Markiyan Hirnyk

Markiyan Hirnyk
10 years, 190 days


These are Posts that have been published by Markiyan Hirnyk

 

How to prove the inequality 12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d) <= (a+b+c+d)*(a*b+a*c+a*d+b*c+b*d+c*d) , assuming that the  variables are nonnegative? That hard question  was asked by arqady in dxdy and answered  by himself  in a complicated way. Maple proves the inequality by the LagrangeMultipliers command which is strong. I think these calculations cannot be done by hand at all. Without loss of generality one may assume a+b+c+d = 1. Then

 restart:with(Student[MultivariateCalculus]):

ans := [LagrangeMultipliers((a+b+c+d)*(a*b+a*c+a*d+b*c+b*d+c*d)-12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d), [a+b+c+d-1], [a, b, c, d], output = detailed)]:

We have to remove complex solutions by
ans1:=remove(c -> has(evalf(c), I),ans):

The next big output is  only partly seen in the post (look in the attached file for the whole one).

ans2:=simplify(ans1,radical);

[[a = 1/6, b = 1/2, c = 1/6, d = 1/6, lambda[1] = 0, -12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d)+(b+c+d)*a^2+(b^2+(3*c+3*d)*b+c^2+3*c*d+d^2)*a+(d+c)*b^2+(c^2+3*c*d+d^2)*b+c^2*d+c*d^2 = 0],[a = 1/4, b = 1/4, c = 1/4, d = 1/4, lambda[1] = 0, -12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d)+(b+c+d)*a^2+(b^2+(3*c+3*d)*b+c^2+3*c*d+d^2)*a+(d+c)*b^2+(c^2+3*c*d+d^2)*b+c^2*d+c*d^2 = 0],[a = 13/72-(1/216)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(1/216)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), b = 11/24+(1/72)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-(1/72)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), c = 13/72-(1/216)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(1/216)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), d = 13/72-(1/216)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(1/216)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), lambda[1] = -(5/36)*(sqrt(2)*(sqrt(3)*(sqrt(13397)-(71/27)*(11548+108*sqrt(13397))^(1/3)-(103/540)*(11548+108*sqrt(13397))^(2/3)+2887/27)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-15*sqrt(13397)+(355/9)*(11548+108*sqrt(13397))^(1/3)+(109/36)*(11548+108*sqrt(13397))^(2/3)-14435/9)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-(133/15)*(11548+108*sqrt(13397))^(2/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(2*((sqrt(13397)+2374/45)*(11548+108*sqrt(13397))^(1/3)+(103/5)*sqrt(13397)+(449/90)*(11548+108*sqrt(13397))^(2/3)+132727/45))*sqrt(3))/((11548+108*sqrt(13397))^(2/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), -12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d)+(b+c+d)*a^2+(b^2+(3*c+3*d)*b+c^2+3*c*d+d^2)*a+(d+c)*b^2+(c^2+3*c*d+d^2)*b+c^2*d+c*d^2 = -(13/46656)*(((2/13)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+sqrt(2)*(sqrt(3)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-(11/13)*(11548+108*sqrt(13397))^(1/3)-(2/13)*(11548+108*sqrt(13397))^(2/3)+568/13))*sqrt(5)*sqrt((sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-33)*(sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+39)*(sqrt(2)*(sqrt(3)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(11/5)*(11548+108*sqrt(13397))^(1/3)+(2/5)*(11548+108*sqrt(13397))^(2/3)-568/5)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-(216/5)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-(328/5*((11548+108*sqrt(13397))^(1/3)+(5/164)*(11548+108*sqrt(13397))^(2/3)-355/41))*sqrt(3))/((11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))))-(180/13)*sqrt(2)*(sqrt(3)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(11/5)*(11548+108*sqrt(13397))^(1/3)+(2/5)*(11548+108*sqrt(13397))^(2/3)-568/5)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-(15552/13)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(11808/13*((11548+108*sqrt(13397))^(1/3)+(5/164)*(11548+108*sqrt(13397))^(2/3)-355/41))*sqrt(3))/((11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))]

(1)

evalf(ans2);

[[a = .1666666667, b = .5000000000, c = .1666666667, d = .1666666667, lambda[1] = 0., -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.], [a = .2500000000, b = .2500000000, c = .2500000000, d = .2500000000, lambda[1] = 0., -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.], [a = .1666666667, b = .1666666667, c = .5000000000, d = .1666666667, lambda[1] = 0., -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.], [a = .1666666667, b = .1666666667, c = .1666666667, d = .5000000000, lambda[1] = 0., -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.], [a = .5000000000, b = .1666666667, c = .1666666667, d = .1666666667, lambda[1] = 0., -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.], [a = .2118620934, b = .3644137199, c = .2118620934, d = .2118620934, lambda[1] = 0.2834790478e-2, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.9449303017e-3], [a = 0.3692850681e-1, b = .8892144797, c = 0.3692850681e-1, d = 0.3692850681e-1, lambda[1] = 0.9303874297e-1, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.3101291407e-1], [a = .8892144797, b = 0.3692850681e-1, c = 0.3692850681e-1, d = 0.3692850681e-1, lambda[1] = 0.9303874297e-1, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.3101291407e-1], [a = .3644137199, b = .2118620934, c = .2118620934, d = .2118620934, lambda[1] = 0.2834790478e-2, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.9449303017e-3], [a = 0.3692850681e-1, b = 0.3692850681e-1, c = 0.3692850681e-1, d = .8892144797, lambda[1] = 0.9303874297e-1, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.3101291407e-1], [a = .2118620934, b = .2118620934, c = .2118620934, d = .3644137199, lambda[1] = 0.2834790478e-2, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.9449303017e-3], [a = 0.3692850681e-1, b = 0.3692850681e-1, c = .8892144797, d = 0.3692850681e-1, lambda[1] = 0.9303874297e-1, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.3101291407e-1], [a = .2118620934, b = .2118620934, c = .3644137199, d = .2118620934, lambda[1] = 0.2834790478e-2, -12.*((a^2+b^2+c^2+d^2)*a*b*c*d)^(1/2)+(b+c+d)*a^2+(b^2+(3.*c+3.*d)*b+c^2+3.*c*d+d^2)*a+(d+c)*b^2+(c^2+3.*c*d+d^2)*b+c^2*d+c*d^2 = 0.9449303017e-3]]

(2)

Indeed, the minimum value of the target function is exactly 0. Quod erat demonstrantum.

NULL

 inequality.mw

 

 

How to prove the inequality x^(4*y)+y^(4*x) <= 2 provided x^2+y^2 = 2, 0 <= x, 0 <= y? That problem was posed  by Israeli mathematician nicked by himself as arqady in Russian math forum and was not answered there.I know how to prove that with Maple and don't know how to prove that without Maple. Neither LagrangeMultipliers nor extrema work here. The difficulty consists in the nonlinearity both the target function and the main constraint. The first step is to linearize the main constraint and the second step is to reduce the number of variables to one.

restart; A := eval(x^(4*y)+y^(4*x), [x = sqrt(u), y = sqrt(v)]);

(u^(1/2))^(4*v^(1/2))+(v^(1/2))^(4*u^(1/2))

(1)

 

B := expand(A);

u^(2*v^(1/2))+v^(2*u^(1/2))

(2)

C := eval(B, u = 2-v);

(2-v)^(2*v^(1/2))+v^(2*(2-v)^(1/2))

(3)

It is more or less clear that the plot of F is symmetric wrt  the straight line v=1. This motivates the following change of variable  to obtain an even function.

F := simplify(expand(eval(C, v = z+1)), symbolic, power);

(1-z)^(2*(z+1)^(1/2))+(z+1)^(2*(1-z)^(1/2))

(4)

NULL

The plots suggest the only maximim of F at z=0 and its concavity.

Student[Calculus1]:-FunctionPlot(F, z = -1 .. 1);

 

Student[Calculus1]:-FunctionPlot(diff(F, z, z), z = -1 .. 1);

 

As usually, numeric global solvers cannot prove certain inequalities. However, the GlobalSearch command of the DirectSearch package indicates the only local maximum of  F and F''.NULL

Digits := 25; DirectSearch:-GlobalSearch(F, {z = -1 .. 1}, maximize, solutions = 3, tolerances = 10^(-15)); DirectSearch:-GlobalSearch(diff(F, z, z), {z = -1 .. 1}, maximize, solutions = 3, tolerances = 10^(-15));

Array([[0.8e-23, [z = -0.1980181305884928531875965e-12], 36]])

(5)

The series command confirms a local maximum of F at z=0.

series(F, z, 6);

series(2-(2/3)*z^4+O(z^6),z,6)

(6)

The extrema command indicates only the value of F at a critical point, not outputting its position.

extrema(F, z); extrema(F, z, 's');

{2}

(7)

solve(F = 2);

RootOf((1-_Z)^(2*(_Z+1)^(1/2))+(_Z+1)^(2*(1-_Z)^(1/2))-2)

(8)

DirectSearch:-SolveEquations(F = 2, {z = -1 .. 1}, AllSolutions, solutions = 3);

Matrix(1, 4, {(1, 1) = 0., (1, 2) = Vector(1, {(1) = 0.}), (1, 3) = [z = -0.5463886313e-6], (1, 4) = 27})

(9)

DirectSearch:-SolveEquations(F = 2, {z = -1 .. 1}, AllSolutions, solutions = 3, assume = integer);

Matrix(1, 4, {(1, 1) = 0., (1, 2) = Vector(1, {(1) = 0.}), (1, 3) = [z = 0], (1, 4) = 30})

(10)

NULL

 PS. I see my proof needs an additional explanation. The DirectSearch command establishes the only both local and global  maximum of F is located at z= -1.98*10^(-13) up to default error 10^(-9). After that  the series command confirms a local maximum at z=0. Combining these, one draws the conclusion that the global maximum is placed exactly at z=0 and equals 2. In order to confirm that the only real root of F=2 at z=0  is found approximately and exactly by the DirectSearch.

Download maxi.mw

I'd like to pay attention to an article J, B. van den Berg and J.-P. Lessard, Notices of the AMS, October 2015, p. 1057-1063.  We know numerous  applications of CASes to algebra. The authors present such  applications to dynamics. It would be interesting and useful to obtain  opinions of Maple experts on this topic.

Here is its introduction:

"Nonlinear dynamics shape the world around us, from the harmonious movements of celestial bod-
ies,  via  the  swirling  motions  in  fluid  flows,  to the  complicated  biochemistry  in  the  living  cell.
Mathematically  these  beautiful  phenomena  are modeled by nonlinear dynamical systems, mainly
in  the  form  of  ordinary  differential  equations (ODEs), partial differential equations (PDEs) and
delay differential equations (DDEs). The presence of nonlinearities severely complicates the mathe-
matical analysis of these dynamical systems, and the difficulties are even greater for PDEs and DDEs,
which are naturally defined on infinite-dimensional function spaces. With the availability of powerful
computers and sophisticated software, numerical simulations have quickly become the primary tool
to study the models. However, while the pace of progress increases, one may ask: just how reliable
are our computations? Even for finite-dimensional ODEs, this question naturally arises if the system
under  study  is  chaotic,  as  small  differences  in initial conditions (such as those due to rounding
errors  in  numerical  computations)  yield  wildly diverging outcomes. These issues have motivated
the development of the field of rigorous numerics in dynamics"

Mathematica 10.3.0 was announced yesterday. This is the 6th release of Mathematica 10 during 16 months. I wonder its  MathematicaFunctionData and   FindFormula . At first sight, the former is an analog of FunctionAdvisor of Maple, but the latter isn't any analog. Also compare the outputs of

Residue[Binomial[n,k],{n,-j}]

(-1)^j/(j!*k!*(-j-k)!)

 and

>`assuming`([residue(binomial(n, k), n = -j)], [integer, j > 0]);

                residue(binomial(n, k), n = -j)
Let us wait for Maple 2016.

 

On this week I asked Maplesoft Customer Service for help. Here is our correspondence
(Only the purchase code and e-mail addresses are censored. PS. Also the last name of Kari was deleted by Bryon Thur on 28.08.2015.).
I think this is of interest for many Maple users. I have got some experience contacting
with Kaspersky Antivirus (They helped me by the use of indices of my comp.) and ABBYYLingvo
(They helped to install an ABBYYLingvo vocabulary on my phone.) so I can compare and
make conclusions.


From:
Sent: August-15-15 4:44 AM
To: Maplesoft Customer Service
Subject: Customer Service Request: (Web) Installation questions

Hello,
After upgrading my Windows 7 HB 32-bit to Windows 10 I cannot uninstall my Maple 16 PE.
 It cannot be uninstalled by neither Start/Parameters/System/Applications nor
Uninstall in C/ProgramFiles/Maple 16.
The Uninstall option is not seen in Maple 16 as application.
Also the overinstallation of Maple 16 does not work.
Waiting for your feedback.
Sincerely,
Markiyan Hirnyk
------------------------------------------------------------------------------------------------------

Dear Markiyan Hirnyk,

Thank you for contacting Maplesoft.

Maple 16 is not officially supported on Windows 10 but I have added an activation to your
existing Maple 16 Personal Edition purchase code: XXXXXXXXXXXXXXXX to see if reactivating
your license fixes the issue.  If reactivating doesn't give you access to Maple 16, please
send me the exact wording of any error messages that you receive so that I can send
 the information to our Technical Support Team so that they can investigate further.

Kind regards,

Kari
Maplesoft
Customer Service
-----------------------------------------------------------------------------------------------------------
Hello Kari,
Unfortunately, neither the  reactivation of my Maple 16 PE by XXXXXXXXXX nor its uninstallation
do not succeed for me. See the error communications in the attached screens (both in one file) screens_1_2.docx.
It should be noticed that Maple V Release 4 works on Windows 10 of my comp without any problems.
Regards,
Markiyan Hirnyk

--------------------------------------------------------------------------------------------------------
Hi Markiyan Hirnyk,

Thanks for your response.
I am forwarding your information to our Technical Support Team.
A representative will contact you soon.
Kind regards, Kari
Maplesoft Customer Service
------------------------------------------------------------------------------------------------------------
Hello Markiyan,

This error is usually caused by a Windows permissions setting. To fix this, please do the following:

1. Ensure that all Maple programs are completely closed.
2. Click on your Start Menu and go to the 'Programs' > 'Maple 16' > 'Tools' folder.
3. Right click the 'Activate Maple' icon and choose 'Run as administrator'.
4. Activate Maple using your purchase code and this should fix your issue.

Please let me know if you continue to experience any troubles.

Regards,

Chris
Technical Support Analyst
--------------------------------------------------------------------------------------------------------
Hello Chris,
Following your directions, I have just reactivated Maple 16, but my problem is not solved.
To shed light on the situation, my Maple 16.02 works properly,
but I cannot uninstall it after upgrading to Windows 10 Home 32bit.
See the screens in the attached file screen.docx .
Regards,
Markiyan Hirnyk
----------------------------------------------------------------------------------------
Hello Markiyan,
If you are seeing error messages about Maple still being open,
 I would suggest you try to restart your PC and then attempt the uninstall again to ensure
that you do not have any lingering Maple programs running. Please let me know
if you still see this message after restarting.

Regards,

Chris
Technical Support Analyst
------------------------------------------------------------------------------------------------------
Hello Chris,
This does not help too. My guess is execution failure when Maple 16 was installing.
Because of that reason the Maple 16 installer did not create Maple uninstaller in my Maple 16.
 See the attached screen of the uninstall folder in C:/ Program Files/ screen_3.docx.
Regards,
Markiyan Hirnyk
--------------------------------------------------------------------------------------------------------
Hello,
If you think that you have a corrupted installation, I recommend that you reinstall Maple
using the new Maple 16.02 installer link provided below.
 This version of the installer was created to get around the Windows 8 installation issues and
 may be of help to you in Windows 10 as well, though again please be aware that
 we do not officially support Windows 10 yet.
Here are the steps to reinstall Maple:
1. Click on the Start Menu > Control Panel > Programs and Features ( or Add/Remove Programs).
 Find ‘Maple 16’ in the list and uninstall it. If this is not possible, move on to the next step and continue.
2. Restart your computer.
3. Click on the Start Menu > Computer > Local Disk C: > Program Files.
If there is a folder here called ‘Maple 16’, please delete it.
4. Download the installer for Maple 16 from the following link:
        http://www.maplesoft.com/downloads/?d=C75DEBEC838C08BB1DCCED0440B49503&pr=Maple16
5. Make sure to download the correct version for your operating system, i.e. Windows version and 32 or 64-bit.
6. Install Maple by right clicking the installation file and choosing ‘Run as administrator’.
I hope that this helps to resolve the issues that you’re having and if it does not,
contact us and we can further investigate for you.

Regards,
Chris
Technical Support Analyst
--------------------------------------------------------------------------------------------------------
 Hi Chris,
My problem with Maple 16 is solved. I completely uninstalled it by Uninstall Tool 3.4, not using brute force. After that I installed Maple 16 by the distributive suggested by you. That's all right.
Regards,
Markiyan Hirnyk
---------------------------------------------------------------------------------------------------------
Alright, that is good to hear. Please let us know if you run into any further issues with your installation.
Regards,
Chris
Technical Support Analyst

1 2 3 4 5 6 7 Last Page 1 of 11