dharr

Dr. David Harrington

8220 Reputation

22 Badges

20 years, 339 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

You can use PolynomialTools:-Hurwitz to find the conditions for stable roots, i.e for roots with negative real parts.

restart

a1 := 1; g[2] := -S0*eta[2]+b+r; a[1] := c+epsilon+g[2]; a[2] := epsilon*g[2]+c*(epsilon+g[2])-S0*b*eta[3]; a[3] := -S0*Pi*b*eta[1]+c*(-S0*b*eta[3]+epsilon*g[2])

1

eq := lambda^3+lambda^2*a[1]+lambda*a[2]+a[3]

lambda^3+lambda^2*(-S0*eta[2]+b+c+epsilon+r)+lambda*(epsilon*(-S0*eta[2]+b+r)+c*(-S0*eta[2]+b+epsilon+r)-S0*b*eta[3])-S0*Pi*b*eta[1]+c*(-S0*b*eta[3]+epsilon*(-S0*eta[2]+b+r))

PolynomialTools:-Hurwitz(eq, lambda, 's', 'g')

FAIL

s

[-lambda/(S0*eta[2]-b-c-epsilon-r), (S0*eta[2]-b-c-epsilon-r)^2*lambda/(S0^2*b*eta[2]*eta[3]+S0^2*c*eta[2]^2+S0^2*epsilon*eta[2]^2+Pi*S0*b*eta[1]-S0*b^2*eta[3]-2*S0*b*c*eta[2]-2*S0*b*epsilon*eta[2]-S0*b*epsilon*eta[3]-S0*b*r*eta[3]-S0*c^2*eta[2]-2*S0*c*epsilon*eta[2]-2*S0*c*r*eta[2]-S0*epsilon^2*eta[2]-2*S0*epsilon*r*eta[2]+b^2*c+b^2*epsilon+b*c^2+2*b*c*epsilon+2*b*c*r+b*epsilon^2+2*b*epsilon*r+c^2*epsilon+c^2*r+c*epsilon^2+2*c*epsilon*r+c*r^2+epsilon^2*r+epsilon*r^2), (S0^2*b*eta[2]*eta[3]+S0^2*c*eta[2]^2+S0^2*epsilon*eta[2]^2+Pi*S0*b*eta[1]-S0*b^2*eta[3]-2*S0*b*c*eta[2]-2*S0*b*epsilon*eta[2]-S0*b*epsilon*eta[3]-S0*b*r*eta[3]-S0*c^2*eta[2]-2*S0*c*epsilon*eta[2]-2*S0*c*r*eta[2]-S0*epsilon^2*eta[2]-2*S0*epsilon*r*eta[2]+b^2*c+b^2*epsilon+b*c^2+2*b*c*epsilon+2*b*c*r+b*epsilon^2+2*b*epsilon*r+c^2*epsilon+c^2*r+c*epsilon^2+2*c*epsilon*r+c*r^2+epsilon^2*r+epsilon*r^2)*lambda/((S0*eta[2]-b-c-epsilon-r)*(Pi*S0*b*eta[1]+S0*b*c*eta[3]+S0*c*epsilon*eta[2]-b*c*epsilon-c*epsilon*r))]

These must be positive:

conds := map(coeff, s, lambda)

[-1/(S0*eta[2]-b-c-epsilon-r), (S0*eta[2]-b-c-epsilon-r)^2/(S0^2*b*eta[2]*eta[3]+S0^2*c*eta[2]^2+S0^2*epsilon*eta[2]^2+Pi*S0*b*eta[1]-S0*b^2*eta[3]-2*S0*b*c*eta[2]-2*S0*b*epsilon*eta[2]-S0*b*epsilon*eta[3]-S0*b*r*eta[3]-S0*c^2*eta[2]-2*S0*c*epsilon*eta[2]-2*S0*c*r*eta[2]-S0*epsilon^2*eta[2]-2*S0*epsilon*r*eta[2]+b^2*c+b^2*epsilon+b*c^2+2*b*c*epsilon+2*b*c*r+b*epsilon^2+2*b*epsilon*r+c^2*epsilon+c^2*r+c*epsilon^2+2*c*epsilon*r+c*r^2+epsilon^2*r+epsilon*r^2), (S0^2*b*eta[2]*eta[3]+S0^2*c*eta[2]^2+S0^2*epsilon*eta[2]^2+Pi*S0*b*eta[1]-S0*b^2*eta[3]-2*S0*b*c*eta[2]-2*S0*b*epsilon*eta[2]-S0*b*epsilon*eta[3]-S0*b*r*eta[3]-S0*c^2*eta[2]-2*S0*c*epsilon*eta[2]-2*S0*c*r*eta[2]-S0*epsilon^2*eta[2]-2*S0*epsilon*r*eta[2]+b^2*c+b^2*epsilon+b*c^2+2*b*c*epsilon+2*b*c*r+b*epsilon^2+2*b*epsilon*r+c^2*epsilon+c^2*r+c*epsilon^2+2*c*epsilon*r+c*r^2+epsilon^2*r+epsilon*r^2)/((S0*eta[2]-b-c-epsilon-r)*(Pi*S0*b*eta[1]+S0*b*c*eta[3]+S0*c*epsilon*eta[2]-b*c*epsilon-c*epsilon*r))]

And these must have real parts equal to zero, which they do.

map(coeff, s, lambda, 0)

[0, 0, 0]

We can analyse the conditions a little further. All of the following need to be positive

c1 := 1/conds[1]; c2 := factor(normal(c1^2/conds[2])); c3 := factor(simplify(c2/(c1*conds[3])))

-S0*eta[2]+b+c+epsilon+r

S0^2*b*eta[2]*eta[3]+S0^2*c*eta[2]^2+S0^2*epsilon*eta[2]^2+Pi*S0*b*eta[1]-S0*b^2*eta[3]-2*S0*b*c*eta[2]-2*S0*b*epsilon*eta[2]-S0*b*epsilon*eta[3]-S0*b*r*eta[3]-S0*c^2*eta[2]-2*S0*c*epsilon*eta[2]-2*S0*c*r*eta[2]-S0*epsilon^2*eta[2]-2*S0*epsilon*r*eta[2]+b^2*c+b^2*epsilon+b*c^2+2*b*c*epsilon+2*b*c*r+b*epsilon^2+2*b*epsilon*r+c^2*epsilon+c^2*r+c*epsilon^2+2*c*epsilon*r+c*r^2+epsilon^2*r+epsilon*r^2

-Pi*S0*b*eta[1]-S0*b*c*eta[3]-S0*c*epsilon*eta[2]+b*c*epsilon+c*epsilon*r

NULL

NULL

Download Hurwitz.mw

I also would like an easy way to do this. I think evala(Reduce()) and evala(Normal()) want to have the the answer in the same algebraic field extension so don't do this. It can be done somewhat awkwardly through Minpoly; perhaps you had another objection to this. 

restart

q := -4*RootOf(_Z^3-3*_Z^2-10*_Z-1)^2*(1/5)+19*RootOf(_Z^3-3*_Z^2-10*_Z-1)*(1/5)+3/5; simplify(fnormal(evalf([allvalues(q)])))

-(4/5)*RootOf(_Z^3-3*_Z^2-10*_Z-1)^2+(19/5)*RootOf(_Z^3-3*_Z^2-10*_Z-1)+3/5

[-.519484859, .198874518, -9.679389674]

RootOf(evala(Minpoly(q, x))); simplify(fnormal(evalf([allvalues(%)])))

RootOf(_Z^3+10*_Z^2+3*_Z-1)

[.198874521, -.519484847, -9.679389673]

q2:=-45658*RootOf(37*_Z^6 - 382*_Z^5 + 1388*_Z^4 - 2188*_Z^3 + 1475*_Z^2 - 406*_Z + 37, index = 6)^5 + 417257*RootOf(37*_Z^6 - 382*_Z^5 + 1388*_Z^4 - 2188*_Z^3 + 1475*_Z^2 - 406*_Z + 37, index = 6)^4 - 1252087*RootOf(37*_Z^6 - 382*_Z^5 + 1388*_Z^4 - 2188*_Z^3 + 1475*_Z^2 - 406*_Z + 37, index = 6)^3 + 1463384*RootOf(37*_Z^6 - 382*_Z^5 + 1388*_Z^4 - 2188*_Z^3 + 1475*_Z^2 - 406*_Z + 37, index = 6)^2 - 558475*RootOf(37*_Z^6 - 382*_Z^5 + 1388*_Z^4 - 2188*_Z^3 + 1475*_Z^2 - 406*_Z + 37, index = 6) + 69230;

-45658*RootOf(37*_Z^6-382*_Z^5+1388*_Z^4-2188*_Z^3+1475*_Z^2-406*_Z+37, index = 6)^5+417257*RootOf(37*_Z^6-382*_Z^5+1388*_Z^4-2188*_Z^3+1475*_Z^2-406*_Z+37, index = 6)^4-1252087*RootOf(37*_Z^6-382*_Z^5+1388*_Z^4-2188*_Z^3+1475*_Z^2-406*_Z+37, index = 6)^3+1463384*RootOf(37*_Z^6-382*_Z^5+1388*_Z^4-2188*_Z^3+1475*_Z^2-406*_Z+37, index = 6)^2-558475*RootOf(37*_Z^6-382*_Z^5+1388*_Z^4-2188*_Z^3+1475*_Z^2-406*_Z+37, index = 6)+69230

num := evalf(q2)

26532.730

convert(RootOf(evala(Minpoly(q2, x)), num), RootOf, form = index)

RootOf(37*_Z^6-7304346*_Z^5+477422219475*_Z^4-12741284944716948*_Z^3+145415493111187762668*_Z^2-720012242195396824623282*_Z+1254681647187128843079859317, index = 4)

NULL

Download RootOf.mw


Download Matrix.mw

See here for simplifying the entry (and also the coversion to the matrix).

The index=real[4] in the RootOf looks wrong. [Edit: I submitted an SCR].

restart

expr := 36*a^3*b^3+8*a^2*b^2*(9*(a+b+1)^2+4*(a*b+a+b))*(a+b+1)+((a-b)^2-2*(a+b)+1)^2*(a+b+1)^5+a*b*((a-b)^2-2*(a+b)+1)*(17*(a+b+1)^2+4*(a*b+a+b))*(a+b+1)^2:

You can use the explicit option so you don't get the RootOf, but then you get only four solutions.

sol1 := solve({expr, a >= 0, b >= 0}, {a, b}, allsolutions, explicit)

{a = 1, b = 0}, {a = 0, b = 1}, {a = 3^(1/2)-1, b = 1}, {a = 1, b = 1}

There is something wrong with the RootOf solution, which has index=real[4] instead of index = positive integer
Under the assumption that it was supposed to be an integer, we try various integers and with index=1 one of the RootOfs is resolved, but the other is now not correct (should be 1, but evalf does not give this)

sol2 := solve({expr, a >= 0, b >= 0}, {a, b}, allsolutions)

sol3 := convert(subs(real[4] = 1, [sol2]), radical)

[{a = 1, b = 0}, {a = RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 3), b = 3^(1/2)-1}, {a = 0, b = 1}, {a = 3^(1/2)-1, b = 1}, {a = 1, b = 1}, {a = 1/2+(1/2)*3^(1/2), b = 1/2+(1/2)*3^(1/2)}]

Let's go back and just remove the index from the RootOf

ro := RootOf(op(1, eval(a, sol2[2])))

and the correct answer is the first of these values.

allvalues(ro)

1, RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 1), RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 2), RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 3), RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 4), RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 5), RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 6), RootOf(_Z^7+(2+3^(1/2))*_Z^6+(11*3^(1/2)-18)*_Z^5+(-5*3^(1/2)+4)*_Z^4+(-144*3^(1/2)+251)*_Z^3+(39*3^(1/2)-66)*_Z^2+(981*3^(1/2)-1698)*_Z+873*3^(1/2)-1512, index = 7)

NULL

Download solve.mw

restart;

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

_EnvUseHeavisideAsUnitStep:=true;
expr:=(s+exp(-Pi*s)-exp(-2*Pi*s))/(s*(s^2+2*s+2));
inttrans:-invlaplace(expr,s,t);
Y:=convert(%,piecewise);
#remove all entries in piecwise which has undefined

_EnvUseHeavisideAsUnitStep := true

expr := (s+exp(-Pi*s)-exp(-2*Pi*s))/(s*(s^2+2*s+2))

exp(-t)*sin(t)+(1/2)*(-1+exp(-t+2*Pi)*(cos(t)+sin(t)))*Heaviside(t-2*Pi)+(1/2)*(1+exp(-t+Pi)*(cos(t)+sin(t)))*Heaviside(t-Pi)

piecewise(t < Pi, exp(-t)*sin(t), t < 2*Pi, exp(-t)*sin(t)+1/2+(1/2)*exp(-t+Pi)*(cos(t)+sin(t)), 2*Pi <= t, exp(-t)*sin(t)+(1/2)*exp(-t+2*Pi)*(cos(t)+sin(t))+(1/2)*exp(-t+Pi)*(cos(t)+sin(t)))

NULL

Download remove_undefined.mw

If I assign some values such as h_n:=[5,4], etc (for np=2) then it works.

points.mw

or a variation more suitable to a large number of points.

points2.mw

Your variable s__v_0 actually had an unseen multiplication in. I replaced it with just sv0. Some subscripts were made differently in different places, for example v[1] or v__1; I changed them all to the double-underline form. In your differential equation mu was strange (from a font perhaps instead of typing mu and using escape), and different from the mu in the parameters list. You had two alphas in the parameter list.

You now need to resolve the fact that yor equations have Q(t) but there is no differential equation for Q(t). You have some parameters in your parameter list that are not in your equations - I would have removed them but you give them values later. So next step is to resolve these inconsistencies.

Covid19_Simulation2.mw

Alias perhaps comes closest to "doing it automatically".

alias(g = 1+c__1/x+c__2/x^3+c__3/x^3)

g

f := (1-1/g)*A

(1-1/g)*A

df_dx := diff(f, x)

(-c__1/x^2-3*c__2/x^4-3*c__3/x^4)*A/g^2

NULL

Download alias.mw

I just removed all entries with bonds with H from the table, then made the matrix, rather than deleting rows and columns afterwards; I hope this is equivalent.

graph:=proc(t::table)
  local t2,n,A;
  t2:=remove['flatten'](x->x[1][-1]="H",t);          # remove all entries from table with string ending in "H"
  n:=max(ListTools:-Flatten([indices(t2)]));                   # find Matrix size
  A:=Matrix(n,n,t2,'shape'='symmetric');                       # table to Matrix
  LinearAlgebra:-Map(x->if x::list then x[2] else x end if,A); # keep only weights
  GraphTheory:-Graph(A);
end proc:

Download Graph.mw

 

I was working on this but see @Carl Love was first. Here's a slight variation.

restart;

s:={"a","b","c","d","e","f"}:

parts:=Iterator:-SetPartitionFixedSize([3,3]);

_m1926293387424

(1)

First 3 integers are the locations of the first 3, next 3 of the second 3

Print(parts,'showrank');

 1: 1 2 3 4 5 6
 2: 1 2 4 3 5 6
 3: 1 2 5 3 4 6
 4: 1 2 6 3 4 5
 5: 1 3 4 2 5 6
 6: 1 3 5 2 4 6
 7: 1 3 6 2 4 5
 8: 1 4 5 2 3 6
 9: 1 4 6 2 3 5
10: 1 5 6 2 3 4

 

for part in parts do
  {{seq(s[i],i in part[1..3])},{seq(s[i],i in part[4..6])}};
end do;

{{"a", "b", "c"}, {"d", "e", "f"}}

 

{{"a", "b", "d"}, {"c", "e", "f"}}

 

{{"a", "b", "e"}, {"c", "d", "f"}}

 

{{"a", "b", "f"}, {"c", "d", "e"}}

 

{{"a", "c", "d"}, {"b", "e", "f"}}

 

{{"a", "c", "e"}, {"b", "d", "f"}}

 

{{"a", "c", "f"}, {"b", "d", "e"}}

 

{{"a", "d", "e"}, {"b", "c", "f"}}

 

{{"a", "d", "f"}, {"b", "c", "e"}}

 

{{"a", "e", "f"}, {"b", "c", "d"}}

(2)

NULL

NULL

Download partitions.mw

Some of the lambda's in vvalue were not formed with the double underline (use lprint vvalue to see this). After fixing this, simplify(...,size) executes in a reasonable time.
 

restart

with(LinearAlgebra)

assume(x::real); assume(t::real); assume(`&alpha;__1`::real); assume(`&alpha;__2`::real); assume(nu::real)

A2s := Matrix([[H__11*exp(I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__13*exp(I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`))+1, H__12*exp(-I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__14*exp(-I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), H__11*exp(I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__13*exp(I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`)), H__12*exp(-I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__14*exp(-I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`))], [H__12*exp(I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__14*exp(I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), 1+H__11*exp(-I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__13*exp(-I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), H__12*exp(I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__14*exp(I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`)), H__11*exp(-I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__13*exp(-I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`))], [H__13*exp(I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__33*exp(I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), H__14*exp(-I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__34*exp(-I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), 1+H__13*exp(I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__33*exp(I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`)), H__14*exp(-I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__34*exp(-I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`))], [H__14*exp(I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__34*exp(I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), H__13*exp(-I*v__11)/(`&lambda;__1`-conjugate(`&lambda;__1`))+H__33*exp(-I*v__21)/(`&lambda;__1`-conjugate(`&lambda;__2`)), H__14*exp(I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__34*exp(I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`)), H__13*exp(-I*v__12)/(`&lambda;__2`-conjugate(`&lambda;__1`))+H__33*exp(-I*v__22)/(`&lambda;__2`-conjugate(`&lambda;__2`))+1]])

vvalue := {v__11 = (conjugate(`&lambda;__1`)-`&lambda;__1`)*x+(4*`&alpha;__1`*(conjugate(`&lambda;__1`)^3-`&lambda;__1`^3)+2*`&alpha;__2`*(conjugate(`&lambda;__1`)^2-`&lambda;__1`^2)-8*nu*(conjugate(`&lambda;__1`)^4-`&lambda;__1`^4))*t, v__12 = (conjugate(`&lambda;__1`)-`&lambda;__2`)*x+(4*`&alpha;__1`*(conjugate(`&lambda;__1`)^3-`&lambda;__2`^3)+2*`&alpha;__2`*(conjugate(`&lambda;__1`)^2-`&lambda;__2`^2)-8*nu*(conjugate(`&lambda;__1`)^4-`&lambda;__2`^4))*t, v__21 = (conjugate(`&lambda;__2`)-`&lambda;__1`)*x+(4*`&alpha;__1`*(conjugate(`&lambda;__2`)^3-`&lambda;__1`^3)+2*`&alpha;__2`*(conjugate(`&lambda;__2`)^2-`&lambda;__1`^2)-8*nu*(conjugate(`&lambda;__2`)^4-`&lambda;__1`^4))*t, v__22 = (conjugate(`&lambda;__2`)-`&lambda;__2`)*x+(4*`&alpha;__1`*(conjugate(`&lambda;__2`)^3-`&lambda;__2`^3)+2*`&alpha;__2`*(conjugate(`&lambda;__2`)^2-`&lambda;__2`^2)-8*nu*(conjugate(`&lambda;__2`)^4-`&lambda;__2`^4))*t}

A2s2 := Determinant(A2s); dets22 := simplify(A2s2, size); length(%)

8445

dets22f := subs(vvalue, dets22)

dets22f2 := simplify(dets22f, size)

((lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1))*((-(-(-H__13^2+2*H__13*H__14-H__14^2+(H__33-H__34)*(H__11-H__12))*(-H__13^2-2*H__13*H__14-H__14^2+(H__33+H__34)*(H__11+H__12))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(lambda__1-conjugate(lambda__2))*(-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33)))*(lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__2+x*conjugate(lambda__1)))-(lambda__2-conjugate(lambda__1))*((lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1))*(-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(lambda__1-conjugate(lambda__2))*(((-H__13^2+2*H__13*H__14-H__14^2+(H__33-H__34)*(H__11-H__12))*(-H__13^2-2*H__13*H__14-H__14^2+(H__33+H__34)*(H__11+H__12))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(H__11^2*H__33-H__11*H__13^2-H__11*H__14^2-H__12^2*H__33+2*H__12*H__13*H__14)*(lambda__2-conjugate(lambda__2)))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((-H__33*H__13^2+2*H__14*H__34*H__13-H__33*H__14^2+H__11*(H__33^2-H__34^2))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__33-H__13^2)))))*exp(-I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+((lambda__2-conjugate(lambda__2))*((H__13^3+(-H__11*H__33-H__12*H__34-H__14^2)*H__13+H__14*(H__11*H__34+H__12*H__33))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(H__13-H__14)*(H__13+H__14)*(lambda__1-conjugate(lambda__2)))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__2+x*conjugate(lambda__1)))+(-(H__12*H__34-H__13^2)*(lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(lambda__1-conjugate(lambda__2))*(((-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__13-H__12*H__14))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+((H__13*H__33-H__14*H__34)*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__13*(lambda__2-conjugate(lambda__2)))*(lambda__1-conjugate(lambda__1))))*(lambda__2-conjugate(lambda__1)))*(lambda__1-conjugate(lambda__2)))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__2+x*conjugate(lambda__1)))+((lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1))*(-(lambda__2-conjugate(lambda__2))*((-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(H__12*H__34-H__13^2)*(lambda__1-conjugate(lambda__2)))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__2+x*conjugate(lambda__1)))+(lambda__2-conjugate(lambda__1))*((H__13-H__14)*(H__13+H__14)*(lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(lambda__1-conjugate(lambda__2))*(((-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__13-H__12*H__14))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+((H__13*H__33-H__14*H__34)*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__13*(lambda__2-conjugate(lambda__2)))*(lambda__1-conjugate(lambda__1)))))*exp(-I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+((lambda__2-conjugate(lambda__2))*(((-(-H__13^2+2*H__13*H__14-H__14^2+(H__33-H__34)*(H__11-H__12))*(-H__13^2-2*H__13*H__14-H__14^2+(H__33+H__34)*(H__11+H__12))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))-(H__11^2*H__33-H__11*H__13^2-H__11*H__14^2-H__12^2*H__33+2*H__12*H__13*H__14)*(lambda__2-conjugate(lambda__2)))*exp(-I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))-(lambda__1-conjugate(lambda__1))*((-H__33*H__13^2+2*H__14*H__34*H__13-H__33*H__14^2+H__11*(H__33^2-H__34^2))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__33-H__13^2)))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(((-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__13-H__12*H__14))*exp(-I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((H__13*H__33-H__14*H__34)*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__13*(lambda__2-conjugate(lambda__2))))*(lambda__1-conjugate(lambda__2)))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__2+x*conjugate(lambda__1)))+(lambda__2-conjugate(lambda__1))*((lambda__2-conjugate(lambda__2))*(((-H__13^3+(H__11*H__33+H__12*H__34+H__14^2)*H__13-H__14*(H__11*H__34+H__12*H__33))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__13-H__12*H__14))*exp(-I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((H__13*H__33-H__14*H__34)*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__13*(lambda__2-conjugate(lambda__2))))*(lambda__1-conjugate(lambda__1))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__1+x*conjugate(lambda__2)))+(((((-H__13^2+2*H__13*H__14-H__14^2+(H__33-H__34)*(H__11-H__12))*(-H__13^2-2*H__13*H__14-H__14^2+(H__33+H__34)*(H__11+H__12))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(H__11^2*H__33-H__11*H__13^2-H__11*H__14^2-H__12^2*H__33+2*H__12*H__13*H__14)*(lambda__2-conjugate(lambda__2)))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((-H__33*H__13^2+2*H__14*H__34*H__13-H__33*H__14^2+H__11*(H__33^2-H__34^2))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__33-H__13^2)))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(((H__11^2*H__33-H__11*H__13^2-H__11*H__14^2-H__12^2*H__33+2*H__12*H__13*H__14)*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(H__11-H__12)*(H__11+H__12)*(lambda__2-conjugate(lambda__2)))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((H__11*H__33-H__14^2)*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__11*(lambda__2-conjugate(lambda__2)))))*exp(-I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((((-H__33*H__13^2+2*H__14*H__34*H__13-H__33*H__14^2+H__11*(H__33^2-H__34^2))*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(H__11*H__33-H__14^2))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(lambda__1-conjugate(lambda__1))*((H__33^2-H__34^2)*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__33*(lambda__2-conjugate(lambda__2))))*exp(-I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+(lambda__2-conjugate(lambda__2))*(((H__11*H__33-H__13^2)*exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))+H__11*(lambda__2-conjugate(lambda__2)))*exp(I*(8*t*nu*lambda__1^4-8*t*nu*conjugate(lambda__1)^4-4*t*alpha__1*lambda__1^3+4*t*alpha__1*conjugate(lambda__1)^3-2*t*alpha__2*lambda__1^2+2*t*alpha__2*conjugate(lambda__1)^2-x*lambda__1+x*conjugate(lambda__1)))+(exp(I*(8*t*nu*lambda__2^4-8*t*nu*conjugate(lambda__2)^4-4*t*alpha__1*lambda__2^3+4*t*alpha__1*conjugate(lambda__2)^3-2*t*alpha__2*lambda__2^2+2*t*alpha__2*conjugate(lambda__2)^2-x*lambda__2+x*conjugate(lambda__2)))*H__33+lambda__2-conjugate(lambda__2))*(lambda__1-conjugate(lambda__1)))))*(lambda__1-conjugate(lambda__2))))*(lambda__1-conjugate(lambda__2)))*(lambda__2-conjugate(lambda__1)))/((lambda__1-conjugate(lambda__1))^2*(lambda__1-conjugate(lambda__2))^2*(lambda__2-conjugate(lambda__1))^2*(lambda__2-conjugate(lambda__2))^2)

NULL

Download sol1det.mw

 

Hard to tell without an uploaded worksheet (use green up-arrow), but it looks like NN and MM weren't given values.

To evaluate y at a particular x value use eval (for evaluate). For example,

y:=0.1*x+0.3*x^2;
eval(y,x=2);

gives 1.4

To do a lot of them, set up y as a function (technically a procedure), and put the x values you want in a list:

y:=x->0.1*x+0.3*x^2;
xvals:=[seq(i,i=0..2,0.5)];
y~(xvals)

gives [0., 0.125, 0.400, 0.825, 1.400]

plottools:-exportplot can export .svg (should also do .tiff but I got an error message). The .svg file looks correct in CorelDraw.

restart;

with(plots):with(plottools):

A := [[[6, 13], [6, 7], [5, 7], [5, 5], [7, 5], [7, 4], [4, 4], [4, 13]], [[13, 13], [13, 20], [20, 20], [20, 23], [22, 23], [22, 22], [23, 22], [23, 16], [16, 16], [16, 9], [9, 9], [9, 6], [7, 6], [7, 7], [6, 7], [6, 13]], [[13, 23], [20, 23], [20, 20], [13, 20]], [[13, 24], [20, 24], [20, 23], [13, 23]], [[22, 24], [22, 23], [20, 23], [20, 24]], [[24, 24], [24, 22], [23, 22], [23, 23], [22, 23], [22, 24]], [[22, 22], [22, 23], [23, 23], [23, 22]], [[22, 25], [25, 25], [25, 16], [23, 16], [23, 22], [24, 22], [24, 24], [22, 24]], [[25, 6], [16, 6], [16, 9], [23, 9], [23, 16], [25, 16]], [[9, 6], [9, 9], [16, 9], [16, 6]], [[6, 6], [6, 7], [7, 7], [7, 6]], [[6, 20], [13, 20], [13, 13], [6, 13]], [[20, 28], [28, 28], [28, 16], [25, 16], [25, 25], [22, 25], [22, 24], [20, 24]], [[16, 5], [9, 5], [9, 6], [16, 6]], [[7, 5], [7, 6], [9, 6], [9, 5]], [[5, 5], [5, 7], [6, 7], [6, 6], [7, 6], [7, 5]], [[4, 23], [13, 23], [13, 20], [6, 20], [6, 13], [4, 13]], [[23, 9], [16, 9], [16, 16], [23, 16]], [[9, 1], [1, 1], [1, 13], [4, 13], [4, 4], [7, 4], [7, 5], [9, 5]]]:
arte := seq(polygonplot([A[i]], color = ColorTools:-Color([rand()/10^12, rand()/10^12, rand()/10^12]), axes = none, style = polygon, view = [1 .. max(A[]), 1 .. max(A[][])]), i = 1 .. nops(A)):
plt:=display(arte):

currentdir();

"C:\Users\dharr\Desktop"

exportplot(cat(currentdir(),"/myplot.svg"),plt);

13112

NULL

Download exportplot.mw

From the ?dsolve,numeric help page "All IVP methods can be used for complex-valued IVPs with a real-valued independent variable". Not sure what it would mean for a complex independent variable - some sort of path through the complex plane would be needed.

First 33 34 35 36 37 38 39 Last Page 35 of 81