyle = "normal")`, `#mi("h",fontstyle = "normal")`, `#mi("A",fontstyle = "normal")`

(2)

`ρ__ham` := proc (lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

proc (lambda) options operator, arrow; rho[5](lambda)*RVS(theta, B) end proc

(3)

`ρ__aft` := proc (lambda) options operator, arrow; product(rho[l](lambda), l = 6 .. N__op) end proc

proc (lambda) options operator, arrow; product(rho[l](lambda), l = 6 .. N__op) end proc

(4)

`ρ__fix` := proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

proc (lambda) options operator, arrow; `ρ__rta`(lambda)*rho[5](lambda)*`ρ__aft`(lambda) end proc

(5)

expand(`ρ__fix`(lambda))

rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))

(6)

`ρ__sys` := proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(`ρ__l`(lambda), l = 1 .. N__op)) end proc

proc (theta, lambda) options operator, arrow; RVS(theta, B)*(product(`ρ__l`(lambda), l = 1 .. N__op)) end proc

(7)

simplify(`ρ__sys`(theta, lambda)-(product(rho[l](lambda), l = 1 .. N__op))*RVS(theta, B))

RVS(theta, B)*(`ρ__l`(lambda)^N__op-product(rho[l](lambda), l = 1 .. N__op))

(8)

simplify(`ρ__sys`(theta, lambda)-`ρ__fix`(lambda)*RVS(theta, B))

RVS(theta, B)*(-rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))+`ρ__l`(lambda)^N__op)

(9)

simplify(product(rho[l](lambda), l = 1 .. N__op)-`ρ__fix`(lambda))

product(rho[l](lambda), l = 1 .. N__op)-rho[1](lambda)*rho[2](lambda)*rho[3](lambda)*rho[4](lambda)*rho[5](lambda)*(product(rho[l](lambda), l = 6 .. N__op))

(10)

``



Download RadiometricEquations.mw

Same question with corrected Maple file, now it is expressions 8 and 9 that I believe should be 0.

 

Note to Maple, it would be nice if one could recall and edit one's submissions.

 

Page 1 of 1