dharr

Dr. David Harrington

8270 Reputation

22 Badges

20 years, 357 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

Looks like a bug. As you probably know, you can set the display precision for the whole worksheet from the menu Tools -> Options -> Pecision.

The divide symbol is not on my keyboad. Yours appears as "÷" in the string. Assuming yours is always encoded in the same way, then it can be substituted with "/" using StringTools:-Subs. I needed to use 1-D entry here.

PEMDASTest.mw

It's not obvious which variables to eliminate, but this works. 

restart

eqP := P = R*T/(v-b)-a/(v*(v+b)+b*(v-b))

P = R*T/(v-b)-a/(v*(v+b)+b*(v-b))

eqA := A = a*P/(R^2*T^2); eqB := B = b*P/(R*T); eqZ := Z = P*v/(R*T)

A = a*P/(R^2*T^2)

B = b*P/(R*T)

Z = P*v/(R*T)

elim := eliminate({eqA, eqB, eqP, eqZ}, {a, b, v})

[{a = A*R^2*T^2/P, b = B*R*T/P, v = Z*R*T/P}, {B^3-3*B^2*Z+B*Z^2+Z^3-A*B+A*Z+B^2-2*B*Z-Z^2}]

eq5 := collect(elim[2][], Z)

Z^3+(B-1)*Z^2+(-3*B^2+A-2*B)*Z+B^3-A*B+B^2

NULL

Download elim.mw

For a numerical solution the limit boundary condition can't be used. If you want to approximate infinity by by a large number you can use, say, U[2,n](20)=0. But then you have boundary conditions at -Pi, 0 and 20; the solver needs just two boundary locations, so I replaced it with a boundary condition at 0, which you will need to modify to what you want. You need also to replace x[01] with X[01] to avoid confusion with the simple variable x. Then it is possible to get a solution.

restart

a := Pi; b := Pi; lambda := 0.1e-1; beta := 2.5; X[1] := -1; X[2] := 1; y[1] := 1.5; y[2] := 1.5; alpha := 1; Q[1] := 40; Q[2] := 35; n := 3

Pi

Pi

0.1e-1

2.5

-1

1

1.5

1.5

1

40

35

3

upsilon := (2*n-1)*Pi/(2*b)

5/2

EQ1 := diff(U[1, n](x), x, x)-upsilon^2*U[1, n](x) = -2*(int(Q[1]*Dirac(x-X[1])*Dirac(eta-y[1])*sin(upsilon*eta), eta = 0 .. b))/b

diff(diff(U[1, 3](x), x), x)-(25/4)*U[1, 3](x) = 14.55468946*Dirac(x+1.)

EQ2 := -(diff(U[2, n](x), x, x))-upsilon^2*U[2, n](x) = -2*(int(Q[2]*Dirac(x-X[2])*Dirac(eta-y[2])*sin(upsilon*eta), eta = 0 .. b))/b

-(diff(diff(U[2, 3](x), x), x))-(25/4)*U[2, 3](x) = 12.73535328*Dirac(x-1.)

bc := U[2, n](0) = 1, alpha*(D(U[1, n]))(-a)-beta*U[1, n](-a) = 0, U[1, n](0) = U[2, n](0), (D(U[1, n]))(0) = lambda*(D(U[2, n]))(0)

U[2, 3](0) = 1, (D(U[1, 3]))(-Pi)-2.5*U[1, 3](-Pi) = 0, U[1, 3](0) = U[2, 3](0), (D(U[1, 3]))(0) = 0.1e-1*(D(U[2, 3]))(0)

dsys6 := {EQ1, EQ2, bc}

{diff(diff(U[1, 3](x), x), x)-(25/4)*U[1, 3](x) = 14.55468946*Dirac(x+1.), -(diff(diff(U[2, 3](x), x), x))-(25/4)*U[2, 3](x) = 12.73535328*Dirac(x-1.), (D(U[1, 3]))(-Pi)-2.5*U[1, 3](-Pi) = 0, U[1, 3](0) = U[2, 3](0), U[2, 3](0) = 1, (D(U[1, 3]))(0) = 0.1e-1*(D(U[2, 3]))(0)}

dsol6 := dsolve(dsys6, numeric)

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(53, {(1) = -3.14159265358979, (2) = -3.086869467826823, (3) = -3.031348504946009, (4) = -2.974950344632409, (5) = -2.9172482249140086, (6) = -2.8578986954236654, (7) = -2.796633107212863, (8) = -2.733289667430295, (9) = -2.6679547018250354, (10) = -2.6010152548056817, (11) = -2.533120054701126, (12) = -2.465114057930623, (13) = -2.397890234194044, (14) = -2.3321800749944503, (15) = -2.2684387274244364, (16) = -2.2068256922258085, (17) = -2.147253744698504, (18) = -2.0894626384055837, (19) = -2.0331326775212855, (20) = -1.9778966969723746, (21) = -1.9233051302746953, (22) = -1.8689240004784848, (23) = -1.8143479529840667, (24) = -1.759178273526714, (25) = -1.7029860120437164, (26) = -1.6453682979450643, (27) = -1.585981078624346, (28) = -1.5245686286774929, (29) = -1.46101976425386, (30) = -1.3954708796823505, (31) = -1.3283603076081056, (32) = -1.2604088886537288, (33) = -1.1925056231731292, (34) = -1.1255282972161582, (35) = -1.060166803149537, (36) = -.9968208337603711, (37) = -.9355958332055698, (38) = -.8763768620757185, (39) = -.8188960191579733, (40) = -.7627923535845436, (41) = -.7076543950277331, (42) = -.6530707805946335, (43) = -.5986452054223651, (44) = -.5439457751022644, (45) = -.48854036225918673, (46) = -.4320163936842751, (47) = -.3739928906756354, (48) = -.3141094576263415, (49) = -.2521104324222031, (50) = -.18792201484247464, (51) = -.1219209904944405, (52) = -0.5774232861909959e-1, (53) = .0}, datatype = float[8], order = C_order); Y := Matrix(53, 4, {(1, 1) = 0.3882032039268557e-3, (1, 2) = 0.9705080098171391e-3, (1, 3) = -100.00000000049809, (1, 4) = 2.499999997815112, (2, 1) = 0.4451168751182677e-3, (2, 2) = 0.1112792187795669e-2, (2, 3) = -98.92925613106779, (2, 4) = 36.57204204133732, (3, 1) = 0.5113934708661108e-3, (3, 2) = 0.12784836771652767e-2, (3, 3) = -95.95379305935661, (3, 4) = 70.43922902138677, (4, 1) = 0.5888283390187462e-3, (4, 2) = 0.1472070847546866e-2, (4, 3) = -91.0421120920531, (4, 4) = 103.45088888924714, (5, 1) = 0.6802021243402053e-3, (5, 2) = 0.17005053108505132e-2, (5, 3) = -84.14782521017595, (5, 4) = 135.09588059261714, (6, 1) = 0.7889980263657762e-3, (6, 2) = 0.1972495065914439e-2, (6, 3) = -75.23478414482555, (6, 4) = 164.7104894727781, (7, 1) = 0.9195898817365468e-3, (7, 2) = 0.2298974704341366e-2, (7, 3) = -64.30235750490439, (7, 4) = 191.4779167979666, (8, 1) = 0.1077378860695122e-2, (8, 2) = 0.2693447151737806e-2, (8, 3) = -51.419531674574685, (8, 4) = 214.4328531624133, (9, 1) = 0.12685423995122318e-2, (9, 2) = 0.317135599878058e-2, (9, 3) = -36.78739101799119, (9, 4) = 232.4823630700066, (10, 1) = 0.14996280969012195e-2, (10, 2) = 0.37490702422530494e-2, (10, 3) = -20.78376209495727, (10, 4) = 244.55361417878348, (11, 1) = 0.17770508105882912e-2, (11, 2) = 0.4442627026470727e-2, (11, 3) = -3.9606782144882553, (11, 4) = 249.8163453939849, (12, 1) = 0.21063785252678625e-2, (12, 2) = 0.5265946313169655e-2, (12, 3) = 13.003708885087217, (12, 4) = 247.8898893070616, (13, 1) = 0.249186068258328e-2, (13, 2) = 0.6229651706458199e-2, (13, 3) = 29.40627560755466, (13, 4) = 238.95960635328623, (14, 1) = 0.2936754592417099e-2, (14, 2) = 0.7341886481042746e-2, (14, 3) = 44.641927521047265, (14, 4) = 223.7199464072195, (15, 1) = 0.3444085666623671e-2, (15, 2) = 0.8610214166559178e-2, (15, 3) = 58.27625330903941, (15, 4) = 203.17600590872755, (16, 1) = 0.4017625467632397e-2, (16, 2) = 0.10044063669080987e-1, (16, 3) = 70.05513432638597, (16, 4) = 178.4180160916429, (17, 1) = 0.4662822340331413e-2, (17, 2) = 0.11657055850828532e-1, (17, 3) = 79.86911538645819, (17, 4) = 150.45606517026198, (18, 1) = 0.5387592814161548e-2, (18, 2) = 0.1346898203540387e-1, (18, 3) = 87.70178171102593, (18, 4) = 120.1404772747311, (19, 1) = 0.6202321051741903e-2, (19, 2) = 0.15505802629354757e-1, (19, 3) = 93.57874437467991, (19, 4) = 88.17661968009193, (20, 1) = 0.7120753415084811e-2, (20, 2) = 0.17801883537712036e-1, (20, 3) = 97.54300007368604, (20, 4) = 55.13410563562042, (21, 1) = 0.8162026251578035e-2, (21, 2) = 0.20405065628945097e-1, (21, 3) = 99.63648925693877, (21, 4) = 21.44324028162055, (22, 1) = 0.9350644559652645e-2, (22, 2) = 0.23376611399131608e-1, (22, 3) = 99.8796262721294, (22, 4) = -12.515054881656106, (23, 1) = 0.10717580135388488e-1, (23, 2) = 0.26793950338471224e-1, (23, 3) = 98.27048771710446, (23, 4) = -46.362110330783665, (24, 1) = 0.12302587365372732e-1, (24, 2) = 0.30756468413431846e-1, (24, 3) = 94.78758363493509, (24, 4) = -79.69919967830852, (25, 1) = 0.14158147435394198e-1, (25, 2) = 0.3539536858848551e-1, (25, 3) = 89.39005065709564, (25, 4) = -112.0942361243453, (26, 1) = 0.16351743604253826e-1, (26, 2) = 0.4087935901063455e-1, (26, 3) = 82.02798473444136, (26, 4) = -143.01244964273488, (27, 1) = 0.18968933887015375e-1, (27, 2) = 0.4742233471753843e-1, (27, 3) = 72.66363839199656, (27, 4) = -171.77375482882923, (28, 1) = 0.22116716101413348e-1, (28, 2) = 0.55291790253533354e-1, (28, 3) = 61.30126013153686, (28, 4) = -197.53410316836656, (29, 1) = 0.2592495111150616e-1, (29, 2) = 0.6481237777876543e-1, (29, 3) = 48.0289257365294, (29, 4) = -219.29179038200223, (30, 1) = 0.30541245446158414e-1, (30, 2) = 0.7635311361539601e-1, (30, 3) = 33.07539715281775, (30, 4) = -235.94249965849457, (31, 1) = 0.3612028106573307e-1, (31, 2) = 0.9030070266433263e-1, (31, 3) = 16.850915110845825, (31, 4) = -246.4377033343757, (32, 1) = 0.4280834487714029e-1, (32, 2) = .10702086219285073, (32, 3) = -0.57012711555319735e-1, (32, 4) = -250.01245905923216, (33, 1) = 0.5072866934270118e-1, (33, 2) = .12682167335675293, (33, 3) = -16.951434539334358, (33, 4) = -246.39461321068953, (34, 1) = 0.59975403466136196e-1, (34, 2) = .1499385086653405, (34, 3) = -33.14019787527235, (34, 4) = -235.88566198485236, (35, 1) = 0.7062175709040089e-1, (35, 2) = .17655439272600215, (35, 3) = -48.048066313865085, (35, 4) = -219.26558273462993, (36, 1) = 0.8274000277575962e-1, (36, 2) = .20685000693939903, (36, 3) = -61.27842140118162, (36, 4) = -197.57838745975906, (37, 1) = 0.964250185014489e-1, (37, 2) = .2410625462536222, (37, 3) = -72.61156054193519, (37, 4) = -171.91133753471286, (38, 1) = .11181135532806942, (38, 2) = .2795283883201738, (38, 3) = -81.96052549943433, (38, 4) = -143.2539759453953, (39, 1) = .12909069651583652, (39, 2) = .3227267412895911, (39, 3) = -89.32177445048865, (39, 4) = -112.43388637952489, (40, 1) = .14852813402627374, (40, 2) = .3713203350656843, (40, 3) = -94.73190777306867, (40, 4) = -80.11186123487396, (41, 1) = .17048022224171397, (41, 2) = .4262005556042849, (41, 3) = -98.23655034327561, (41, 4) = -46.809465967098035, (42, 1) = .19540578155864546, (42, 2) = .48851445389661347, (42, 3) = -99.8704416417994, (42, 4) = -12.965069966582012, (43, 1) = .2238871802608824, (43, 2) = .5597179506522063, (43, 3) = -99.65085267397875, (43, 4) = 21.021947066476347, (44, 1) = .25669557282299343, (44, 2) = .6417389320574837, (44, 3) = -97.57425163323794, (44, 4) = 54.7873969436885, (45, 1) = .2948316080924044, (45, 2) = .7370790202310107, (45, 3) = -93.61389642697638, (45, 4) = 87.94310645822289, (46, 1) = .3395816078756192, (46, 2) = .8489540196890483, (46, 3) = -87.72642009909106, (46, 4) = 120.02799716632154, (47, 1) = .39259284314422777, (47, 2) = .9814821078605699, (47, 3) = -79.86501965986429, (47, 4) = 150.46965297719441, (48, 1) = .45599490441179935, (48, 2) = 1.1399872610294979, (48, 3) = -69.99467789993854, (48, 4) = 178.56625286021332, (49, 1) = .5324447827957952, (49, 2) = 1.3311119569894878, (49, 3) = -58.12891683160391, (49, 4) = 203.43962599481935, (50, 1) = .6251241324127373, (50, 2) = 1.562810331031843, (50, 3) = -44.37958883666299, (50, 4) = 224.04592295288356, (51, 1) = .7372689881556563, (51, 2) = 1.843172470389142, (51, 3) = -29.05656994221207, (51, 4) = 239.22682415431592, (52, 1) = .8655797013486091, (52, 2) = 2.1639492533715217, (52, 3) = -13.395899359723881, (52, 4) = 247.75933232100704, (53, 1) = 1.0, (53, 2) = 2.5, (53, 3) = 1.0, (53, 4) = 250.0}, datatype = float[8], order = C_order); YP := Matrix(53, 4, {(1, 1) = 0.9705080098171391e-3, (1, 2) = 0.2426270024542848e-2, (1, 3) = 2.499999997815112, (1, 4) = 625.0000000031131, (2, 1) = 0.1112792187795669e-2, (2, 2) = 0.2781980469489173e-2, (2, 3) = 36.57204204133732, (2, 4) = 618.3078508191737, (3, 1) = 0.12784836771652767e-2, (3, 2) = 0.31962091929131926e-2, (3, 3) = 70.43922902138677, (3, 4) = 599.7112066209788, (4, 1) = 0.1472070847546866e-2, (4, 2) = 0.3680177118867164e-2, (4, 3) = 103.45088888924714, (4, 4) = 569.0132005753319, (5, 1) = 0.17005053108505132e-2, (5, 2) = 0.4251263277126284e-2, (5, 3) = 135.09588059261714, (5, 4) = 525.9239075635998, (6, 1) = 0.1972495065914439e-2, (6, 2) = 0.4931237664786101e-2, (6, 3) = 164.7104894727781, (6, 4) = 470.2174009051597, (7, 1) = 0.2298974704341366e-2, (7, 2) = 0.57474367608534175e-2, (7, 3) = 191.4779167979666, (7, 4) = 401.88973440565246, (8, 1) = 0.2693447151737806e-2, (8, 2) = 0.6733617879344513e-2, (8, 3) = 214.4328531624133, (8, 4) = 321.37207296609176, (9, 1) = 0.317135599878058e-2, (9, 2) = 0.792838999695145e-2, (9, 3) = 232.4823630700066, (9, 4) = 229.92119386244494, (10, 1) = 0.37490702422530494e-2, (10, 2) = 0.9372675605632623e-2, (10, 3) = 244.55361417878348, (10, 4) = 129.89851309348296, (11, 1) = 0.4442627026470727e-2, (11, 2) = 0.1110656756617682e-1, (11, 3) = 249.8163453939849, (11, 4) = 24.754238840551597, (12, 1) = 0.5265946313169655e-2, (12, 2) = 0.1316486578292414e-1, (12, 3) = 247.8898893070616, (12, 4) = -81.2731805317951, (13, 1) = 0.6229651706458199e-2, (13, 2) = 0.155741292661455e-1, (13, 3) = 238.95960635328623, (13, 4) = -183.78922254721664, (14, 1) = 0.7341886481042746e-2, (14, 2) = 0.1835471620260687e-1, (14, 3) = 223.7199464072195, (14, 4) = -279.0120470065454, (15, 1) = 0.8610214166559178e-2, (15, 2) = 0.21525535416397946e-1, (15, 3) = 203.17600590872755, (15, 4) = -364.2265831814963, (16, 1) = 0.10044063669080987e-1, (16, 2) = 0.2511015917270248e-1, (16, 3) = 178.4180160916429, (16, 4) = -437.8445895399123, (17, 1) = 0.11657055850828532e-1, (17, 2) = 0.2914263962707133e-1, (17, 3) = 150.45606517026198, (17, 4) = -499.1819711653637, (18, 1) = 0.1346898203540387e-1, (18, 2) = 0.33672455088509676e-1, (18, 3) = 120.1404772747311, (18, 4) = -548.136135693912, (19, 1) = 0.15505802629354757e-1, (19, 2) = 0.3876450657338689e-1, (19, 3) = 88.17661968009193, (19, 4) = -584.8671523417495, (20, 1) = 0.17801883537712036e-1, (20, 2) = 0.44504708844280066e-1, (20, 3) = 55.13410563562042, (20, 4) = -609.6437504605378, (21, 1) = 0.20405065628945097e-1, (21, 2) = 0.5101266407236272e-1, (21, 3) = 21.44324028162055, (21, 4) = -622.7280578558673, (22, 1) = 0.23376611399131608e-1, (22, 2) = 0.58441528497829034e-1, (22, 3) = -12.515054881656106, (22, 4) = -624.2476642008088, (23, 1) = 0.26793950338471224e-1, (23, 2) = 0.6698487584617804e-1, (23, 3) = -46.362110330783665, (23, 4) = -614.1905482319029, (24, 1) = 0.30756468413431846e-1, (24, 2) = 0.7689117103357958e-1, (24, 3) = -79.69919967830852, (24, 4) = -592.4223977183443, (25, 1) = 0.3539536858848551e-1, (25, 2) = 0.8848842147121373e-1, (25, 3) = -112.0942361243453, (25, 4) = -558.6878166068477, (26, 1) = 0.4087935901063455e-1, (26, 2) = .10219839752658641, (26, 3) = -143.01244964273488, (26, 4) = -512.6749045902585, (27, 1) = 0.4742233471753843e-1, (27, 2) = .1185558367938461, (27, 3) = -171.77375482882923, (27, 4) = -454.1477399499785, (28, 1) = 0.55291790253533354e-1, (28, 2) = .13822947563383342, (28, 3) = -197.53410316836656, (28, 4) = -383.13287582210535, (29, 1) = 0.6481237777876543e-1, (29, 2) = .1620309444469135, (29, 3) = -219.29179038200223, (29, 4) = -300.18078585330875, (30, 1) = 0.7635311361539601e-1, (30, 2) = .1908827840384901, (30, 3) = -235.94249965849457, (30, 4) = -206.72123220511094, (31, 1) = 0.9030070266433263e-1, (31, 2) = .2257517566608317, (31, 3) = -246.4377033343757, (31, 4) = -105.31821944278641, (32, 1) = .10702086219285073, (32, 2) = .2675521554821268, (32, 3) = -250.01245905923216, (32, 4) = .35632944722074833, (33, 1) = .12682167335675293, (33, 2) = .31705418339188235, (33, 3) = -246.39461321068953, (33, 4) = 105.94646587083973, (34, 1) = .1499385086653405, (34, 2) = .3748462716633512, (34, 3) = -235.88566198485236, (34, 4) = 207.1262367204522, (35, 1) = .17655439272600215, (35, 2) = .44138598181500555, (35, 3) = -219.26558273462993, (35, 4) = 300.30041446165677, (36, 1) = .20685000693939903, (36, 2) = .5171250173484976, (36, 3) = -197.57838745975906, (36, 4) = 382.99013375738514, (37, 1) = .2410625462536222, (37, 2) = .6026563656340556, (37, 3) = -171.91133753471286, (37, 4) = 453.8222533870949, (38, 1) = .2795283883201738, (38, 2) = .6988209708004339, (38, 3) = -143.2539759453953, (38, 4) = 512.2532843714646, (39, 1) = .3227267412895911, (39, 2) = .8068168532239782, (39, 3) = -112.43388637952489, (39, 4) = 558.261090315554, (40, 1) = .3713203350656843, (40, 2) = .9283008376642109, (40, 3) = -80.11186123487396, (40, 4) = 592.0744235816792, (41, 1) = .4262005556042849, (41, 2) = 1.0655013890107123, (41, 3) = -46.809465967098035, (41, 4) = 613.9784396454726, (42, 1) = .48851445389661347, (42, 2) = 1.2212861347415342, (42, 3) = -12.965069966582012, (42, 4) = 624.1902602612463, (43, 1) = .5597179506522063, (43, 2) = 1.3992948766305149, (43, 3) = 21.021947066476347, (43, 4) = 622.8178292123672, (44, 1) = .6417389320574837, (44, 2) = 1.604347330143709, (44, 3) = 54.7873969436885, (44, 4) = 609.839072707737, (45, 1) = .7370790202310107, (45, 2) = 1.8426975505775274, (45, 3) = 87.94310645822289, (45, 4) = 585.0868526686024, (46, 1) = .8489540196890483, (46, 2) = 2.12238504922262, (46, 3) = 120.02799716632154, (46, 4) = 548.2901256193192, (47, 1) = .9814821078605699, (47, 2) = 2.4537052696514237, (47, 3) = 150.46965297719441, (47, 4) = 499.15637287415177, (48, 1) = 1.1399872610294979, (48, 2) = 2.849968152573746, (48, 3) = 178.56625286021332, (48, 4) = 437.46673687461583, (49, 1) = 1.3311119569894878, (49, 2) = 3.3277798924737203, (49, 3) = 203.43962599481935, (49, 4) = 363.30573019752444, (50, 1) = 1.562810331031843, (50, 2) = 3.9070258275796084, (50, 3) = 224.04592295288356, (50, 4) = 277.3724302291437, (51, 1) = 1.843172470389142, (51, 2) = 4.607931175972852, (51, 3) = 239.22682415431592, (51, 4) = 181.60356213882545, (52, 1) = 2.1639492533715217, (52, 2) = 5.409873133428807, (52, 3) = 247.75933232100704, (52, 4) = 83.72437099827425, (53, 1) = 2.5, (53, 2) = 6.25, (53, 3) = 250.0, (53, 4) = -6.25}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(53, {(1) = -3.14159265358979, (2) = -3.086869467826823, (3) = -3.031348504946009, (4) = -2.974950344632409, (5) = -2.9172482249140086, (6) = -2.8578986954236654, (7) = -2.796633107212863, (8) = -2.733289667430295, (9) = -2.6679547018250354, (10) = -2.6010152548056817, (11) = -2.533120054701126, (12) = -2.465114057930623, (13) = -2.397890234194044, (14) = -2.3321800749944503, (15) = -2.2684387274244364, (16) = -2.2068256922258085, (17) = -2.147253744698504, (18) = -2.0894626384055837, (19) = -2.0331326775212855, (20) = -1.9778966969723746, (21) = -1.9233051302746953, (22) = -1.8689240004784848, (23) = -1.8143479529840667, (24) = -1.759178273526714, (25) = -1.7029860120437164, (26) = -1.6453682979450643, (27) = -1.585981078624346, (28) = -1.5245686286774929, (29) = -1.46101976425386, (30) = -1.3954708796823505, (31) = -1.3283603076081056, (32) = -1.2604088886537288, (33) = -1.1925056231731292, (34) = -1.1255282972161582, (35) = -1.060166803149537, (36) = -.9968208337603711, (37) = -.9355958332055698, (38) = -.8763768620757185, (39) = -.8188960191579733, (40) = -.7627923535845436, (41) = -.7076543950277331, (42) = -.6530707805946335, (43) = -.5986452054223651, (44) = -.5439457751022644, (45) = -.48854036225918673, (46) = -.4320163936842751, (47) = -.3739928906756354, (48) = -.3141094576263415, (49) = -.2521104324222031, (50) = -.18792201484247464, (51) = -.1219209904944405, (52) = -0.5774232861909959e-1, (53) = .0}, datatype = float[8], order = C_order); Y := Matrix(53, 4, {(1, 1) = -0.8676912989535984e-16, (1, 2) = -0.21608219432643615e-15, (1, 3) = 0.4980885195056167e-9, (1, 4) = 0.21861528682156814e-8, (2, 1) = -0.8802859986534675e-16, (2, 2) = -0.21974320878577658e-15, (2, 3) = 0.6081708324864874e-9, (2, 4) = 0.1895587615635047e-8, (3, 1) = -0.8797286110239746e-16, (3, 2) = -0.2188341638521309e-15, (3, 3) = 0.6959133345170034e-9, (3, 4) = 0.1567902154105096e-8, (4, 1) = -0.850433981484997e-16, (4, 2) = -0.21414751621683712e-15, (4, 3) = 0.7588163403092906e-9, (4, 4) = 0.1213021084504045e-8, (5, 1) = -0.800745135993315e-16, (5, 2) = -0.20093785115665454e-15, (5, 3) = 0.7945727742811416e-9, (5, 4) = 0.8386944098484217e-9, (6, 1) = -0.7109900763347926e-16, (6, 2) = -0.17517786079204476e-15, (6, 3) = 0.8008285545673557e-9, (6, 4) = 0.4565776667453786e-9, (7, 1) = -0.5650320686304369e-16, (7, 2) = -0.14073951210410393e-15, (7, 3) = 0.7760320782138161e-9, (7, 4) = 0.8192195855681021e-10, (8, 1) = -0.33573825200367297e-16, (8, 2) = -0.8641031501217497e-16, (8, 3) = 0.7199907142762069e-9, (8, 4) = -0.26572650293870884e-9, (9, 1) = -0.7547848329632523e-17, (9, 2) = -0.2116065647516365e-16, (9, 3) = 0.6360297369536085e-9, (9, 4) = -0.5656002680885608e-9, (10, 1) = 0.2622490015415541e-16, (10, 2) = 0.6475810259802702e-16, (10, 3) = 0.5312400467523144e-9, (10, 4) = -0.7990642702779534e-9, (11, 1) = 0.6563500920377273e-16, (11, 2) = 0.16967260424050358e-15, (11, 3) = 0.41562024075028786e-9, (11, 4) = -0.9570057000181058e-9, (12, 1) = 0.1159953139509308e-15, (12, 2) = 0.2925912206598185e-15, (12, 3) = 0.29949719502119016e-9, (12, 4) = -0.10417535634363825e-8, (13, 1) = 0.17103575510835418e-15, (13, 2) = 0.4269546164503595e-15, (13, 3) = 0.19072618756222055e-9, (13, 4) = -0.10656996470171502e-8, (14, 1) = 0.2318272178226041e-15, (14, 2) = 0.5848485527349647e-15, (14, 3) = 0.9361197303943904e-10, (14, 4) = -0.10427746162038269e-8, (15, 1) = 0.306571106603149e-15, (15, 2) = 0.7722126175565033e-15, (15, 3) = 0.9812023677745901e-11, (15, 4) = -0.9873030397643844e-9, (16, 1) = 0.38928309840636176e-15, (16, 2) = 0.9827595170254798e-15, (16, 3) = -0.6095799494641777e-10, (16, 4) = -0.9085857017156305e-9, (17, 1) = 0.4764499780703486e-15, (17, 2) = 0.1186572523636631e-14, (17, 3) = -0.11935245336246415e-9, (17, 4) = -0.8142155602303641e-9, (18, 1) = 0.5829522617558218e-15, (18, 2) = 0.14521985463337272e-14, (18, 3) = -0.16655017418448784e-9, (18, 4) = -0.7087135929794485e-9, (19, 1) = 0.6972662594027298e-15, (19, 2) = 0.17368509418185003e-14, (19, 3) = -0.2034791699072464e-9, (19, 4) = -0.5958861921970877e-9, (20, 1) = 0.8227149601810672e-15, (20, 2) = 0.2045539985050064e-14, (20, 3) = -0.23084694727422887e-9, (20, 4) = -0.4783657037134373e-9, (21, 1) = 0.9667167879129214e-15, (21, 2) = 0.24099216987734515e-14, (21, 3) = -0.2492104027677984e-9, (21, 4) = -0.35843439555687914e-9, (22, 1) = 0.1113111483390967e-14, (22, 2) = 0.28050241136520836e-14, (22, 3) = -0.25897786113834673e-9, (22, 4) = -0.2378879269052534e-9, (23, 1) = 0.12929170305243563e-14, (23, 2) = 0.32152184661561065e-14, (23, 3) = -0.2601905825461818e-9, (23, 4) = -0.11882497382299937e-9, (24, 1) = 0.14729325462726298e-14, (24, 2) = 0.3634256462297577e-14, (24, 3) = -0.2530546261395792e-9, (24, 4) = -0.40263134980524275e-11, (25, 1) = 0.16306879561682082e-14, (25, 2) = 0.4062690519212076e-14, (25, 3) = -0.2376077189368142e-9, (25, 4) = 0.10370103933888716e-9, (26, 1) = 0.1784173177455558e-14, (26, 2) = 0.4463448108899063e-14, (26, 3) = -0.2138892974620425e-9, (26, 4) = 0.200480118297719e-9, (27, 1) = 0.1901284312961507e-14, (27, 2) = 0.476257888638928e-14, (27, 3) = -0.18248992238773505e-9, (27, 4) = 0.28141351837015277e-9, (28, 1) = 0.19279140282615575e-14, (28, 2) = 0.4848522914708871e-14, (28, 3) = -0.1446727242233918e-9, (28, 4) = 0.34101725446699387e-9, (29, 1) = 0.1834442360874534e-14, (29, 2) = 0.45219870905196815e-14, (29, 3) = -0.10288700998919516e-9, (29, 4) = 0.37356218774460824e-9, (30, 1) = 0.15926624522198781e-14, (30, 2) = 0.4038240732008787e-14, (30, 3) = -0.607069798696215e-10, (30, 4) = 0.3760153658523864e-9, (31, 1) = 0.12208338209409565e-14, (31, 2) = 0.31010048825879734e-14, (31, 3) = -0.22581054258547533e-10, (31, 4) = 0.35057261285338124e-9, (32, 1) = 0.7800409792478199e-15, (32, 2) = 0.18912905418498113e-14, (32, 3) = 0.805460798307106e-11, (32, 4) = 0.30421052105863735e-9, (33, 1) = 0.2103500289242134e-15, (33, 2) = 0.5527012222907194e-15, (33, 3) = 0.29776634581559975e-10, (33, 4) = 0.24821824251917226e-9, (34, 1) = -0.4961307208021511e-15, (34, 2) = -0.12811774245578649e-14, (34, 3) = 0.43428996667644654e-10, (34, 4) = 0.19146389668276046e-9, (35, 1) = -0.14981834904372908e-14, (35, 2) = -0.3524672322484466e-14, (35, 3) = 0.50936155887014364e-10, (35, 4) = 0.13922828274130106e-9, (36, 1) = -0.27269088906787527e-14, (36, 2) = -0.6795368531094833e-14, (36, 3) = 0.5410492144377719e-10, (36, 4) = 0.9399890322992246e-10, (37, 1) = -0.4325717810019063e-14, (37, 2) = -0.1063258753807204e-13, (37, 3) = 0.5441246008826415e-10, (37, 4) = 0.5568046941695293e-10, (38, 1) = -0.6243004225526994e-14, (38, 2) = -0.16270570929763745e-13, (38, 3) = 0.52386787046637554e-10, (38, 4) = 0.23124636396403946e-10, (39, 1) = -0.8694708108420794e-14, (39, 2) = -0.21456403659082042e-13, (39, 3) = 0.4889190445826038e-10, (39, 4) = -0.4140421677670486e-11, (40, 1) = -0.11897091313236854e-13, (40, 2) = -0.29642626324173214e-13, (40, 3) = 0.4429246955009329e-10, (40, 4) = -0.26913675481025795e-10, (41, 1) = -0.15086605200015608e-13, (41, 2) = -0.3774932272351975e-13, (41, 3) = 0.3856155042221638e-10, (41, 4) = -0.4537751493215933e-10, (42, 1) = -0.1938887902224666e-13, (42, 2) = -0.4794251562509063e-13, (42, 3) = 0.32239691308459715e-10, (42, 4) = -0.5973804350978617e-10, (43, 1) = -0.24209988145776807e-13, (43, 2) = -0.6136519196273285e-13, (43, 3) = 0.25431102416599753e-10, (43, 4) = -0.7016177011128924e-10, (44, 1) = -0.30191539534274623e-13, (44, 2) = -0.7582632905380969e-13, (44, 3) = 0.18123737586995968e-10, (44, 4) = -0.766058474418373e-10, (45, 1) = -0.37534072998795584e-13, (45, 2) = -0.9303085643538405e-13, (45, 3) = 0.10805866706614065e-10, (45, 4) = -0.7877262932718223e-10, (46, 1) = -0.4518752383273554e-13, (46, 2) = -0.11385220035764982e-12, (46, 3) = 0.3610905236892672e-11, (46, 4) = -0.7637293665285871e-10, (47, 1) = -0.54203963840859055e-13, (47, 2) = -0.13711832923920587e-12, (47, 3) = -0.2863286491250468e-11, (47, 4) = -0.6938326465531548e-10, (48, 1) = -0.6390561927231601e-13, (48, 2) = -0.15886267121731282e-12, (48, 3) = -0.800836900303354e-11, (48, 4) = -0.57835568004517225e-10, (49, 1) = -0.6958838172846833e-13, (49, 2) = -0.17383795077766753e-12, (49, 3) = -0.11004344747313351e-10, (49, 4) = -0.41694622855798825e-10, (50, 1) = -0.6696235849973125e-13, (50, 2) = -0.16588535883101567e-12, (50, 3) = -0.1068695327003035e-10, (50, 4) = -0.23841574874806828e-10, (51, 1) = -0.44633379288509404e-13, (51, 2) = -0.11461203106012963e-12, (51, 3) = -0.655426895554895e-11, (51, 4) = -0.8394590103565032e-11, (52, 1) = -0.16907013667709464e-13, (52, 2) = -0.3954218532301208e-13, (52, 3) = -0.20016707651239473e-11, (52, 4) = -0.13397340282579073e-11, (53, 1) = .0, (53, 2) = .0, (53, 3) = .0, (53, 4) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[53] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1861528682156814e-9) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 53, [U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[53] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[53] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(53, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(53, 4, X, Y, outpoint, yout, L, V) end if; [x = outpoint, seq('[U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[53] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1861528682156814e-9) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 53, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[53] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[53] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(53, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(53, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(0..0, {}), (3) = [x, U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data[2][0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [x = res[1], seq('[U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)]'[i] = res[i+1], i = 1 .. 4)] catch: error  end try end proc

plots:-odeplot(dsol6, [[x, U[1, 3](x)], [x, U[2, 3](x)]], -Pi .. 0, color = [red, blue])

Can't use n here since you used it above for a different purpose and gave it a value.

U[1](x, y) = sum(U[1, n](x)*sin(upsilon*y), n = 1 .. infinity)

Error, (in sum) summation variable previously assigned, 2nd argument evaluates to 3 = 1 .. infinity

U[2](x, y) = sum(U[2, n](x)*sin(upsilon*y), n = 1 .. infinity)

Error, (in sum) summation variable previously assigned, 2nd argument evaluates to 3 = 1 .. infinity

``

Download Thesis_(1).mw

So here is a workaround,  which just loops as @sursumCorda suggested.

restart

F := BesselI(0, sigma*lambda)*BesselK(12, sigma)

BesselI(0, sigma*lambda)*BesselK(12, sigma)

The result below has less than the requested order, a severe case of the type documented in the Order help page.
series multiplies the two series for the Bessel functions, each to order 0

series(F, sigma = 0, 0); series(BesselI(0, sigma*lambda), sigma = 0, 0); series(BesselK(12, sigma), sigma = 0, 0)

series(+O(sigma^(-12)),sigma,-12)

series(+O(sigma^0),sigma,0)

series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+O(sigma^0),sigma,0)

series(F, sigma, 20)

series(81749606400*sigma^(-12)+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2+1/12-3*lambda^2+(105/4)*lambda^4-(280/3)*lambda^6+(315/2)*lambda^8-126*lambda^10+(77/2)*lambda^12+(-1/1680+(1/48)*lambda^2-(3/16)*lambda^4+(35/48)*lambda^6-(35/24)*lambda^8+(63/40)*lambda^10-(7/8)*lambda^12+(11/56)*lambda^14)*sigma^2+(1/215040-(1/6720)*lambda^2+(1/768)*lambda^4-(1/192)*lambda^6+(35/3072)*lambda^8-(7/480)*lambda^10+(7/640)*lambda^12-(1/224)*lambda^14+(11/14336)*lambda^16)*sigma^4+(-1/23224320+(1/860160)*lambda^2-(1/107520)*lambda^4+(1/27648)*lambda^6-(1/12288)*lambda^8+(7/61440)*lambda^10-(7/69120)*lambda^12+(1/17920)*lambda^14-(1/57344)*lambda^16+(11/4644864)*lambda^18)*sigma^6+O(sigma^8),sigma,8)

series has option remember, so now going to order zero works (assuming a garbage collection hasn't occurred).

op(series); series(F, sigma = 0, 0)

proc () options builtin = series, remember, system; table( [( (series(lambda*sigma,sigma))^18, sigma ) = series((lambda^18)*sigma^18,sigma), 20, ( (series(sigma^17,sigma))^2, sigma ) = series(+O(sigma^34),sigma,34), 20, ( (series(sigma,sigma))^10, sigma ) = series(sigma^10,sigma), 20, ( (series(sigma,sigma))*(series(sigma^12,sigma)), sigma ) = series(sigma^13,sigma), 20, ( (series((lambda^2)*sigma^2,sigma))^2, sigma ) = series((lambda^4)*sigma^4,sigma), 20, ( (series(lambda*sigma,sigma))^40*O(1), sigma ) = series(+O(sigma^40),sigma,40), 20, ( (series((lambda^11)*sigma^11,sigma))^2, sigma ) = series(+O(sigma^22),sigma,22), 20, ( (series(sigma^2,sigma))^2, sigma ) = series(sigma^4,sigma), 20, ( (series((lambda^18)*sigma^18,sigma))^2, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(sigma,sigma))^15, sigma ) = series(sigma^15,sigma), 20, ( BesselI(0, sigma*lambda), sigma ) = series(1+((1/4)*lambda^2)*sigma^2+((1/64)*lambda^4)*sigma^4+((1/2304)*lambda^6)*sigma^6+((1/147456)*lambda^8)*sigma^8+((1/14745600)*lambda^10)*sigma^10+((1/2123366400)*lambda^12)*sigma^12+((1/416179814400)*lambda^14)*sigma^14+((1/106542032486400)*lambda^16)*sigma^16+((1/34519618525593600)*lambda^18)*sigma^18+O(sigma^20),sigma,20), 20, ( (39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22)/sigma^12, sigma ) = series(39916800*sigma^(-12)-907200*sigma^(-10)+11340*sigma^(-8)-105*sigma^(-6)+(105/128)*sigma^(-4)-(3/512)*sigma^(-2)+1/24576-(1/3440640)*sigma^2+(1/440401920)*sigma^4-(1/47563407360)*sigma^6+(1/3805072588800)*sigma^8-(1/167423193907200)*sigma^10,sigma), 32, ( (series(lambda*sigma,sigma))^36, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(lambda*sigma,sigma))^7, sigma ) = series((lambda^7)*sigma^7,sigma), 20, ( (series((lambda^10)*sigma^10,sigma))^2, sigma ) = series(+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^22, sigma ) = series(+O(sigma^22),sigma,22), 20, ( (series(lambda*sigma,sigma))*(series((lambda^18)*sigma^18,sigma)), sigma ) = series((lambda^19)*sigma^19,sigma), 20, ( (series(sigma,sigma))^9, sigma ) = series(sigma^9,sigma), 20, ( (series((lambda^14)*sigma^14,sigma))^2, sigma ) = series(+O(sigma^28),sigma,28), 20, ( (series(sigma,sigma))^2, sigma ) = series(sigma^2,sigma), 20, ( (series(sigma^14,sigma))^2, sigma ) = series(+O(sigma^28),sigma,28), 20, ( BesselI(0, sigma*lambda)*BesselK(12, sigma), sigma ) = series(81749606400*sigma^(-12)+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2+1/12-3*lambda^2+(105/4)*lambda^4-(280/3)*lambda^6+(315/2)*lambda^8-126*lambda^10+(77/2)*lambda^12+(-1/1680+(1/48)*lambda^2-(3/16)*lambda^4+(35/48)*lambda^6-(35/24)*lambda^8+(63/40)*lambda^10-(7/8)*lambda^12+(11/56)*lambda^14)*sigma^2+(1/215040-(1/6720)*lambda^2+(1/768)*lambda^4-(1/192)*lambda^6+(35/3072)*lambda^8-(7/480)*lambda^10+(7/640)*lambda^12-(1/224)*lambda^14+(11/14336)*lambda^16)*sigma^4+(-1/23224320+(1/860160)*lambda^2-(1/107520)*lambda^4+(1/27648)*lambda^6-(1/12288)*lambda^8+(7/61440)*lambda^10-(7/69120)*lambda^12+(1/17920)*lambda^14-(1/57344)*lambda^16+(11/4644864)*lambda^18)*sigma^6+O(sigma^8),sigma,8), 20, ( (series(sigma^6,sigma))^2, sigma ) = series(sigma^12,sigma), 20, ( (series(sigma,sigma))^30, sigma ) = series(+O(sigma^30),sigma,30), 20, ( (series(lambda*sigma,sigma))^4, sigma ) = series((lambda^4)*sigma^4,sigma), 20, ( (series((lambda^17)*sigma^17,sigma))^2, sigma ) = series(+O(sigma^34),sigma,34), 20, ( sigma^12*(-(1/239500800)*gamma+86021/13277924352000+(1/24908083200)*(1506353/360360-2*gamma)*sigma^2+(1/2789705318400)*(1712273/360360-2*gamma)*sigma^4+(1/502146957312000)*(1856417/360360-2*gamma)*sigma^6+(1/128549621071872000)*(3938059/720720-2*gamma)*sigma^8), sigma ) = series((-(1/239500800)*gamma+86021/13277924352000)*sigma^12+(1506353/8975876861952000-(1/12454041600)*gamma)*sigma^14+(1712273/1005298208538624000-(1/1394852659200)*gamma)*sigma^16+(1856417/180953677536952320000-(1/251073478656000)*gamma)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^10, sigma ) = series((lambda^10)*sigma^10,sigma), 20, ( (series(sigma,sigma))*(series(sigma^18,sigma)), sigma ) = series(sigma^19,sigma), 20, ( (series(lambda*sigma,sigma))^28, sigma ) = series(+O(sigma^28),sigma,28), 20, ( (series((lambda^9)*sigma^9,sigma))^2, sigma ) = series((lambda^18)*sigma^18,sigma), 20, ( (series(lambda*sigma,sigma))^19, sigma ) = series((lambda^19)*sigma^19,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^12)*sigma^12,sigma)), sigma ) = series((lambda^13)*sigma^13,sigma), 20, ( (series(lambda*sigma,sigma))^34, sigma ) = series(+O(sigma^34),sigma,34), 20, ( (series(lambda*sigma,sigma))*(series((lambda^4)*sigma^4,sigma)), sigma ) = series((lambda^5)*sigma^5,sigma), 20, ( (series((lambda^16)*sigma^16,sigma))^2, sigma ) = series(+O(sigma^32),sigma,32), 20, ( (series(sigma,sigma))^16, sigma ) = series(sigma^16,sigma), 20, ( (series(sigma^18,sigma))^2, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(sigma,sigma))*(series(sigma^16,sigma)), sigma ) = series(sigma^17,sigma), 20, ( (series(sigma,sigma))^12*(1/479001600+(1/24908083200)*(series(sigma,sigma))^2+(1/2789705318400)*(series(sigma,sigma))^4+(1/502146957312000)*(series(sigma,sigma))^6+(1/128549621071872000)*(series(sigma,sigma))^8+(1/43706871164436480000)*(series(sigma,sigma))^10+(1/18881368343036559360000)*(series(sigma,sigma))^12+(1/10044887958495449579520000)*(series(sigma,sigma))^14+(1/6428728293437087730892800000)*(series(sigma,sigma))^16+(1/4860118589838438324554956800000)*(series(sigma,sigma))^18+(1/4276904359057825725608361984000000)*(series(sigma,sigma))^20+(1/4328227211366519634315662327808000000)*(series(sigma,sigma))^22+(1/4986117747494230618731643001634816000000)*(series(sigma,sigma))^24+(1/6481953071742499804351135902125260800000000)*(series(sigma,sigma))^26+(1/9437723672457079715135253873494379724800000000)*(series(sigma,sigma))^28+(1/15289112349380469138519111275060895154176000000000)*(series(sigma,sigma))^30+(1/27398089330089800696226247404909124116283392000000000)*(series(sigma,sigma))^32+(1/54029032158937086972958159882480792757310849024000000000)*(series(sigma,sigma))^34+(1/116702709463304107861589625346158512355791433891840000000000)*(series(sigma,sigma))^36+(1/274951583495544478121905157315549455110244618249175040000000000)*(series(sigma,sigma))^38+(1/703876053748593863992077202727806605082226222717888102400000000000)*(series(sigma,sigma))^40*O(1)), sigma ) = series((1/479001600)*sigma^12+(1/24908083200)*sigma^14+(1/2789705318400)*sigma^16+(1/502146957312000)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^13, sigma ) = series((lambda^13)*sigma^13,sigma), 20, ( (series(sigma,sigma))^40*O(1), sigma ) = series(+O(sigma^40),sigma,40), 20, ( (series((lambda^19)*sigma^19,sigma))^2, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(lambda*sigma,sigma))^17, sigma ) = series((lambda^17)*sigma^17,sigma), 20, ( (series(sigma,sigma))^5, sigma ) = series(sigma^5,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^6)*sigma^6,sigma)), sigma ) = series((lambda^7)*sigma^7,sigma), 20, ( (series(sigma^9,sigma))^2, sigma ) = series(sigma^18,sigma), 20, ( (series(lambda*sigma,sigma))^12, sigma ) = series((lambda^12)*sigma^12,sigma), 20, ( (series((lambda^12)*sigma^12,sigma))^2, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(lambda*sigma,sigma))^38, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(sigma,sigma))^3, sigma ) = series(sigma^3,sigma), 20, ( (series((lambda^6)*sigma^6,sigma))^2, sigma ) = series((lambda^12)*sigma^12,sigma), 20, ( (series(lambda*sigma,sigma))^26, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(sigma^13,sigma))^2, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(lambda*sigma,sigma))^30, sigma ) = series(+O(sigma^30),sigma,30), 20, ( (series(sigma,sigma))^28, sigma ) = series(+O(sigma^28),sigma,28), 20, ( (series(lambda*sigma,sigma))^5, sigma ) = series((lambda^5)*sigma^5,sigma), 20, ( (series((lambda^13)*sigma^13,sigma))^2, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(sigma^8,sigma))^2, sigma ) = series(sigma^16,sigma), 20, ( -(1/239500800)*gamma+86021/13277924352000+(1/24908083200)*(1506353/360360-2*gamma)*sigma^2+(1/2789705318400)*(1712273/360360-2*gamma)*sigma^4+(1/502146957312000)*(1856417/360360-2*gamma)*sigma^6+(1/128549621071872000)*(3938059/720720-2*gamma)*sigma^8, sigma ) = series((-(1/239500800)*gamma+86021/13277924352000)+(1506353/8975876861952000-(1/12454041600)*gamma)*sigma^2+(1712273/1005298208538624000-(1/1394852659200)*gamma)*sigma^4+(1856417/180953677536952320000-(1/251073478656000)*gamma)*sigma^6+(3938059/92648282898919587840000-(1/64274810535936000)*gamma)*sigma^8,sigma), 20, ( 2048*(39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22)/sigma^12, sigma ) = series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10,sigma), 32, ( (series(lambda*sigma,sigma))^9, sigma ) = series((lambda^9)*sigma^9,sigma), 20, ( 1+(1/4)*(series(lambda*sigma,sigma))^2+(1/64)*(series(lambda*sigma,sigma))^4+(1/2304)*(series(lambda*sigma,sigma))^6+(1/147456)*(series(lambda*sigma,sigma))^8+(1/14745600)*(series(lambda*sigma,sigma))^10+(1/2123366400)*(series(lambda*sigma,sigma))^12+(1/416179814400)*(series(lambda*sigma,sigma))^14+(1/106542032486400)*(series(lambda*sigma,sigma))^16+(1/34519618525593600)*(series(lambda*sigma,sigma))^18+(1/13807847410237440000)*(series(lambda*sigma,sigma))^20+(1/6682998146554920960000)*(series(lambda*sigma,sigma))^22+(1/3849406932415634472960000)*(series(lambda*sigma,sigma))^24+(1/2602199086312968903720960000)*(series(lambda*sigma,sigma))^26+(1/2040124083669367620517232640000)*(series(lambda*sigma,sigma))^28+(1/1836111675302430858465509376000000)*(series(lambda*sigma,sigma))^30+(1/1880178355509689199068681601024000000)*(series(lambda*sigma,sigma))^32+(1/2173486178969200714123395930783744000000)*(series(lambda*sigma,sigma))^34+(1/2816838087944084125503921126295732224000000)*(series(lambda*sigma,sigma))^36+(1/4067514198991257477227662106371037331456000000)*(series(lambda*sigma,sigma))^38+(1/6508022718386011963564259370193659730329600000000)*(series(lambda*sigma,sigma))^40*O(1), sigma ) = series(1+((1/4)*lambda^2)*sigma^2+((1/64)*lambda^4)*sigma^4+((1/2304)*lambda^6)*sigma^6+((1/147456)*lambda^8)*sigma^8+((1/14745600)*lambda^10)*sigma^10+((1/2123366400)*lambda^12)*sigma^12+((1/416179814400)*lambda^14)*sigma^14+((1/106542032486400)*lambda^16)*sigma^16+((1/34519618525593600)*lambda^18)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(sigma,sigma))^18, sigma ) = series(sigma^18,sigma), 20, ( (series(sigma,sigma))*(series(sigma^6,sigma)), sigma ) = series(sigma^7,sigma), 20, ( (series(lambda*sigma,sigma))^32, sigma ) = series(+O(sigma^32),sigma,32), 20, ( (series(sigma,sigma))^11, sigma ) = series(sigma^11,sigma), 20, ( (series(lambda*sigma,sigma))^3, sigma ) = series((lambda^3)*sigma^3,sigma), 20, ( (series((lambda^15)*sigma^15,sigma))^2, sigma ) = series(+O(sigma^30),sigma,30), 20, ( (series(sigma^5,sigma))^2, sigma ) = series(sigma^10,sigma), 20, ( (series((lambda^4)*sigma^4,sigma))^2, sigma ) = series((lambda^8)*sigma^8,sigma), 20, ( (series(sigma,sigma))^38, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(sigma,sigma))*(series(sigma^4,sigma)), sigma ) = series(sigma^5,sigma), 20, ( (series(lambda*sigma,sigma))^24, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(sigma,sigma))^17, sigma ) = series(sigma^17,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^8)*sigma^8,sigma)), sigma ) = series((lambda^9)*sigma^9,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^14)*sigma^14,sigma)), sigma ) = series((lambda^15)*sigma^15,sigma), 20, ( (series(sigma^7,sigma))^2, sigma ) = series(sigma^14,sigma), 20, ( (series((lambda^5)*sigma^5,sigma))^2, sigma ) = series((lambda^10)*sigma^10,sigma), 20, ( (series(sigma,sigma))^12, sigma ) = series(sigma^12,sigma), 20, ( (series(sigma^19,sigma))^2, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(sigma,sigma))*(series(sigma^10,sigma)), sigma ) = series(sigma^11,sigma), 20, ( (series(sigma,sigma))^32, sigma ) = series(+O(sigma^32),sigma,32), 20, ( (series(lambda*sigma,sigma))*(series((lambda^16)*sigma^16,sigma)), sigma ) = series((lambda^17)*sigma^17,sigma), 20, ( (series(sigma,sigma))^8, sigma ) = series(sigma^8,sigma), 20, ( (series(sigma,sigma))^20, sigma ) = series(+O(sigma^20),sigma,20), 20, ( (series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10,sigma))-ln((1/2)*sigma)*BesselI(12, sigma)+(1/8192)*sigma^12*(-(1/239500800)*gamma+86021/13277924352000+(1/24908083200)*(1506353/360360-2*gamma)*sigma^2+(1/2789705318400)*(1712273/360360-2*gamma)*sigma^4+(1/502146957312000)*(1856417/360360-2*gamma)*sigma^6+(1/128549621071872000)*(3938059/720720-2*gamma)*sigma^8), sigma ) = series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10+((1/1961990553600)*ln(2)-(1/1961990553600)*ln(sigma)-(1/1961990553600)*gamma+86021/108772756291584000)*sigma^12+((1/102023508787200)*ln(2)-(1/102023508787200)*ln(sigma)+1506353/73530383253110784000-(1/102023508787200)*gamma)*sigma^14+((1/11426632984166400)*ln(2)-(1/11426632984166400)*ln(sigma)+1712273/8235402924348407808000-(1/11426632984166400)*gamma)*sigma^16+((1/2056793937149952000)*ln(2)-(1/2056793937149952000)*ln(sigma)+1856417/1482372526382713405440000-(1/2056793937149952000)*gamma)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(sigma,sigma))^4, sigma ) = series(sigma^4,sigma), 20, ( (1/2)*sigma, sigma ) = series((1/2)*sigma,sigma), 22, ( (series(sigma,sigma))^7, sigma ) = series(sigma^7,sigma), 20, ( (series(sigma,sigma))^14, sigma ) = series(sigma^14,sigma), 20, ( (series((lambda^8)*sigma^8,sigma))^2, sigma ) = series((lambda^16)*sigma^16,sigma), 20, ( (series(sigma^12,sigma))^2, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(+O(sigma^20),sigma,20))^2, sigma ) = series(+O(sigma^40),sigma,40), 20, ( (series(sigma,sigma))^6, sigma ) = series(sigma^6,sigma), 20, ( (series(lambda*sigma,sigma))^16, sigma ) = series((lambda^16)*sigma^16,sigma), 20, ( (series(sigma,sigma))^26, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(lambda*sigma,sigma))^6, sigma ) = series((lambda^6)*sigma^6,sigma), 20, ( (series(sigma^4,sigma))^2, sigma ) = series(sigma^8,sigma), 20, ( BesselI(12, sigma), sigma ) = series((1/1961990553600)*sigma^12+(1/102023508787200)*sigma^14+(1/11426632984166400)*sigma^16+(1/2056793937149952000)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))*(series((lambda^10)*sigma^10,sigma)), sigma ) = series((lambda^11)*sigma^11,sigma), 20, ( (series(lambda*sigma,sigma))^8, sigma ) = series((lambda^8)*sigma^8,sigma), 20, ( (1/4096)*(series(sigma,sigma))^12*(1/479001600+(1/24908083200)*(series(sigma,sigma))^2+(1/2789705318400)*(series(sigma,sigma))^4+(1/502146957312000)*(series(sigma,sigma))^6+(1/128549621071872000)*(series(sigma,sigma))^8+(1/43706871164436480000)*(series(sigma,sigma))^10+(1/18881368343036559360000)*(series(sigma,sigma))^12+(1/10044887958495449579520000)*(series(sigma,sigma))^14+(1/6428728293437087730892800000)*(series(sigma,sigma))^16+(1/4860118589838438324554956800000)*(series(sigma,sigma))^18+(1/4276904359057825725608361984000000)*(series(sigma,sigma))^20+(1/4328227211366519634315662327808000000)*(series(sigma,sigma))^22+(1/4986117747494230618731643001634816000000)*(series(sigma,sigma))^24+(1/6481953071742499804351135902125260800000000)*(series(sigma,sigma))^26+(1/9437723672457079715135253873494379724800000000)*(series(sigma,sigma))^28+(1/15289112349380469138519111275060895154176000000000)*(series(sigma,sigma))^30+(1/27398089330089800696226247404909124116283392000000000)*(series(sigma,sigma))^32+(1/54029032158937086972958159882480792757310849024000000000)*(series(sigma,sigma))^34+(1/116702709463304107861589625346158512355791433891840000000000)*(series(sigma,sigma))^36+(1/274951583495544478121905157315549455110244618249175040000000000)*(series(sigma,sigma))^38+(1/703876053748593863992077202727806605082226222717888102400000000000)*(series(sigma,sigma))^40*O(1)), sigma ) = series((1/1961990553600)*sigma^12+(1/102023508787200)*sigma^14+(1/11426632984166400)*sigma^16+(1/2056793937149952000)*sigma^18+O(sigma^20),sigma,20), 20, ( ln((1/2)*sigma)*BesselI(12, sigma), sigma ) = series((-(1/1961990553600)*ln(2)+(1/1961990553600)*ln(sigma))*sigma^12+(-(1/102023508787200)*ln(2)+(1/102023508787200)*ln(sigma))*sigma^14+(-(1/11426632984166400)*ln(2)+(1/11426632984166400)*ln(sigma))*sigma^16+(-(1/2056793937149952000)*ln(2)+(1/2056793937149952000)*ln(sigma))*sigma^18+O(sigma^20),sigma,20), 20, ( (series(sigma^3,sigma))^2, sigma ) = series(sigma^6,sigma), 20, ( (series(sigma,sigma))^13, sigma ) = series(sigma^13,sigma), 20, ( 1/479001600+(1/24908083200)*(series(sigma,sigma))^2+(1/2789705318400)*(series(sigma,sigma))^4+(1/502146957312000)*(series(sigma,sigma))^6+(1/128549621071872000)*(series(sigma,sigma))^8+(1/43706871164436480000)*(series(sigma,sigma))^10+(1/18881368343036559360000)*(series(sigma,sigma))^12+(1/10044887958495449579520000)*(series(sigma,sigma))^14+(1/6428728293437087730892800000)*(series(sigma,sigma))^16+(1/4860118589838438324554956800000)*(series(sigma,sigma))^18+(1/4276904359057825725608361984000000)*(series(sigma,sigma))^20+(1/4328227211366519634315662327808000000)*(series(sigma,sigma))^22+(1/4986117747494230618731643001634816000000)*(series(sigma,sigma))^24+(1/6481953071742499804351135902125260800000000)*(series(sigma,sigma))^26+(1/9437723672457079715135253873494379724800000000)*(series(sigma,sigma))^28+(1/15289112349380469138519111275060895154176000000000)*(series(sigma,sigma))^30+(1/27398089330089800696226247404909124116283392000000000)*(series(sigma,sigma))^32+(1/54029032158937086972958159882480792757310849024000000000)*(series(sigma,sigma))^34+(1/116702709463304107861589625346158512355791433891840000000000)*(series(sigma,sigma))^36+(1/274951583495544478121905157315549455110244618249175040000000000)*(series(sigma,sigma))^38+(1/703876053748593863992077202727806605082226222717888102400000000000)*(series(sigma,sigma))^40*O(1), sigma ) = series(1/479001600+(1/24908083200)*sigma^2+(1/2789705318400)*sigma^4+(1/502146957312000)*sigma^6+(1/128549621071872000)*sigma^8+(1/43706871164436480000)*sigma^10+(1/18881368343036559360000)*sigma^12+(1/10044887958495449579520000)*sigma^14+(1/6428728293437087730892800000)*sigma^16+(1/4860118589838438324554956800000)*sigma^18+O(sigma^20),sigma,20), 20, ( (series((lambda^3)*sigma^3,sigma))^2, sigma ) = series((lambda^6)*sigma^6,sigma), 20, ( (series(sigma,sigma))^24, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(sigma,sigma))*(series(sigma^14,sigma)), sigma ) = series(sigma^15,sigma), 20, ( BesselK(12, sigma), sigma ) = series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10+((1/1961990553600)*ln(2)-(1/1961990553600)*ln(sigma)-(1/1961990553600)*gamma+86021/108772756291584000)*sigma^12+((1/102023508787200)*ln(2)-(1/102023508787200)*ln(sigma)+1506353/73530383253110784000-(1/102023508787200)*gamma)*sigma^14+((1/11426632984166400)*ln(2)-(1/11426632984166400)*ln(sigma)+1712273/8235402924348407808000-(1/11426632984166400)*gamma)*sigma^16+((1/2056793937149952000)*ln(2)-(1/2056793937149952000)*ln(sigma)+1856417/1482372526382713405440000-(1/2056793937149952000)*gamma)*sigma^18+O(sigma^20),sigma,20), 20, ( (series((1/2)*sigma,sigma))/sigma, sigma ) = series(1/2,sigma), 21, ( (series(sigma^15,sigma))^2, sigma ) = series(+O(sigma^30),sigma,30), 20, ( sigma*lambda, sigma ) = series(lambda*sigma,sigma), 20, ( 39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22, sigma ) = series(39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22,sigma), 32, ( (series(lambda*sigma,sigma))^15, sigma ) = series((lambda^15)*sigma^15,sigma), 20, ( (series(sigma,sigma))*(series(sigma^8,sigma)), sigma ) = series(sigma^9,sigma), 20, ( (series(sigma,sigma))^36, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(lambda*sigma,sigma))^20, sigma ) = series(+O(sigma^20),sigma,20), 20, ( 2*(series((1/2)*sigma,sigma))/sigma, sigma ) = series(1,sigma), 21, ( (series((lambda^7)*sigma^7,sigma))^2, sigma ) = series((lambda^14)*sigma^14,sigma), 20, ( (series(lambda*sigma,sigma))^11, sigma ) = series((lambda^11)*sigma^11,sigma), 20, ( (series(sigma,sigma))^19, sigma ) = series(sigma^19,sigma), 20, ( (series(sigma^11,sigma))^2, sigma ) = series(+O(sigma^22),sigma,22), 20, ( (series(lambda*sigma,sigma))^14, sigma ) = series((lambda^14)*sigma^14,sigma), 20, ( (series(sigma,sigma))^34, sigma ) = series(+O(sigma^34),sigma,34), 20, ( (series(sigma^16,sigma))^2, sigma ) = series(+O(sigma^32),sigma,32), 20, ( ln((1/2)*sigma), sigma ) = series((-ln(2)+ln(sigma)),sigma), 20, ( (series(sigma^10,sigma))^2, sigma ) = series(+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^2, sigma ) = series((lambda^2)*sigma^2,sigma), 20, ( (series(sigma,sigma))^22, sigma ) = series(+O(sigma^22),sigma,22), 20 ] ) end proc

series(81749606400*sigma^(-12)+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2+O(sigma^0),sigma,0)

and back to the original

forget(series); series(F, sigma = 0, 0)

series(+O(sigma^(-12)),sigma,-12)

PrincipalPart:=proc(expr,x)
        local ser,actualorder,requestorder;
        uses numapprox;
        requestorder := 0;
        do
                ser := laurent(expr, x, requestorder);
                actualorder := order(ser);
                requestorder := requestorder + 1;
        until actualorder >= 0;
        if actualorder > 0 then
                ser := select(z -> degree(z,indets(x)[]) < 0, 1 + convert(ser,polynom) ) #1+ forces type `+`
        else
                ser:=convert(ser, polynom)
        end if;
        ser
end proc:

forget(numapprox:-laurent, series)

PrincipalPart(F, sigma)

81749606400/sigma^12+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2

NULL

Download PrincipalPart.mw

Not sure how you want to label them, but here are a couple of simple possibilities, using the caption as a label.

restart;

Make some plots and store them in indexed names; the index is used as the label.

p[1] := plot(x^2):
p[2] := plot(x^3):

DisplayWithMyName:=(plt::uneval)->plots:-display(eval(plt),captionfont=[times,roman,15],caption=cat("Plot ",op(plt))):

DisplayWithMyName(p[2]);

DisplayWithMyName(p[1]);

An alternative that just numbers them in sequence

seqnum:=0;

0

DisplayWithSeqNum:=proc(plt) global seqnum; ++seqnum;
   plots:-display(plt,captionfont=[times,roman,15],caption=cat("Plot ",seqnum));
end proc:

DisplayWithSeqNum(p[2]);

DisplayWithSeqNum(p[2]);

NULL

Download Plotlabels.mw

@lcz For IsSubgraphIsomorphic, Maple uses a constraint algoritham and SAT solver, perhaps this algorithm? doi 10.1007/s10601-009-9074-3 or here? doi: 10.1016/j.artint.2010.05.002, but I'm not sure there is an equivalent for the induced case.

The VF2 algorithm and its (much) improved variants VF2plus, VF2++ and VF3, seem to be widely used. Here I only tried VF2, and didn't try to optimize the data structures (mainly sets straight from the paper); probably moving to one of the improved algorithms would be the next step. I didn't check it on a large number of cases; perhaps you have some other cases to test it.

[Edit2: Updated version here now implements some parts of the VF2++ algorithm, and removes redundancy in search tree]

It seems fast to find matches if there are some, but of course is slower to show there are no matches. Hope this is useful.

[Edit - full VF2++ below]

Download VF2conndegAlgorithm4.mw

I changed your code to

f := "this:///Images/Maple.jpg";
img := Read(f);

and it works - you then get some warnings later that rotation angles should be in radians, which I'm sure you can fix.

Although

diff(ln(GAMMA(x)), x)=Psi(x)

Using the chain rule we find

diff(ln(GAMMA(1/x)), x)=-Psi(1/x)/x^2;

which explains the missing -x^2.

I don't think there is a builtin command, but there an implementation of a heap, which allows it to be done easily. If you wanted the whole list partially sorted, then just sort the selected ones and follow with the rest. (The smallest ones are in decreasing order; the largest are in increasing order.)

restart;

partselect:=proc(data::list,k::posint,compare:=`<`)
  local h,i;
  h:=heap:-new(compare,data[1..k][]);
  for i from k+1 to numelems(data) do
    heap:-insert(data[i],h);
    heap:-extract(h);
  end do;
  [while not heap:-empty(h) do
     heap:-extract(h)
   end do
  ];
end proc:
  

ds:=[seq(rand(1..100)(),1..20)];

[93, 45, 96, 6, 98, 59, 44, 100, 38, 69, 27, 96, 17, 90, 34, 18, 52, 56, 43, 83]

partselect(ds,3); # select smallest 3

[18, 17, 6]

partselect(ds,3,`>`); # select largest 3

[96, 98, 100]

ds:=StringTools:-Explode("partialsortingisfun");

["p", "a", "r", "t", "i", "a", "l", "s", "o", "r", "t", "i", "n", "g", "i", "s", "f", "u", "n"]

partselect(ds,3,lexorder);

["f", "a", "a"]

NULL

Download partselect.mw

One solution to this error is to supply an approximate solution, and since you said tanh(x) was a known solution, I tried that. But then I realized tanh(x) goes to -1, not 0, as x->-infinity. If I change the boundary condition to z(-15)=-1 it works. But if you really wanted z(-infinity)=0, then you can try a better approximate solution.

dsolve.mw

See

https://www.mapleprimes.com/questions/235168-How-Do-I-Generate-Magic-And-Semi-Magic

for some solutions.

You can add a constant to each cell to get other ones, but not sure what exactly you mean by random.

For your first case, the initial conditions are specified as 

dsolve({DE, R(0) = 1, D(R)(0) = 1}, numeric, range = 0 .. 20)

I made up a value for the derivative in the second condition; you will no doubt have a better value. Or perhaps you wanted a boundary condition as your second condition.

And a similar problem applies for your second problem.

PS: In your second problem in defining F you probably wanted an explicit multiplication after the first ), so (...)*(...)

Your second problem doesn't seem well-posed at theta=0.

Here some progress:

DIFFERENTIAL_EQUATION.mw

restart

with(numapprox); Lr := add((-1)^((1/2)*i-1)*Pi^i*r^(i+1)/2^(i-1), i = 2 .. 10, 2)

(1/2)*Pi^2*r^3-(1/8)*Pi^4*r^5+(1/32)*Pi^6*r^7-(1/128)*Pi^8*r^9+(1/512)*Pi^10*r^11

The presence of Pi here is a problem (problem also if we have x instead of Pi). Not sure if this is a bug, but certainly it shouldn't throw a cryptic error messsage.

pade(Lr, r, [2, 2])

Error, (in convert/ratpoly) invalid subscript selector

Make a version without the Pi. let rPi=r*Pi. LrPi is Pi times Lr

LrPi := expand(Pi*(eval(Lr, r = rPi/Pi)))

(1/2)*rPi^3-(1/8)*rPi^5+(1/32)*rPi^7-(1/128)*rPi^9+(1/512)*rPi^11

padeLrPi := pade(LrPi, rPi, [2, 2])

(1/2)*rPi^3

So go back to in terms of r

padeLr := expand((eval(padeLrPi, rPi = r*Pi))/Pi)

(1/2)*Pi^2*r^3

NULL

Download pade2.mw

The degree 3 result here is also a problem - I'll submit an SCR.

Not as general as @acer's solutions. It seems evalhf handles the Gamma function but not factorial so in this particular case converting to GAMMA works.

[Edit: This explanation is incorrect - see below]

failed_plot.mw

First 25 26 27 28 29 30 31 Last Page 27 of 82