Mariusz Iwaniuk

1571 Reputation

14 Badges

9 years, 299 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are replies submitted by Mariusz Iwaniuk

@vv 

I thought there would be something simpler and shorter.

Thanks for answer.

I will test it.

 

Thanks.

frac functon replaced by another functions:

    frac(t) = t-floor(t) = 1/2-I*ln(-exp((2*I)*Pi*t))/(2*Pi) = 1/2-arctan(cot(Pi*t))/Pi

plot([frac(t), t-floor(t), 1/2-I*ln(-exp((2*I)*Pi*t))/(2*Pi), 1/2-arctan(cot(Pi*t))/Pi], t = 0 .. 3.2, legend = [typeset("Curve: ", frac(t)), typeset("Curve: ", t-floor(t)), typeset("Curve: ", 1/2-I*ln(-exp((2*I)*Pi*t))/(2*Pi)), typeset("Curve: ", 1/2-arctan(cot(Pi*t))/Pi)])

 

For integrals may this helps:

http://12000.org/my_notes/CAS_integration_tests/index.htm

http://12000.org/my_notes/ten_hard_integrals/index.htm

The DirectSearch package will solve your problems, as Mr. Markiyan Hirnyk suggested.

 

@ernilesh80 

 

 

 

restart

J := `assuming`([simplify(sum(x^(q-p), p = 0 .. q))], [q::posint])

(-1+x^(q+1))/(-1+x)

(1)

x := 0

0

(2)

sum(J, q = 0 .. 10)

11

(3)

``

 

 

Download summation..mw

@kuwait1 

Well, if alpha =3 in function RootOf you have a equation 5 degree:

 

sol := {x = b*RootOf(16*_Z^5*b^4-32*V*_Z^4*b^3+24*V^2*_Z^3*b^2-8*V^3*_Z^2*b+V^4*_Z-3*V^3*W*a)/a, y = RootOf(16*_Z^5*b^4-32*V*_Z^4*b^3+24*V^2*_Z^3*b^2-8*V^3*_Z^2*b+V^4*_Z-3*V^3*W*a)}

 

if alpha =4 in function RootOf you have a equation 6 degree:

 

sol := {x = b*RootOf(32*_Z^6*b^5-80*V*_Z^5*b^4+80*V^2*_Z^4*b^3-40*V^3*_Z^3*b^2+10*V^4*_Z^2*b-V^5*_Z+4*V^4*W*a)/a, y = RootOf(32*_Z^6*b^5-80*V*_Z^5*b^4+80*V^2*_Z^4*b^3-40*V^3*_Z^3*b^2+10*V^4*_Z^2*b-V^5*_Z+4*V^4*W*a)}

These equations can only be solved in some cases symbolicaly,but in our case this is not possible, can be done only numerically.

 

An Example see worksheet:


 

NULL

sol := solve(x^5+x^4-5*x^3 = 1, x)

RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 1), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 2), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 3), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 4), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 5)

(1)

seq(allvalues(sol[n]), n = 1 .. 5)

RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 1), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 2), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 3), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 4), RootOf(_Z^5+_Z^4-5*_Z^3-1, index = 5)

(2)

[evalf(sol)]

[1.826806736, .2649462281+.5213152544*I, -.5755784050, -2.781120787, .2649462281-.5213152544*I]

(3)

NULL

``


 

Download Example.mw

For more see:

https://en.wikipedia.org/wiki/Quintic_function
https://en.wikipedia.org/wiki/Sextic_equation

@Leinegold 

Can you clarify the question?

For backup yours work (worksheet) Use : Tools->Option..->General->Auto save-> x minute

:)

@dellair 

It seems a bug in Maple 2016.2 or earlier version.

Using: evalf(Int(evalf(fe11_1), p = 1 .. 9, method = _Dexp)) I'm speed up caluculation for 500 times.

See file attached.

evalfandintPerformance_ver2.mw

@dellair 

Try add first:

Digits := 16;

Checked with Maple 2016.2 on Windows 8.1.

 

 

Thank you for a extensive reply.

@tomleslie 

Edited 13.02.2017.

I'm corrrcted my answer.

Better way to solve is numerical,but Mape can't handle nonlinear -elliptic PDE.

I'm use a finite difference schemes,and works.

Here you can find the necessary information that can help you: http://mathematica.stackexchange.com/questions/137494/steady-transonic-gas-flow-nonlinear-pde-giving-initial-condition-and-boundary-va

PDE_-finite_case_2.mw

@Zeineb 

Can you add some background information to the equation?  Maybe yours boundary conditions are wrong?

 
ALREADY I understood.Thanks

@Markiyan Hirnyk 

First 24 25 26 27 28 29 30 Page 26 of 30