mehdi jafari

774 Reputation

13 Badges

12 years, 102 days

MaplePrimes Activity


These are replies submitted by mehdi jafari

@lemelinm i do not know why i can not insert content to here ! as carl love says, we can not compute what u want .




maple.mw

testfile.txt

 

@lemelinm u can also try this, which is so clearer than the maple defualt .
go to tools,options, go to display tab, change input display to maple notation, i think it is some what more clear . good luck

@sharena2 i think u can do whatever u want with maple ! 

@Markiyan Hirnyk  actually i can edit  ! by i can not delet ! :D lol

there is no deletion option !

@sharena2 good luck

@Carl Love Robert isreal has said:

Note:  This code is experimental, and is not guaranteed to work.  
# In particular, "allsolve" uses "evalr" to do interval arithmetic, and is
# therefore subject to the weaknesses of "evalr".  Among the bugs and
# weaknesses I know about:
# 1) It doesn't work with "GAMMA".
# 2) It doesn't work with the two-variable version of "arctan".

@Carl Love at the end of this help page there is :

See Also
evalr, operators/precedence, ScientificErrorAnalysis, Units

actually the first related argument to the topic is this according to maple help.

according to maple help page :

evalr - evaluate an expression using range arithmetic

and i actually guess evalr can be uesd  do u think it is incorrect ?.

Reboert Isreal has some topic about this at 
http://www.math.ubc.ca/~israel/advisor/advisor4/allsolve.txt

i emailed him to help us here, i do not know whether he has time or not.

@Preben Alsholm 
http://www.mapleprimes.com/questions/201301-Factory-Simulation-Question

@sharena2  none of your uploaded worksheet is downlodable , please uplaod again and make sure that your file is downloadable . tnx

please upload your worksheet here . tnx

@Aroob2012 PDE and BCs is just name i have assing your pde equation and your boundary conditions to them,respectively. u can use pdsolve so solve your pde equation, for more information, u should see ?pdsolve 

pdsolve - find solutions for partial differential equations (PDEs) and systems of PDEs

i upload two pdfs of maple help page here, but please see them yourself on the maple help. good luck!

pdsolve,numeric_(pds.pdf

pdsolve.pdf

@Carl Love yes Sir,you are right, i thought iindex notation is better, and as you said,i shoud say about that. thank u for your remark.

the file is not uploading correctly, u can do like this ( at the end of your code ) :

x(t):=add(a[i]*f[i](t),i=1..numelems(C));u(t):=add(b[i]*f[i](t),i=1..numelems(C));

eval(x(t),op(2,MM));eval(u(t),op(2,MM));


restart:
with(Optimization):
with(LinearAlgebra):
L:=1:  r:=2:  tau:= 1:
interface(rtablesize= 2*r+1):

Z:= Matrix(
     2*r+1, 2*r+1,
     [tau,
      seq(evalf((L/(2*(iz-1)*Pi))*sin(2*(iz-1)*Pi*tau/L)), iz= 2..r+1),
      seq(evalf((L/(2*(iz-1-r)*Pi))*(1-cos(2*(iz-1-r)*Pi*tau/L))), iz= r+2..2*r+1)
      ],
     scan= columns,
     datatype= float[8]
);
                        
Dtau00:= < 1 >:
Dtau01:= Vector[row](r):
Dtau02:= Vector[row](r):
Dtau10:= Vector(r):
Dtau20:= Vector(r):

Dtau1:= DiagonalMatrix([seq(evalf(cos(2*i*Pi*tau/L)), i= 1..r)]):
Dtau2:= DiagonalMatrix([seq(evalf(sin(2*i*Pi*tau/L)), i= 1..r)]):
Dtau3:= -Dtau2:
Dtau4:= copy(Dtau1):

Dtau:= < < Dtau00 | Dtau01 | Dtau02 >,
         < Dtau10 | Dtau1  | Dtau2  >,
         < Dtau20 | Dtau3  | Dtau4  > >;
 
P00:= < L/2 >:
P01:= Vector[row](r):
P02:= Vector[row](r, j-> evalf(-L/j/Pi), datatype= float[8]):
P10:= Vector(r):
P20:= Vector(r, i-> evalf(L/2/i/Pi)):
P1:= Matrix(r,r):
P2:= DiagonalMatrix(P20):
P3:= DiagonalMatrix(-P20):
P4:= Matrix(r,r):

P:= < < P00 | P01 | P02 >,
      < P10 | P1  | P2  >,
      < P20 | P3  | P4  > >;

interface(rtablesize=2*r+1):    # optionally
J:=Vector([L, L/2 $ 2*r]):      # Matrix([[...]]) would also work here

E:=DiagonalMatrix(J);

X:=  Vector[row](2*r+1,symbol=a);
U:=Vector[row](2*r+1,symbol=b);

X0:= Vector[row](2*r+1,[1]);
G:=Vector[row](2*r+1,[1]);
C:=simplify(X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P);

Matrix(%id = 18446744073930868126)

Matrix(%id = 18446744073930869806)

Matrix(%id = 18446744073934930878)

Matrix(%id = 18446744073934931118)

Vector[row](%id = 18446744073934931478)

Vector[row](%id = 18446744073934931598)

Vector[row](%id = 18446744073934931718)

Vector[row](%id = 18446744073934931838)

Vector[row](%id = 18446744073934934014)

(1)

J:=X.E.Transpose(X)+U.E.Transpose(U);

a[1]^2+(1/2)*a[2]^2+(1/2)*a[3]^2+(1/2)*a[4]^2+(1/2)*a[5]^2+b[1]^2+(1/2)*b[2]^2+(1/2)*b[3]^2+(1/2)*b[4]^2+(1/2)*b[5]^2

(2)

indets(J); indets(C)

{a[1], a[2], a[3], a[4], a[5], b[1], b[2], b[3], b[4], b[5]}

{a[1], a[2], a[3], a[4], a[5], b[1], b[2], b[3], b[4], b[5]}

(3)

MM:=Minimize(J,{seq(C[i]=0,i=1..numelems(C))});

[1.52587355672056, [a[1] = HFloat(1.1444051675322553), a[2] = HFloat(0.07357433785547854), a[3] = HFloat(0.01908371625198537), a[4] = HFloat(-0.23114059946679755), a[5] = HFloat(-0.11990652558360362), b[1] = HFloat(-0.3814683891883076), b[2] = HFloat(1.0769416608491511e-11), b[3] = HFloat(-2.602282105079734e-12), b[4] = HFloat(-0.23114059939913112), b[5] = HFloat(-0.11990652561630648)]]

(4)

#XP:=-.015+X[1]+add(X[l+1]*f1(l)+X[r+l+1]*f2(l), l= 1..r):
#plot([XP,T1], t= 0..1);#,legend= "Solution Of x(t) with r=50"):

 

op(2,MM);

[a[1] = HFloat(1.1444051675322553), a[2] = HFloat(0.07357433785547854), a[3] = HFloat(0.01908371625198537), a[4] = HFloat(-0.23114059946679755), a[5] = HFloat(-0.11990652558360362), b[1] = HFloat(-0.3814683891883076), b[2] = HFloat(1.0769416608491511e-11), b[3] = HFloat(-2.602282105079734e-12), b[4] = HFloat(-0.23114059939913112), b[5] = HFloat(-0.11990652561630648)]

(5)

x(t):=add(a[i]*f[i](t),i=1..numelems(C));u(t):=add(b[i]*f[i](t),i=1..numelems(C));

a[1]*f[1](t)+a[2]*f[2](t)+a[3]*f[3](t)+a[4]*f[4](t)+a[5]*f[5](t)

b[1]*f[1](t)+b[2]*f[2](t)+b[3]*f[3](t)+b[4]*f[4](t)+b[5]*f[5](t)

(6)

eval(x(t),op(2,MM));eval(u(t),op(2,MM));

HFloat(1.1444051675322553)*f[1](t)+HFloat(0.07357433785547854)*f[2](t)+HFloat(0.01908371625198537)*f[3](t)-HFloat(0.23114059946679755)*f[4](t)-HFloat(0.11990652558360362)*f[5](t)

-HFloat(0.3814683891883076)*f[1](t)+HFloat(1.0769416608491511e-11)*f[2](t)-HFloat(2.602282105079734e-12)*f[3](t)-HFloat(0.23114059939913112)*f[4](t)-HFloat(0.11990652561630648)*f[5](t)

(7)

 

good luck!

Download solved.mws



@mahmood180 

@Carl Love i thought nops(c) has returned 5 not 3 . tnx for your remark.
Mr. Dadkhah you are very welcome. as my friend Carl love says your corrected form of answer is :

restart:
with(Optimization):
with(LinearAlgebra):
L:=1:  r:=2:  tau:= 1:
interface(rtablesize= 2*r+1):

Z:= Matrix(
     2*r+1, 2*r+1,
     [tau,
      seq(evalf((L/(2*(iz-1)*Pi))*sin(2*(iz-1)*Pi*tau/L)), iz= 2..r+1),
      seq(evalf((L/(2*(iz-1-r)*Pi))*(1-cos(2*(iz-1-r)*Pi*tau/L))), iz= r+2..2*r+1)
      ],
     scan= columns,
     datatype= float[8]
);
                        
Dtau00:= < 1 >:
Dtau01:= Vector[row](r):
Dtau02:= Vector[row](r):
Dtau10:= Vector(r):
Dtau20:= Vector(r):

Dtau1:= DiagonalMatrix([seq(evalf(cos(2*i*Pi*tau/L)), i= 1..r)]):
Dtau2:= DiagonalMatrix([seq(evalf(sin(2*i*Pi*tau/L)), i= 1..r)]):
Dtau3:= -Dtau2:
Dtau4:= copy(Dtau1):

Dtau:= < < Dtau00 | Dtau01 | Dtau02 >,
         < Dtau10 | Dtau1  | Dtau2  >,
         < Dtau20 | Dtau3  | Dtau4  > >;
 
P00:= < L/2 >:
P01:= Vector[row](r):
P02:= Vector[row](r, j-> evalf(-L/j/Pi), datatype= float[8]):
P10:= Vector(r):
P20:= Vector(r, i-> evalf(L/2/i/Pi)):
P1:= Matrix(r,r):
P2:= DiagonalMatrix(P20):
P3:= DiagonalMatrix(-P20):
P4:= Matrix(r,r):

P:= < < P00 | P01 | P02 >,
      < P10 | P1  | P2  >,
      < P20 | P3  | P4  > >;

interface(rtablesize=2*r+1):    # optionally
J:=Vector([L, L/2 $ 2*r]):      # Matrix([[...]]) would also work here

E:=DiagonalMatrix(J);

X:=  Vector[row](2*r+1,symbol=a);
U:=Vector[row](2*r+1,symbol=b);

X0:= Vector[row](2*r+1,[1]);
G:=Vector[row](2*r+1,[1]);
C:=simplify(X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P);

Matrix(%id = 18446744073931261342)

Matrix(%id = 18446744073931263022)

Matrix(%id = 18446744073935324094)

Matrix(%id = 18446744073935324334)

Vector[row](%id = 18446744073935324694)

Vector[row](%id = 18446744073935324814)

Vector[row](%id = 18446744073935324934)

Vector[row](%id = 18446744073935325054)

Vector[row](%id = 18446744073935327230)

(1)

J:=X.E.Transpose(X)+U.E.Transpose(U);

a[1]^2+(1/2)*a[2]^2+(1/2)*a[3]^2+(1/2)*a[4]^2+(1/2)*a[5]^2+b[1]^2+(1/2)*b[2]^2+(1/2)*b[3]^2+(1/2)*b[4]^2+(1/2)*b[5]^2

(2)

indets(J); indets(C)

{a[1], a[2], a[3], a[4], a[5], b[1], b[2], b[3], b[4], b[5]}

{a[1], a[2], a[3], a[4], a[5], b[1], b[2], b[3], b[4], b[5]}

(3)

Minimize(J,{seq(C[i]=0,i=1..numelems(C))});

[1.52587355672056, [a[1] = HFloat(1.1444051675322553), a[2] = HFloat(0.07357433785547854), a[3] = HFloat(0.01908371625198537), a[4] = HFloat(-0.23114059946679755), a[5] = HFloat(-0.11990652558360362), b[1] = HFloat(-0.3814683891883076), b[2] = HFloat(1.0769416608491511e-11), b[3] = HFloat(-2.602282105079734e-12), b[4] = HFloat(-0.23114059939913112), b[5] = HFloat(-0.11990652561630648)]]

(4)

#XP:=-.015+X[1]+add(X[l+1]*f1(l)+X[r+l+1]*f2(l), l= 1..r):
#plot([XP,T1], t= 0..1);#,legend= "Solution Of x(t) with r=50"):

 

 

 

 

 



Download solved.mws




First 11 12 13 14 15 16 17 Last Page 13 of 23