Markiyan Hirnyk

Markiyan Hirnyk
10 years, 9 days

These are Posts that have been published by Markiyan Hirnyk

Mathematica 10.3.0 was announced yesterday. This is the 6th release of Mathematica 10 during 16 months. I wonder its  MathematicaFunctionData and   FindFormula . At first sight, the former is an analog of FunctionAdvisor of Maple, but the latter isn't any analog. Also compare the outputs of




>`assuming`([residue(binomial(n, k), n = -j)], [integer, j > 0]);

                residue(binomial(n, k), n = -j)
Let us wait for Maple 2016.


On this week I asked Maplesoft Customer Service for help. Here is our correspondence
(Only the purchase code and e-mail addresses are censored. PS. Also the last name of Kari was deleted by Bryon Thur on 28.08.2015.).
I think this is of interest for many Maple users. I have got some experience contacting
with Kaspersky Antivirus (They helped me by the use of indices of my comp.) and ABBYYLingvo
(They helped to install an ABBYYLingvo vocabulary on my phone.) so I can compare and
make conclusions.

Sent: August-15-15 4:44 AM
To: Maplesoft Customer Service
Subject: Customer Service Request: (Web) Installation questions

After upgrading my Windows 7 HB 32-bit to Windows 10 I cannot uninstall my Maple 16 PE.
 It cannot be uninstalled by neither Start/Parameters/System/Applications nor
Uninstall in C/ProgramFiles/Maple 16.
The Uninstall option is not seen in Maple 16 as application.
Also the overinstallation of Maple 16 does not work.
Waiting for your feedback.
Markiyan Hirnyk

Dear Markiyan Hirnyk,

Thank you for contacting Maplesoft.

Maple 16 is not officially supported on Windows 10 but I have added an activation to your
existing Maple 16 Personal Edition purchase code: XXXXXXXXXXXXXXXX to see if reactivating
your license fixes the issue.  If reactivating doesn't give you access to Maple 16, please
send me the exact wording of any error messages that you receive so that I can send
 the information to our Technical Support Team so that they can investigate further.

Kind regards,

Customer Service
Hello Kari,
Unfortunately, neither the  reactivation of my Maple 16 PE by XXXXXXXXXX nor its uninstallation
do not succeed for me. See the error communications in the attached screens (both in one file) screens_1_2.docx.
It should be noticed that Maple V Release 4 works on Windows 10 of my comp without any problems.
Markiyan Hirnyk

Hi Markiyan Hirnyk,

Thanks for your response.
I am forwarding your information to our Technical Support Team.
A representative will contact you soon.
Kind regards, Kari
Maplesoft Customer Service
Hello Markiyan,

This error is usually caused by a Windows permissions setting. To fix this, please do the following:

1. Ensure that all Maple programs are completely closed.
2. Click on your Start Menu and go to the 'Programs' > 'Maple 16' > 'Tools' folder.
3. Right click the 'Activate Maple' icon and choose 'Run as administrator'.
4. Activate Maple using your purchase code and this should fix your issue.

Please let me know if you continue to experience any troubles.


Technical Support Analyst
Hello Chris,
Following your directions, I have just reactivated Maple 16, but my problem is not solved.
To shed light on the situation, my Maple 16.02 works properly,
but I cannot uninstall it after upgrading to Windows 10 Home 32bit.
See the screens in the attached file screen.docx .
Markiyan Hirnyk
Hello Markiyan,
If you are seeing error messages about Maple still being open,
 I would suggest you try to restart your PC and then attempt the uninstall again to ensure
that you do not have any lingering Maple programs running. Please let me know
if you still see this message after restarting.


Technical Support Analyst
Hello Chris,
This does not help too. My guess is execution failure when Maple 16 was installing.
Because of that reason the Maple 16 installer did not create Maple uninstaller in my Maple 16.
 See the attached screen of the uninstall folder in C:/ Program Files/ screen_3.docx.
Markiyan Hirnyk
If you think that you have a corrupted installation, I recommend that you reinstall Maple
using the new Maple 16.02 installer link provided below.
 This version of the installer was created to get around the Windows 8 installation issues and
 may be of help to you in Windows 10 as well, though again please be aware that
 we do not officially support Windows 10 yet.
Here are the steps to reinstall Maple:
1. Click on the Start Menu > Control Panel > Programs and Features ( or Add/Remove Programs).
 Find ‘Maple 16’ in the list and uninstall it. If this is not possible, move on to the next step and continue.
2. Restart your computer.
3. Click on the Start Menu > Computer > Local Disk C: > Program Files.
If there is a folder here called ‘Maple 16’, please delete it.
4. Download the installer for Maple 16 from the following link:
5. Make sure to download the correct version for your operating system, i.e. Windows version and 32 or 64-bit.
6. Install Maple by right clicking the installation file and choosing ‘Run as administrator’.
I hope that this helps to resolve the issues that you’re having and if it does not,
contact us and we can further investigate for you.

Technical Support Analyst
 Hi Chris,
My problem with Maple 16 is solved. I completely uninstalled it by Uninstall Tool 3.4, not using brute force. After that I installed Maple 16 by the distributive suggested by you. That's all right.
Markiyan Hirnyk
Alright, that is good to hear. Please let us know if you run into any further issues with your installation.
Technical Support Analyst

I would like to pay attention to an article " Sums and Integrals: The Swiss analysis knife " by Bill Casselman, where the Euler-Maclaurin formula is discussed.  It should be noted all that matter is implemented in Maple through the commands bernoulli and eulermac. For example,


eulermac(1/x, x);


eulermac(sin(x), x, 6);

BTW, as far as I know it, this boring stuff is substantially used in modern physics. The one is considered in

Ronald Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, Addison-Wesley, 1989.

The last chapter is concerned with the Euler-MacLaurin formula.



     Maple is seriously used in my article Approximation of subharmonic functions in the half-plane by the logarithm of the modulus of an analytic function. Math. Notes 78, No 4, 447-455 in two places. The purpose of this post is to present these applications.                                                                                                 First, I needed to prove the elementary inequality (related to the properties of the minimal harmonic majorant of the function 1/Im z in a certain strip)                                                                                                    2R+sqrt(R)-R(R+sqrt(R))y - 1/y   1/4                                                                                                  for    y ≥ 1/(R+sqrt(R)) and  y ≤ 1/R, the parameter R is greater than or equal to 1.   The artless attemt                                                                          
restart; `assuming`([maximize(2*R+sqrt(R)-R*(R+sqrt(R))*y-1/y, y = 1/(R+sqrt(R)) .. 1/R)], [R >= 1])

maximize(2*R+R^(1/2)-R*(R+R^(1/2))*y-1/y, y = 1/(R+R^(1/2)) .. 1/R)


fails. The second (and successful) try consists in the use of optimizers:

F := proc (R) options operator, arrow; evalf(maximize(2*R+sqrt(R)-R*(R+sqrt(R))*y-1/y, y = 1/(R+sqrt(R)) .. 1/R)) end proc:





Optimization:-Minimize('F(R)', {R >= 1})

[.171572875253809986, [R = HFloat(1.0)]]


To be sure ,
DirectSearch:-Search(proc (R) options operator, arrow; F(R) end proc, {R >= 1})

[.171572875745665, Vector(1, {(1) = 1.0000000195752754}, datatype = float[8]), 11]


Because 0.17
"158 < 0.25, the inequality is  proved.   "
Now we establish this  by the use of the derivative. 

solve(diff(2*R+sqrt(R)-R*(R+sqrt(R))*y-1/y, y) = 0, y, explicit)

1/(R^(3/2)+R^2)^(1/2), -1/(R^(3/2)+R^2)^(1/2)


maximize(1/sqrt(R^(3/2)+R^2)-1/(R+sqrt(R)), R = 1 .. infinity, location)

(1/2)*2^(1/2)-1/2, {[{R = 1}, (1/2)*2^(1/2)-1/2]}


minimize(eval(2*R+sqrt(R)-R*(R+sqrt(R))*y-1/y, y = 1/sqrt(R^(3/2)+R^2)), R = 1 .. infinity, location)

3-2*2^(1/2), {[{R = 1}, 3-2*2^(1/2)]}





The second use of Maple was the calculation of the asymptotics of the following integral (This is the double integral of the Laplacian of 1/Im z over the domain {z: |z-iR/2| < R/2} \ {z: |z| ≤ 1}.). That place is the key point of the proof. Its direct calculation in the polar coordinates fails.

`assuming`([(int(int(2/(r^2*sin(phi)^3), r = 1 .. R*sin(phi)), phi = arcsin(1/R) .. Pi-arcsin(1/R)))/(2*Pi)], [R >= 1])

(1/2)*(int(int(2/(r^2*sin(phi)^3), r = 1 .. R*sin(phi)), phi = arcsin(1/R) .. Pi-arcsin(1/R)))/Pi


In order to overcome the difficulty, we find the inner integral

`assuming`([(int(2/(r^2*sin(phi)^3), r = 1 .. R*sin(phi)))/(2*Pi)], [R*sin(phi) >= 1])



and then we find the outer integral. Because
`assuming`([int((R*sin(phi)-1)/(sin(phi)^4*R*Pi), phi = arcsin(1/R) .. Pi-arcsin(1/R))], [R >= 1])

int((R*sin(phi)-1)/(sin(phi)^4*R*Pi), phi = arcsin(1/R) .. Pi-arcsin(1/R))


is not successful, we find the indefinite integral  

J := int((R*sin(phi)-1)/(sin(phi)^4*R*Pi), phi)



We verify that  the domain of the antiderivative includes the range of the integration.
plot(-cos(phi)/sin(phi)^2+ln(csc(phi)-cot(phi)), phi = 0 .. Pi)


plot((2/3)*cos(phi)/sin(phi)^3+(4/3)*cos(phi)/sin(phi), phi = 0 .. Pi)


    That's all right. By the Newton-Leibnitz formula,

eval(J, phi = Pi-arcsin(1/R))-(eval(J, phi = arcsin(1/R)));



Finally, the*asymptotics*is found by

asympt(eval(J, phi = Pi-arcsin(1/R))-(eval(J, phi = arcsin(1/R))), R, 3)



      It should be noted that a somewhat different expression is written in the article. My inaccuracy, as far as I remember it, consisted in the integration over the whole disk {z: |z-iR/2| < R/2} instead of {z: |z-iR/2| < R/2} \ {z: |z| ≤ 1}. Because only the form of the asymptotics const*R^2 + remainder is used in the article, the exact value of this non-zero constant is of no importance.

       It would be nice if somebody else presents similar examples here or elsewhere.



1 2 3 4 5 6 7 Last Page 1 of 10