tomleslie

13876 Reputation

20 Badges

15 years, 174 days

MaplePrimes Activity


These are answers submitted by tomleslie

  1. The 'if' test in Fract contains a redundant 'is()' - if condition are treated as Boolean
  2. Fixed the equation in Fract1
  3. Handled the issue in Fract1 where isolve() can return an infinite number of solutions
  4. Added a 'No Solution' clause where appropriate
  5. In the attached, both procedures give the same answer

  Fract:= proc( P::posint, Q::posint)
                local p, q;
                for p to P-1 do
                    for q to Q-1 do
                        if   (P-p)*q-p*(Q-q) = 1
                        then return p/q, P/Q, (P-p)/(Q-q)
                        end if
                    end do:
                end do:
                return `No Solution`
          end proc:
  Fract1:= proc( P::posint, Q::posint)
                 local p, q, sol;
                 sol:= eval( isolve((P-p)*q-p*(Q-q) = 1),
                             _Z1=0
                           );
                 if   sol <> NULL
                 then return eval( [p/q, P/Q, (P-p)/(Q-q)],
                                   sol
                                 )[];
                 else return `No Solution`
                 fi;
           end proc:
  Fract(7, 81);    Fract1(7,81);
  Fract(39, 97);   Fract1(39,97);
  Fract(101, 143); Fract1(101,143);
  Fract(11, 80);   Fract1(11,80);
  Fract(15, 37);   Fract1(15,37);
  Fract(22, 39);   Fract1(22,39);
  Fract(25, 37);   Fract1(25,37);
  Fract(21, 91);   Fract1(21,91);
  Fract(13, 19);   Fract1(13,19);

5/58, 7/81, 2/23

 

5/58, 7/81, 2/23

 

2/5, 39/97, 37/92

 

2/5, 39/97, 37/92

 

12/17, 101/143, 89/126

 

12/17, 101/143, 89/126

 

7/51, 11/80, 4/29

 

7/51, 11/80, 4/29

 

2/5, 15/37, 13/32

 

2/5, 15/37, 13/32

 

9/16, 22/39, 13/23

 

9/16, 22/39, 13/23

 

2/3, 25/37, 23/34

 

2/3, 25/37, 23/34

 

`No Solution`

 

`No Solution`

 

2/3, 13/19, 11/16

 

2/3, 13/19, 11/16

(1)

 


 

Download dioph.mw

If you use

showstat(DocumentTools:-GetProperty);

to examine the code for the GetProperty() command, the first line is

DocumentTools:-GetProperty := proc(id::{string, symbol}, prop::{string, symbol, typeindex(symbol)})

so the type of the second argument has to be either a string a symbol, or an indexed symbol it doessn't matter which. So in your case either value or "value" is fine

It may depend on whther you are going to "generalize" this code in any way. For the case you provide, the following provides the same answer (and is shorter)


 

NULL

restart;
kernelopts(version);
g:={i1, i2,i3,i4};
add( add(mul~(combinat:-choose(g minus {j}, 2)))*j^2, j in g)

`Maple 2018.2, X86 64 WINDOWS, Nov 16 2018, Build ID 1362973`

 

{i1, i2, i3, i4}

 

(i2*i3+i2*i4+i3*i4)*i1^2+(i1*i3+i1*i4+i3*i4)*i2^2+(i1*i2+i1*i4+i2*i4)*i3^2+(i1*i2+i1*i3+i2*i3)*i4^2

(1)

``


 

Download someCombs.mw

 

it depends whether you want an exact (ie symbolic) solution, or whether a numeric approximation is acceptable?

The attached finds both

  fapp:= x^(2)+423*x^(3)/3+6789*x^(4)/4;
  fexact:=sin(x)/x;
#
# maximize() will not find an a symbolic
# solution if the abs() function is used,
# but one can find the maximum square error
#
  maximize((fapp-fexact)^2, x=0..2, location)[2][];
#
# Need to take the square root to get back to
# the maximum absolute error
#
  sqrt(%[2]);
#
# Generate a floating point approximation for
# the above
#
  evalf(%);

x^2+141*x^3+(6789/4)*x^4

 

sin(x)/x

 

[{x = 2}, (1/64)*(-226304+4*sin(2))^2]

 

28288-(1/2)*sin(2)

 

28287.54535

(1)

#
# Use the optimization package to find the maximum absolute error
# numerically
#
  Optimization:-NLPSolve( abs(fapp-fexact), x=0..2, maximize=true);

[HFloat(28287.545351286586), [x = HFloat(2.0)]]

(2)

 


 

Download maxErr.mw

Doing this just produces a garbled mixture of Maple input and Maple output, which is almost impossible to interpret.

Instead use the big green up-arrow in the Mapleprimes toolbar to upload your worksheet.

If I try tidying up the cr*p you did supply then I get the code shown in the attached. However your original post also contains references to a procedure given only as

rang := proc(M::list, a)  ...  end;;

where the body of the procedure is not supplied, and hence cannot be debugged by anyone here

restart;
A002487:= proc(m)
               local a, b, n;
               option remember;
               a:= 1; b:= 0; n:= m;
               while 0 < n do
                     if   type(n, odd)
                     then b:= a+b
                     else a:= a+b
                     end if;
                     n:= floor((1/2)*n)
               end do;
               b
          end proc:

listeinverse:= proc(L::list)
                    local i;
                    [seq(op(nops(L)-i, L), i = 0 .. nops(L)-1)]
               end proc:

Brocot:= proc(n)
              local c, i, L, M, r;
              L:= NULL;
              r:= 2^n;
              L:= [seq(A002487(i), i = 0 .. r)];
              M:= listeinverse(L);
              c[0]:= 0, 1/cat(0);
              for i to r do
                  c[i]:= L[i]/M[i]
              end do;
              c[r+1]:= 1/cat(0);
              return [seq(c[i], i = 1 .. r+1)], r+1
        end proc:

F:= proc(N)
         local a, b, L; L:= NULL;
         L:= sort([op({seq(seq(a/b, a = 0 .. b), b = 1 .. N)})]);
         return L, nops(L)
    end proc:

for i from 0 to 4 do
    B || i:= Brocot(i)
end do;
 
F(1); F(2); F(3); F(4);

[0, 1/`0`], 2

 

[0, 1, 1/`0`], 3

 

[0, 1/2, 1, 2, 1/`0`], 5

 

[0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 1/`0`], 9

 

[0, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1, 4/3, 3/2, 5/3, 2, 5/2, 3, 4, 1/`0`], 17

 

[0, 1], 2

 

[0, 1/2, 1], 3

 

[0, 1/3, 1/2, 2/3, 1], 5

 

[0, 1/4, 1/3, 1/2, 2/3, 3/4, 1], 7

(1)

 

 


 

Download newProc.mw

the worksheet Fuzzy_clusters_subtour.mw it generates the error message

Error, (in Optimization:-LPSolve) problem must have at least one variable

This is not too surprising, because when I examine the arguments being supplied to the LPSolve() command on the first iteration of the for loop these are 0, {}, {} respectively. That is, the LPsolve() command

Optimization[LPSolve](z[Ni], {aconu, cons3, cons4}, binaryvariables = {seq(seq(x[i, j], i = s minus {j}), j = s)})

is actually

Optimization[LPSolve](0, {}, binaryvariables = {})

so I'm not too surpised that this fails miserably.

For a more detailed commentary on why this occurs, see the attached

Solving CVRP
(Fuzzy C-Means Clustering - TSP Problem)

restart:

gc(): # Force collection
stgc:= kernelopts(gctimes):
st:= time():
FuzzyCMeans:= proc(
     X::Matrix,   #The rows of X are the data points.
     #number of clusters and number of means:
     {clusters::And(posint, satisfies(x-> x > 1)):= 2},
     {fuzziness::satisfies(x-> x > 1):= 2},   #fuzziness factor
     {epsilon::positive:= 1e-4},   #convergence criterion
     {max_iters::posint:= 999},   #max number of iterations
     {Norm::procedure:= (x-> LinearAlgebra:-Norm(x,2))}
)
option `testing`;
description
    "Fuzzy C-Means clustering algorithm.
     
    "
;
uses LA= LinearAlgebra;
local
     c:= clusters,     #number of clusrters and number of menas
     m:= fuzziness,    #fuzziness factor
     n:= op([1,1], X), #number of points
     d:= op([1,2], X), #dimension
     N:= Norm,
     #U[i,j] is the degree (on a 0..1 scale) to which point i belongs to cluster j.
     U:= Matrix((n,c), datatype= float[8]),
     #U1 is just an update copy of U.
     U1:= LA:-RandomMatrix((n,c), generator= 0..1, datatype= float[8]),
     C:= Matrix((c,d), datatype= float[8]), #The rows of C are the cluster centers.
     e:= 2/(m-1),
     i, j, k, jj, #loop indices
     UM # U^~m
;
     for jj to max_iters while LA:-Norm(U-U1, infinity) >= epsilon do
          U:= copy(U1);
          UM:= U^~m;
          for j to c do
               C[j,..]:= add(UM[i,j].X[i,..], i= 1..n) / add(UM[i,j], i= 1..n)
          end do;
          U1:= Matrix(
               (n,c),
               (i,j)-> 1/add((N(X[i,..]-C[j,..])/N(X[i,..]-C[k,..]))^e, k= 1..c),
               datatype= float[8]
          )
     end do;
     if jj > max_iters then error "Didn't converge" end if;
     userinfo(1, FuzzyCMeans, "Used", jj, "iterations.");
     (C,U1)                
end proc:

``

#Test data(Clustering data based on the level of demand (low, medium and high)):
X:=
     [[20,20,20],[20,20,20],[15,25,30],[15,15,20],[10,10,15]
     ]
:
XM:= Matrix(X, datatype= float[8]):


infolevel[FuzzyCMeans]:= 1:

(C,U):= FuzzyCMeans(
     XM,
     #All options are set to their default values here:
     clusters= 2, fuzziness= 2, epsilon= 1e-4, max_iters= 999,
     Norm= (x-> LinearAlgebra:-Norm(x,2))
):

FuzzyCMeans: Used 2 iterations.

 

AssignToClusters := proc (U::Matrix) options operator, arrow; map(proc (i) local p; member(max(U[i, () .. ()]), U[i, () .. ()], p); p end proc, [`$`(1 .. op([1, 1], U))]) end proc

_local(A, k, J, c); 1; A := AssignToClusters(U); 1; J := [`$`(1 .. op([1, 1], U))]; 1; c := op([1, 2], U)

[2, 2, 2, 2, p]

 

[1, 2, 3, 4, 5]

(1)

a := [0, op(A)]; NC := 6; objf := Matrix(`$`(NC, 2), shape = symmetric, scan = triangular, `~`[[0, op]]([[1, 3, 2, 1, 2], [3, 2, 6, 7], [3, 5, 6], [2, 2], [4]]))

[0, 2, 2, 2, 2, p]

 

6

(2)

for Ni to c do h := convert(select(proc (i) options operator, arrow; a[i] = Ni end proc, [`$`(1 .. nops(a))]), set); s := `union`(h, {1}); v := numelems(s); z[Ni] := add(add(objf[i, j]*x[i, j], `in`(i, s)), `in`(j, s)); x[1, 1]; objf[1, 1]; cons4 := seq(add(x[j, i], i = `minus`(s, {j})) = 1, j = h); cons3 := seq(add(x[i, j], i = `minus`(s, {j})) = 1, j = h); aconu := seq(seq(v*x[i, j]+u[i]-u[j] <= v-1, i = `minus`(s, {1, j})), j = `minus`(s, {1})); Comment6 := [z[Ni], {aconu, cons3, cons4}, {seq(seq(x[i, j], i = `minus`(s, {j})), j = s)}]; z[Ni] := Optimization[LPSolve](z[Ni], {aconu, cons3, cons4}, binaryvariables = {seq(seq(x[i, j], i = `minus`(s, {j})), j = s)}); X := eval(Matrix(v, symbol = x), {z[Ni][2][], seq(x[i, i] = 0, i = s)}); ord := 1; k := 1; to v do k := max[index](X[k]); ord := ord, k end do; 'order' = ord; trace(z[Ni]); settime := time(); expression; time()-settime end do; gct := kernelopts(gctimes); if gct <> stgc then gc() end if; time()-st

 

{}

 

{1}

 

1

 

0

 

x[1, 1]

 

0

 

 

 

 

[0, {}, {}]

 

Error, (in Optimization:-LPSolve) problem must have at least one variable

 

10.389

(3)

NULL

NULL

 


 

Download FC_comment.mw

The solution of your final execution group is essentially dependent on the sign of 'a', so the overall answer will be either +infinity or -infinity, which is illustrated in the attached.

So what is tha issue?


 

restart

N := int((x-Q)^m*f(x), x = Q .. infinity); eval(N, [m = 2, f(x) = 1/5000])

int((x-Q)^m*f(x), x = Q .. infinity)

 

infinity

(1)

Cost := a*N

a*(int((x-Q)^m*f(x), x = Q .. infinity))

(2)

Dcost := diff(Cost, Q)

a*(int(-(x-Q)^m*m*f(x)/(x-Q), x = Q .. infinity))

(3)

Val := eval(Dcost, [m = 2, f(x) = 1/5000, co = 25, cs = 15])

-a*infinity

(4)

`assuming`([simplify(Val)], [0 < a]); `assuming`([simplify(Val)], [0 > a])

 

-infinity

 

infinity

(5)

 


 

Download infProb.mw

one of which is trivlai - the other is "conceptual"

The first problem is that (in the code you supply)  'x0' is a column vector, whereas 'x1' and 'x2' are row vectors, so the calculation of 'lambda' will fail because you can't add a row vector to a column vector. You can get round this issue by writing the definition of 'x0' as

x0:=Vector[row]([1,1,1,1,1,1,1,1,1,1]);

With 'x0', 'x1', 'x2' now all row vectors, the computation

lambda:=beta__0*x0+beta__1*x1+b__2*x2;

will successfully return a row vector. This however leads to the next problem: exactly what is meant by the expression

B:= x->(1/x!)*lambda^x*exp(-lambda);

This can be defined because the 'body' of the function is not evaluated until it is called. However when you to evaluate this function with any supplied argument, what do you expect from the term exp(-lambda)???

Remember that lambda is a vector; Forget all the complicated 'Statistics' stuff for the moment, what would you expect exp(<1,1>) to return?

 

 

Don't evaluate the the call to BesselJ() before the plot() algorithm gets to work, as in


 

 p1:=plot('sqrt(Pi/(2*x))*BesselJ(3+1/2, x)', x = 0 .. 0.5e-1);
 p2:=plot(sqrt(Pi/(2*x))*BesselJ(3+.5, x), x = 0 .. 0.5e-1);

 

 

 


 

Download BessPlot.mw

 

F(w)=(10/w)*exp(-7iw)*sin(4*w)

I assume you mean

F(w)=(10/w)*exp(-7*I*w)*sin(4*w)

The default character which Maple uses for hte square root of -1 is uppercase 'I'. You also have to ensure that all multiplication is explicit: so -7*I*w rather than -7Iw

See the atteched

  restart;
  F:=(10/w)*exp(-7*I*w)*sin(4*w):
#
# Simple amplitude spectrum, with a few plot
# options
#
  plot( abs(F),
        w = 1..10,
        title="ampl vs frequency",
        titlefont= [times, bold, 16],
        labels=["freq", "ampl" ],
        labelfont= [times, bolditalic, 16]
      );
#
# Of course you can plot the amplitude in decibels
# and the frequency on a logarithmic axis if
# desired/necessary. Shown below with a few more
# plot options
#
  plots:-semilogplot( 20*log10(abs(F)),
                      w=1..100,
                      axes=boxed,
                      gridlines=true
                    );

 

 

 

Download spectrum.mw

I'm only adding this because I don't think the use of unapply() fully explains your underlying concepts which you really have to get your head around.

Consider the 'toy' example

x:=1;
y:=2;
f:=(x,y)->x+y

So what is f(3,4)???

Think about it, because it is important!

Maple will return 7, because the values used within the function 'f' are local to the function f. The fact that 'x' and 'y' have also been assigned outside the function 'f' is completely irrelevant. Within the function f these assignments do not exist.

Now consider your actual problem

aux := rsolve({y(0) = y0, y(n) = 4*y(n-1)*(1-y(n-1))}, y(n));
solucao := (n,y0)-> aux;
solucao(3,1/2);

Corresponding to the toy example which I gave above, the values 'n' and 'y0' which are used/defined within 'aux' bear no relation to the arguments 'n' and 'y0' passed to the function 'solucao'. Hence they will not be used within the expression assigned to 'aux'. Hence the call solucao(3,1/2) will return an expression containing 'n' and 'y0'

The most common but erroneous next attempt is to try

solucao := (n,y0)-> rsolve({y(0) = y0, y(n) = 4*y(n-1)*(1-y(n-1))}, y(n));              ****
solucao(3,1/2);

After all 'y0' and 'n' are now only defined within the function 'solucao', which is true - so everything ought to be good. Errrrr no!

When you define functions/procedures this way, the 'body' of the function/procedure is not evaluated when it is defined, it is just sitting there waiting for some useful parameters. When you supply thse parameters, they are immediately substituted before anything else happens, so in the above example, the first step performed by the function 'solucao' is to substitute the passed arguments, everywhere they occur within the function, thus creating

rsolve({y(0)=1/2, y(3)=4*y(3-1)*(1-y(3-1))}, y(3))

and I'm sure you can see that rsolve() cannot create a general closed-form recursion relation based on this.

So why does unaspply() work? Firstly the arguments are localised, so the first issue I described above does not occur. Secondly the arguments to unapply() are evaluated, unlike the result of the statement marked **** above. Since the rsolve() command is evaluated, it produces a simple expression containing 'n' and 'y0' which will return a value when the passed arguments are substituted. You should compare the outputs of the two commands

solucao:= (n,y0)-> rsolve({y(0) = y0, y(n) = 4*y(n-1)*(1-y(n-1))}, y(n));
solucao:= unapply(rsolve({y(0) = y0, y(n) = 4*y(n-1)*(1-y(n-1))}, y(n)), n, y0);

to appreciate the difference

 

it is more effective to "simplify" on a term-by-term basis.

See the attached

restart

A := binomial(n, k)

binomial(n, k)

(1)

B := binomial(n-1, k-1)

binomial(n-1, k-1)

(2)

NULL

E := `assuming`([sum(A*p^k*(1-p)^(n-k)*k, k = 0 .. n)], [sum(A*p^k*(1-p)^(n-k), k = 0 .. n) = 1]) NULL

NULL

simplify(E, symbolic)

p*n

(3)

NULLsimplify(sum(A*p^k*(1-p)^(n-k), k = 0 .. n), symbolic)

1

(4)

simplify(sum(A*p^k*(1-p)^(n-k)*(k-E)^2, k = 0 .. n), symbolic)

p*n*(2*(-1)^(1+2*n)*(-1+p)^(-2*n)*p*n*(1-p)^(2*n)+(-1)^n*(-1+p)^(-n)*(1-p)^n*(n*p-p+1)+(-1)^(3*n)*(-1+p)^(-3*n)*(1-p)^(3*n)*p*n)

(5)

F := `assuming`([sum(A*p^k*(1-p)^(n-k)*(k-E)^2, k = 0 .. n)], [{A = n*B/k and k^2 = k*(k-1)+k}])

NULL

simplify(F, symbolic)

p*n*(2*(-1)^(1+2*n)*(-1+p)^(-2*n)*p*n*(1-p)^(2*n)+(-1)^n*(-1+p)^(-n)*(1-p)^n*(n*p-p+1)+(-1)^(3*n)*(-1+p)^(-3*n)*(1-p)^(3*n)*p*n)

(6)

add(simplify([op([1 .. -1], expand(F))], symbolic))

-n*p^2+n*p

(7)

``

``

Download simpl.mw

I reran your worksheet with Digits=30 and what I assume to be your "residuals" (ie final two columns of output table) decrease to ~10^-12 or less

I also added the options 'complex' and 'fulldigits' to the fsolve() command - these may be superfluous!

See the attached


 

``

restart; Digits := 30

30

(1)

EQ1 := 1.780876811*10^90*(-(1.857495893*10^(-32)*I)*(-(.9215096529*(-1.077177489*10^(-57)*omega^2+1.251444314*10^(-43)-7.423792254*10^(-74)*omega^4))*(1.042248387*10^(-7)*omega-3.773917830*10^(-22)*omega^3)+1.022012860*10^(-43)-9.365146438*10^(-58)*omega^2+1.290731820*10^(-74)*omega^4+8.072440803*10^(-47)*omega^2*(7.038725244*10^(-13)-9.109383000*10^(-28)*omega^2))*exp(-.9800000000*I-4.717786244*10^(-17)*omega^2)-(1.857495893*10^(-32)*I)*((.9215096529*(5.411991727*10^(-58)*omega^2-1.370413754*10^(-43)+1.063387455*10^(-73)*omega^4))*(1.042248387*10^(-7)*omega-3.773917830*10^(-22)*omega^3)-1.119171234*10^(-43)+3.850718130*10^(-58)*omega^2+1.279097989*10^(-74)*omega^4+1.703871878*10^(-48)*omega^2*(5.154059190*10^(-14)+3.036461000*10^(-28)*omega^2)+8.072440803*10^(-47)*omega^2*(7.038725244*10^(-13)+9.109383000*10^(-28)*omega^2))*exp(.9800000000*I-4.717786244*10^(-17)*omega^2)+2.054040475*10^(-31)*((1.936145393*10^(-59)+1.043762907*10^(-58)*I)*omega^2+4.297601656*10^(-46)-1.690952584*10^(-44)*I+(-1.159596547*10^(-75)+1.164619044*10^(-74)*I)*omega^4)*exp(-4.717786244*10^(-17)*omega^2)*(1.042248387*10^(-7)*omega-3.773917830*10^(-22)*omega^3)+(2.799879047*10^(-71)*I)*(-6.704964363*10^(-12)-3.118737242*10^(-28)*omega^2)*omega*exp(.9800000000*I-1.090999486*10^(-14)*omega^2)-(2.799879047*10^(-71)*I)*(8.281232388*10^(-12)+2.177273887*10^(-28)*omega^2)*omega*exp(-.9800000000*I-1.090999486*10^(-14)*omega^2)+3.476335242*10^(-51)*((.1388433141*I)*(-2.893776471*10^(-25)-1.303697368*10^(-38)*omega^2+7.808106616*10^(-55)*omega^4)+4.959435112*10^(-25)-3.098806468*10^(-39)*omega^2-3.391707726*10^(-55)*omega^4-1.314961283*10^(-30)*(-2.854029409*10^(-11)+1.827522021*10^(-27)*omega^2)*omega^2)*exp(-4.717786244*10^(-17)*omega^2)-2.814230381*10^(-37)*(9.949004410*10^(-35)*(-6.832852706*10^(-13)-1.621609260*10^(-14)*I-(2.889900216*10^(-30)*I)*omega^2-(.9082907587*I)*(8.002616800*10^(-12)-1.954522389*10^(-30)*omega^2)-(.4487255373*I)*(9.612550267*10^(-12)+9.109383000*10^(-28)*omega^2)+4.081082866*10^(-29)*omega^2)*exp(-1.090999486*10^(-14)*omega^2)-1.995292057*10^(-54)*omega)*omega)/omega^2

indets(EQ1, name)

{omega}

(2)

low_bnd := 0; hig_bnd := 10^10+I*10^10

hig_bnd_Mid := hig_bnd

for b to 20 do Grl_Dst_Frq_Mid_var := fsolve(EQ1 = 0, complex, fulldigits, omega = low_bnd .. hig_bnd_Mid); if `or`(type(Grl_Dst_Frq_Mid_var, complex), type(Grl_Dst_Frq_Mid_var, float)) then Frq_Rate := evalc(Im(Grl_Dst_Frq_Mid_var)/Re(Grl_Dst_Frq_Mid_var)); EQV := evalf(subs(omega = Grl_Dst_Frq_Mid_var, EQ1)); printf("b=%2d  &omega;=%16.8z EI  R=%10.8f  eqv=%16.8z EI\n", b, Grl_Dst_Frq_Mid_var, Frq_Rate, EQV); hig_bnd_Mid := `if`(b = 20, hig_bnd, Grl_Dst_Frq_Mid_var) else Grl_Dst_Frq_Mid_var := 0.; Frq_Rate := 0.; b := 20 end if end do

b= 1  &omega;=  4.99987883E+09   5.00011822E+09I  R=1.00004788  eqv=  6.10172162E-12   7.57805552E-12I

b= 2  &omega;=  2.49982154E+09   2.50024927E+09I  R=1.00017110  eqv=  3.05407246E-14  -1.15033788E-13I
b= 3  &omega;=  1.24959759E+09   1.25035092E+09I  R=1.00060285  eqv=  1.03183991E-15   1.65489258E-15I

b= 4  &omega;=  6.24306563E+08   6.25608647E+08I  R=1.00208565  eqv=  4.67983829E-20  -1.61171221E-18I
b= 5  &omega;=  3.11319803E+08   3.13512118E+08I  R=1.00704200  eqv=  1.94136600E-20  -1.56455163E-20I

b= 6  &omega;=  1.54525508E+08   1.58056231E+08I  R=1.02284881  eqv=  4.49552329E-22   3.72286744E-22I

b= 7  &omega;=  7.61164482E+07   8.13195602E+07I  R=1.06835726  eqv=  4.65075796E-24  -1.45859676E-24I
b= 8  &omega;=  3.61078255E+07   4.29264729E+07I  R=1.18884127  eqv= -9.47456282E-26  -2.94877892E-26I

b= 9  &omega;=  1.58885629E+07   2.32993548E+07I  R=1.46642304  eqv=  0.00000000E+00   0.00000000E-01I
b=10  &omega;=  7.17644439E+06   1.09487978E+07I  R=1.52565772  eqv= -1.27217286E-27  -5.79732121E-28I

 

``

``


 

Download moreDigits.mw

 

although I'm not 100% sure why!!!

So what did I do?

  1. independent variables appeared sometimes as  'bare' names and sometimes as 'backquoted' names. This probably(?) shouldn't be an issue, but I wanted to eliminate anything I didn't "like", so I renamed the independent variables to xi__1 and xi__2. This renaming involves converting the whole worksheet to 1-D input, becuase I have never worked out how to make something as simple as find_and_replace work in 2-D Math. I doubt(?) if this change did anything significant
  2. Your ODEs contain some pretty horrible numerical parameters - I mean 2.751650679*10^(-360)- really!! This is actually too small to be expressed in hardware floats, which are limited to about 10^(-308) roughly. It is also true that many of your numeric parameters are quoted to at least 10 digits which is the default length for Maple's software floats. For both of these reasons I decided to "force" the use of software floats by setting Digits:=30. It is also true that something which is a "numeric singularity" at 10-digit precision, may not be a "numeric singularity" if more precision is used.

Anyhow, with the above changes, the attached works. If I had the time/patience, I might experiment with the setting of Digits to see exactly what level of precision makes the singularity error appear/disappear


 

restart;
Digits := 30;
kernelopts(version);

30

 

`Maple 2018.2, X86 64 WINDOWS, Nov 16 2018, Build ID 1362973`

(1)

fff1 := -(6546.295395*(2.302290809+3.164903854*r^4-5.043972799*r^2-1.539281515*r^6+.5795250834*r^8))*xi__1(r)+((-982.1738168*r-1350.816146*r^5+2152.823658*r^3+656.9824609*r^7-247.3477475*r^9)*cos(1.920758532*r)+(2.379420223*10^(-14)*r+3.272495356*10^(-14)*r^5-5.215443603*10^(-14)*r^3-1.59160968*10^(-14)*r^7+5.992261477*10^(-15)*r^9)*cos(5.762275596*r)+(1.907730247*10^(-99)*r+2.623764526*10^(-99)*r^5-4.181547849*10^(-99)*r^3-1.276093183*10^(-99)*r^7+4.8043714*10^(-100)*r^9)*cos(13.44530972*r)+(-1.043558153*10^(-167)*r-1.435240055*10^(-167)*r^5+2.28737179*10^(-167)*r^3+6.980428435*10^(-168)*r^7-2.628065972*10^(-168)*r^9)*cos(17.28682679*r)+(4.382640639*10^(-253)*r+6.02759067*10^(-253)*r^5-9.606296047*10^(-253)*r^3-2.931576858*10^(-253)*r^7+1.103711249*10^(-253)*r^9)*cos(21.12834385*r)+(-1.437372622*10^(-355)*r-1.976866121*10^(-355)*r^5+3.150572466*10^(-355)*r^3+9.614679048*10^(-356)*r^7-3.619836672*10^(-356)*r^9)*cos(24.96986092*r)+(-2.586708619*10^(-48)*r-3.557585944*10^(-48)*r^5+5.669798376*10^(-48)*r^3+1.730266237*10^(-48)*r^7-6.514290437*10^(-49)*r^9)*cos(9.60379266*r)+1.287492742*10^(-52)*sin(9.60379266*r)+.2444306348*sin(1.920758532*r)-1.973863778*10^(-18)*sin(5.762275596*r)-6.782443883*10^(-104)*sin(13.44530972*r)+2.885635218*10^(-172)*sin(17.28682679*r)-9.915405045*10^(-258)*sin(21.12834385*r)+2.751650679*10^(-360)*sin(24.96986092*r))/r+(34.20619008*(diff(xi__1(r), r)+r*(diff(xi__1(r), r, r))))/r+(226.3864608*(diff(xi__2(r), r)+r*(diff(xi__2(r), r, r))))/r:

fff2 := -(11.33151747*(2.302290809+3.164903854*r^4-5.043972799*r^2-1.539281515*r^6+.5795250834*r^8))*xi__2(r)+(-.817717618*r*cos(1.920758532*r)^2+(-27.62404336*r-38.13976873*r^5+60.78413906*r^3+18.54964438*r^7-6.983767491*r^9)*cos(1.920758532*r)-.124054546*r*cos(5.762275596*r)^2+(1.077334797*r+1.487446985*r^5-2.370575056*r^3-.7234341874*r^7+.2723662005*r^9)*cos(5.762275596*r)-0.2342489574e-1*r*cos(13.44530972*r)^2+(0.8525383383e-1*r+.11770766*r^5-.1875931349*r^3-0.5724825577e-1*r^7+0.2155343248e-1*r^9)*cos(13.44530972*r)-0.1420509071e-1*r*cos(17.28682679*r)^2+(-0.4013141059e-1*r-0.5540835201e-1*r^5+0.8830543775e-1*r^3+0.2694838641e-1*r^7-0.1014581525e-1*r^9)*cos(17.28682679*r)-0.9520879006e-2*r*cos(21.12834385*r)^2+(0.2198553924e-1*r+0.3035483874e-1*r^5-0.4837713496e-1*r^3-0.147633686e-1*r^7+0.5558270095e-2*r^9)*cos(21.12834385*r)-0.6821537113e-2*r*cos(24.96986092*r)^2+(-0.1332123502e-1*r-0.1839226852e-1*r^5+0.2931213911e-1*r^3+0.8945257182e-2*r^7-0.3367805606e-2*r^9)*cos(24.96986092*r)-0.4564157749e-1*r*cos(9.60379266*r)^2+(-.2336697743*r-.3226215304*r^5+.5141686128*r^3+.156910093*r^7-0.5907518141e-1*r^9)*cos(9.60379266*r)-.3086246354*r+0.1061426804e-3*sin(9.60379266*r)+0.6274003595e-1*sin(1.920758532*r)-0.8156182761e-3*sin(5.762275596*r)-0.2766135142e-4*sin(13.44530972*r)+0.1012743424e-4*sin(17.28682679*r)-4.539436579*10^(-6)*sin(21.12834385*r)+2.327333679*10^(-6)*sin(24.96986092*r))/r+(15.99132273*(diff(xi__2(r), r)+r*(diff(xi__2(r), r, r))))/r-1.922675548*(diff(xi__1(r), r))*(diff(xi__2(r), r))+(7.650340748*10^(-21)*sin(5.762275596*r)-4.990090145*10^(-55)*sin(9.60379266*r)+2.628753179*10^(-106)*sin(13.44530972*r)-1.118420275*10^(-174)*sin(17.28682679*r)+3.843032538*10^(-260)*sin(21.12834385*r)-1.066490279*10^(-362)*sin(24.96986092*r)-0.9475055746e-3*sin(1.920758532*r))*(diff(xi__1(r), r))+(-2.760876781*10^(-10)*sin(24.96986092*r)-0.1122658745e-2*sin(1.920758532*r)+1.794770960*10^(-6)*sin(5.762275596*r)-8.478174653*10^(-8)*sin(9.60379266*r)+1.129847090*10^(-8)*sin(13.44530972*r)-2.504750041*10^(-9)*sin(17.28682679*r)+7.519222634*10^(-10)*sin(21.12834385*r))*(diff(xi__2(r), r))-0.1385155998e-1*xi__2(r)*xi__1(r)+(0.1716963707e-3*cos(5.762275596*r)-0.3754920005e-4*cos(9.60379266*r)+0.1373099815e-4*cos(13.44530972*r)-6.469641828*10^(-6)*cos(17.28682679*r)+3.546004779*10^(-6)*cos(21.12834385*r)-2.149143420*10^(-6)*cos(24.96986092*r)-0.3977737145e-2*cos(1.920758532*r))*xi__2(r)+(-0.1175680450e-2*cos(1.920758532*r)+2.283732267*10^(-105)*cos(13.44530972*r)-1.249237114*10^(-173)*cos(17.28682679*r)+5.246432433*10^(-259)*cos(21.12834385*r)-1.720670015*10^(-361)*cos(24.96986092*r)-3.096533143*10^(-54)*cos(9.60379266*r)+2.848389467*10^(-20)*cos(5.762275596*r))*xi__1(r)-14.32155064*(diff(xi__2(r), r))^2+(-5.521753562*10^(-9)*sin(24.96986092*r)-0.2245317490e-1*sin(1.920758532*r)+0.3589541920e-4*sin(5.762275596*r)-1.695634931*10^(-6)*sin(9.60379266*r)+2.259694180*10^(-7)*sin(13.44530972*r)-5.009500082*10^(-8)*sin(17.28682679*r)+1.503844527*10^(-8)*sin(21.12834385*r))*(diff(xi__2(r), r))-.1353682171*xi__2(r)^2+(0.3433927414e-2*cos(5.762275596*r)-0.7509840010e-3*cos(9.603792660*r)+0.2746199630e-3*cos(13.44530972*r)-0.1293928366e-3*cos(17.28682679*r)+0.7092009558e-4*cos(21.12834385*r)-0.4298286840e-4*cos(24.96986092*r)-0.7955474290e-1*cos(1.920758532*r))*xi__2(r):

fff3 := xi__1(.8178) = 0, xi__2(.8178) = 0, (D(xi__1))(0) = 0, (D(xi__2))(0) = 0:

#infolevel[dsolve] := 3;
dsol:= dsolve({fff1, fff2, fff3}, type = numeric, method = bvp[midrich], output = listprocedure);

[r = proc (r) local _res, _dat, _solnproc; option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; _dat := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.417837476883387270539837260044e-1, (1, 2) = 0., (1, 3) = -.152427230076931103622722113027, (1, 4) = 0., (2, 1) = -0.416908244192419568619486842224e-1, (2, 2) = 0.587964398213174728491489290076e-2, (2, 3) = -.152049963483661994872900221460, (2, 4) = 0.237449596007158396551473933562e-1, (3, 1) = -0.414076176285653956421443059320e-1, (3, 2) = 0.119894532209655408446269214363e-1, (3, 3) = -.150921361213592383354594726145, (3, 4) = 0.472285473831814408111168831860e-1, (4, 1) = -0.409261459753638474170839546814e-1, (4, 2) = 0.182781717530506509775565726344e-1, (4, 3) = -.149050553358661581575602005730, (4, 4) = 0.702401290473931078973474532554e-1, (5, 1) = -0.402427525796225936043453700331e-1, (5, 2) = 0.245317247521453005648864770420e-1, (5, 3) = -.146450166035350307503096446890, (5, 4) = 0.926156125630847079458281699384e-1, (6, 1) = -0.393594129556886094083609927890e-1, (6, 2) = 0.306340682702129632405865120379e-1, (6, 3) = -.143138191081194691732492279525, (6, 4) = .114168398708309994332534059877, (7, 1) = -0.382789509004209376270362609971e-1, (7, 2) = 0.365810282185339086645799863053e-1, (7, 3) = -.139136227772795070262326948027, (7, 4) = .134708901358279513465076390525, (8, 1) = -0.370050834164640706239289008175e-1, (8, 2) = 0.423285927002055343150955665203e-1, (8, 3) = -.134473640404928730955065493797, (8, 4) = .154046542881691690509003127979, (9, 1) = -0.355430666978353301004456438355e-1, (9, 2) = 0.478152309763707086857237423856e-1, (9, 3) = -.129184150653639913180339296795, (9, 4) = .172009222262183876316990297747, (10, 1) = -0.338996514341332362744586039196e-1, (10, 2) = 0.530483403819355203909450578475e-1, (10, 3) = -.123309402435914968709059844757, (10, 4) = .188418057649037683509320039945, (11, 1) = -0.320811535255449803783594409181e-1, (11, 2) = 0.580386035969920900596122629746e-1, (11, 3) = -.116897788001692351734299637415, (11, 4) = .203111195772213583531856423541, (12, 1) = -0.300952008682256435948952893278e-1, (12, 2) = 0.627051690198937255237604328375e-1, (12, 3) = -.110003476888521314071568840055, (12, 4) = .215964392836053540591762928651, (13, 1) = -0.279539951435678661130115255394e-1, (13, 2) = 0.669451913556345666877295507540e-1, (13, 3) = -.102688732839341259078776385337, (13, 4) = .226876796591557342967002510426, (14, 1) = -0.256717704859220285892589303119e-1, (14, 2) = 0.707108365845176422546103170179e-1, (14, 3) = -0.950173802011819919218247473315e-1, (14, 4) = .235771671328114604901977519702, (15, 1) = -0.232665637869585439255563647925e-1, (15, 2) = 0.739312404962339723787087922171e-1, (15, 3) = -0.870625031794968471273086065387e-1, (15, 4) = .242599833144142026218561232233, (16, 1) = -0.207586502981663340863554358712e-1, (16, 2) = 0.764799973234851939129211511372e-1, (16, 3) = -0.788940281560711562905132275917e-1, (16, 4) = .247360552568980594180638754039, (17, 1) = -0.181754087959969537220374811717e-1, (17, 2) = 0.782275606274785873571408173619e-1, (17, 3) = -0.705901067251145431213669926771e-1, (17, 4) = .250083577611787110483239934649, (18, 1) = -0.155472618097459859358733174342e-1, (18, 2) = 0.789876378036949348168224963628e-1, (18, 3) = -0.622208717484466492254364131335e-1, (18, 4) = .250847861677352054192338372208, (19, 1) = -0.129162894570841010103554311923e-1, (19, 2) = 0.784014200873658416766392631622e-1, (19, 3) = -0.538610365188893765759995677916e-1, (19, 4) = .249794175327188799174218670894, (20, 1) = -0.103360312526601844301026931311e-1, (20, 2) = 0.760345666662382724449597132968e-1, (20, 3) = -0.455723675162219599630137359264e-1, (20, 4) = .247111080481342951078937626501, (21, 1) = -0.787405462303557050522646252833e-2, (21, 2) = 0.715393608379376772408137658668e-1, (21, 3) = -0.374130419657301270398786336868e-1, (21, 4) = .243012288593164536402168256912, (22, 1) = -0.560624490587345573859011891843e-2, (22, 2) = 0.646372840419167368071007364032e-1, (22, 3) = -0.294287424404581990517326485261e-1, (22, 4) = .237746683124911425256347183461, (23, 1) = -0.361439580811366705651777455464e-2, (23, 2) = 0.551763573703212923290231221512e-1, (23, 3) = -0.216514846254149691845313920014e-1, (23, 4) = .231601837173792134741603278385, (24, 1) = -0.197857878445721425223870689179e-2, (24, 2) = 0.434575298461207765943761758305e-1, (24, 3) = -0.141042783001380103562223853137e-1, (24, 4) = .224878187109038195570131063288, (25, 1) = -0.768743887783363527894191179458e-3, (25, 2) = 0.305007595831056547748521936423e-1, (25, 3) = -0.687331028739049564186833125153e-2, (25, 4) = .217961677914272197352286892511, (26, 1) = 0., (26, 2) = 0.175597263317259620401627185857e-1, (26, 3) = 0., (26, 4) = .211270018795719900814270278282}, order = C_order); YP := Matrix(26, 4, {(1, 1) = 0., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (2, 1) = 0.587964398213174728491489290076e-2, (2, 2) = .188207860698419842669052104643, (2, 3) = 0.237449596007158396551473933562e-1, (2, 4) = .744930481043342352306610225375, (3, 1) = 0.119894532209655408446269214363e-1, (3, 2) = .195999516928021623044238385392, (3, 3) = 0.472285473831814408111168831860e-1, (3, 4) = .732111620798706235426794740600, (4, 1) = 0.182781717530506509775565726344e-1, (4, 2) = .197870643697466383057316354104, (4, 3) = 0.702401290473931078973474532554e-1, (4, 4) = .713104979459192962355834584741, (5, 1) = 0.245317247521453005648864770420e-1, (5, 2) = .193486187762315252370392608539, (5, 3) = 0.926156125630847079458281699384e-1, (5, 4) = .688356004673473778348245692969, (6, 1) = 0.306340682702129632405865120379e-1, (6, 2) = .187890955066698460046280800155, (6, 3) = .114168398708309994332534059877, (6, 4) = .657324271146286659052462250288, (7, 1) = 0.365810282185339086645799863053e-1, (7, 2) = .181995130698257182177663369087, (7, 3) = .134708901358279513465076390525, (7, 4) = .620151684258593597234712526988, (8, 1) = 0.423285927002055343150955665203e-1, (8, 2) = .173846724883588284753344914511, (8, 3) = .154046542881691690509003127979, (8, 4) = .577549765658193274786555904755, (9, 1) = 0.478152309763707086857237423856e-1, (9, 2) = .164737735391649970038680734560, (9, 3) = .172009222262183876316990297747, (9, 4) = .529760813655976289151269635302, (10, 1) = 0.530483403819355203909450578475e-1, (10, 2) = .156724165842604574480890763959, (10, 3) = .188418057649037683509320039945, (10, 4) = .477036017674953720635468440699, (11, 1) = 0.580386035969920900596122629746e-1, (11, 2) = .147803957918641860183063991109, (11, 3) = .203111195772213583531856423541, (11, 4) = .420428967628705013281937619582, (12, 1) = 0.627051690198937255237604328375e-1, (12, 2) = .135539940263701311721513963546, (12, 3) = .215964392836053540591762928651, (12, 4) = .361128162926964774033202588541, (13, 1) = 0.669451913556345666877295507540e-1, (13, 2) = .121201300449132054410962752915, (13, 3) = .226876796591557342967002510426, (13, 4) = .299755153046326015603381398592, (14, 1) = 0.707108365845176422546103170179e-1, (14, 2) = .105784042672313261595941665515, (14, 3) = .235771671328114604901977519702, (14, 4) = .236980424882564042910243594076, (15, 1) = 0.739312404962339723787087922171e-1, (15, 2) = 0.873592128179632673949139734915e-1, (15, 3) = .242599833144142026218561232233, (15, 4) = .174036141225325413677428471768, (16, 1) = 0.764799973234851939129211511372e-1, (16, 2) = 0.650514188940584624865627028084e-1, (16, 3) = .247360552568980594180638754039, (16, 4) = .111955538111664288328378416555, (17, 1) = 0.782275606274785873571408173619e-1, (17, 2) = 0.388827657906458243021990087949e-1, (17, 3) = .250083577611787110483239934649, (17, 4) = 0.516962269764907625315789523497e-1, (18, 1) = 0.789876378036949348168224963628e-1, (18, 2) = 0.479285692252017589103451401562e-2, (18, 3) = .250847861677352054192338372208, (18, 4) = -0.519706217945242669578332591618e-2, (19, 1) = 0.784014200873658416766392631622e-1, (19, 2) = -0.422187328367536264327389286127e-1, (19, 3) = .249794175327188799174218670894, (19, 4) = -0.570056274443786637772883503017e-1, (20, 1) = 0.760345666662382724449597132968e-1, (20, 2) = -.101502894782270037559079426313, (20, 3) = .247111080481342951078937626501, (20, 4) = -.102916807613309560198160194565, (21, 1) = 0.715393608379376772408137658668e-1, (21, 2) = -.170122585768129976899282449612, (21, 3) = .243012288593164536402168256912, (21, 4) = -.142214016834657834875526271436, (22, 1) = 0.646372840419167368071007364032e-1, (22, 2) = -.246677007212163782265732105392, (22, 3) = .237746683124911425256347183461, (22, 4) = -.173524489734175423685768856787, (23, 1) = 0.551763573703212923290231221512e-1, (23, 2) = -.323089847628623618380291749422, (23, 3) = .231601837173792134741603278385, (23, 4) = -.195916372867914308705766173700, (24, 1) = 0.434575298461207765943761758305e-1, (24, 2) = -.381214459729273785376605722034, (24, 3) = .224878187109038195570131063288, (24, 4) = -.209283769313023018138869608402, (25, 1) = 0.305007595831056547748521936423e-1, (25, 2) = -.406432803612339766213925022169, (25, 3) = .217961677914272197352286892511, (25, 4) = -.212433186141134615856414399153, (26, 1) = 0.175597263317259620401627185857e-1, (26, 2) = -.395284894555758532290944666179, (26, 3) = .211270018795719900814270278282, (26, 4) = -.203177911611525501202733433972}, order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 30; outpoint := evalf(x_bvp); X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.521342520901378405278663216654e-12, (1, 2) = 0., (1, 3) = -0.540312300449916544421797558501e-13, (1, 4) = 0., (2, 1) = 0.249210074088782991857766626670e-12, (2, 2) = -0.109190851772744450761561613277e-10, (2, 3) = -0.129804922820449594448851756599e-12, (2, 4) = 0.231452738892664426708068958916e-11, (3, 1) = 0.115456455887029082748087423559e-11, (3, 2) = -0.169408005417746288754305445425e-10, (3, 3) = -0.222715550624457184500590643954e-12, (3, 4) = 0.217023692479464036699528336591e-11, (4, 1) = 0.584931133878896812341734056651e-12, (4, 2) = -0.104472142421320265051429973554e-10, (4, 3) = -0.156997483999620257398634211311e-12, (4, 4) = 0.607963224375092802381490199139e-12, (5, 1) = -0.510973517867085493383434562153e-12, (5, 2) = 0.408831817366032827522603961184e-11, (5, 3) = -0.333143588511703680098804022933e-13, (5, 4) = 0.782944844281035109872069908880e-13, (6, 1) = -0.434526106690500602541326377730e-12, (6, 2) = 0.951145319122084828763410782818e-11, (6, 3) = -0.268515141521155836126881083564e-13, (6, 4) = 0.621119798783119337255956099422e-12, (7, 1) = 0.247477924277054510148679257138e-12, (7, 2) = 0.157556409526514233931342678488e-11, (7, 3) = -0.808380191941245941656860502859e-13, (7, 4) = 0.633114035961826535904395095501e-12, (8, 1) = 0.120415812250308214621156029596e-12, (8, 2) = -0.368628061709309149208840641870e-11, (8, 3) = -0.487513284087388099371732323709e-13, (8, 4) = 0.781288580314667718580478200658e-13, (9, 1) = -0.347665364702397965402493876161e-12, (9, 2) = 0.148987431778512367711638748648e-11, (9, 3) = 0.154723872753122625360967753075e-13, (9, 4) = 0.112069468003906430512228466830e-12, (10, 1) = -0.747325206960181208807910607994e-13, (10, 2) = 0.425774744917936315541542890359e-11, (10, 3) = -0.745116223686361430857242713731e-14, (10, 4) = 0.509801296273227060415641578441e-12, (11, 1) = 0.309656503680833153479611057855e-12, (11, 2) = -0.993937153477365356565300757158e-12, (11, 3) = -0.438615060808811251132277279376e-13, (11, 4) = 0.296355837184858818995652813808e-12, (12, 1) = -0.315708105110803233195062673759e-13, (12, 2) = -0.271815964785012310260399571861e-11, (12, 3) = 0.481611737543103578640838773875e-14, (12, 4) = -0.641004686816172471313190375599e-13, (13, 1) = -0.292017938738921918178136494830e-12, (13, 2) = 0.135697376207902682967096240924e-11, (13, 3) = 0.414516757912452454606373644484e-13, (13, 4) = 0.220524040141485719968371244620e-12, (14, 1) = 0.904487199585855893779279209964e-13, (14, 2) = 0.109189797916837599089072245204e-11, (14, 3) = -0.362402170251024880034402802907e-14, (14, 4) = 0.433248322496686048236216433209e-12, (15, 1) = 0.171242644045959061954425467197e-12, (15, 2) = -0.198109702812825161434564160011e-11, (15, 3) = -0.785297465428687796812005174798e-14, (15, 4) = 0.211894538091235478116460481680e-13, (16, 1) = -0.248111303408729335133836573493e-12, (16, 2) = -0.668979758640117719905583060697e-14, (16, 3) = 0.584757842951030939070918630495e-13, (16, 4) = -0.653052104304814880379195668414e-13, (17, 1) = -0.114220171997200104745527284733e-12, (17, 2) = 0.218627621169235890528728244099e-11, (17, 3) = 0.513946168107376096926601048973e-13, (17, 4) = 0.408009023243946482924204367332e-12, (18, 1) = 0.365214639614096436016276107021e-12, (18, 2) = 0.345627252025037416089364046511e-13, (18, 3) = -0.953245479726528308274101213220e-14, (18, 4) = 0.318166094505488373943169445306e-12, (19, 1) = 0.854898667790888633224984158677e-13, (19, 2) = -0.649678672568424719061469709331e-12, (19, 3) = 0.302309007382134077561013766885e-13, (19, 4) = -0.198892519616287515248595029425e-12, (20, 1) = -0.401584956558512285132195842847e-12, (20, 2) = 0.324685849906694431334368010206e-12, (20, 3) = 0.986724732042785822672997280291e-13, (20, 4) = 0.486091596825707803044576943811e-13, (21, 1) = -0.619147250123538833264415359350e-13, (21, 2) = -0.174071706145471048343584943063e-11, (21, 3) = 0.442490489883311980373756083631e-13, (21, 4) = 0.552332924129501050629621834267e-12, (22, 1) = 0.253149541104163644494969553458e-12, (22, 2) = -0.290457338375483866306372365600e-11, (22, 3) = -0.118474547379905425081066215665e-13, (22, 4) = 0.130311572027120093530492025336e-12, (23, 1) = -0.386020515274107623543392096596e-12, (23, 2) = -0.946951786085997115239974740802e-12, (23, 3) = 0.759106975513015331432505085445e-13, (23, 4) = -0.405804648686779306570708856561e-12, (24, 1) = -0.878207338705768294484080456286e-12, (24, 2) = -0.249337015584493003403148442499e-11, (24, 3) = 0.148369282950566915230800255773e-12, (24, 4) = 0.118921401092554737882722292645e-12, (25, 1) = -0.346923414280937606377641207111e-12, (25, 2) = -0.597461143065034399969762030001e-11, (25, 3) = 0.640154648489789617917907956550e-13, (25, 4) = 0.660114509730747494852007608139e-12, (26, 1) = 0., (26, 2) = -0.382931341681480126793241681005e-11, (26, 3) = 0., (26, 4) = 0.255469306674372572468536749913e-12}, order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 26, [xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, yout, L, V) end if; [r = outpoint, seq('[xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 26, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(1..5, {(1) = 18446744074427911966, (2) = 18446744074427904350, (3) = 18446744074427904526, (4) = 18446744074427904702, (5) = 18446744074427904878}), (3) = [r, xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], (4) = 0}); _solnproc := _dat[1]; if member(r, ["last", 'last']) then _res := _solnproc("last"); if type(_res, 'list') then return _res[1] end if elif type(r, `=`) and member(lhs(r), ["initial", 'initial']) then if type(rhs(r), 'list') then _res := _solnproc("initial" = [0, op(rhs(r))]) else _res := _solnproc("initial" = [1, rhs(r)]) end if; if type(_res, 'list') then return _res[1] end if elif r = "sysvars" then return _dat[3] end if; r end proc, xi__1(r) = proc (r) local res, data, solnproc, `xi__1(r)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 30; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](r) else outpoint := evalf(r) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.417837476883387270539837260044e-1, (1, 2) = 0., (1, 3) = -.152427230076931103622722113027, (1, 4) = 0., (2, 1) = -0.416908244192419568619486842224e-1, (2, 2) = 0.587964398213174728491489290076e-2, (2, 3) = -.152049963483661994872900221460, (2, 4) = 0.237449596007158396551473933562e-1, (3, 1) = -0.414076176285653956421443059320e-1, (3, 2) = 0.119894532209655408446269214363e-1, (3, 3) = -.150921361213592383354594726145, (3, 4) = 0.472285473831814408111168831860e-1, (4, 1) = -0.409261459753638474170839546814e-1, (4, 2) = 0.182781717530506509775565726344e-1, (4, 3) = -.149050553358661581575602005730, (4, 4) = 0.702401290473931078973474532554e-1, (5, 1) = -0.402427525796225936043453700331e-1, (5, 2) = 0.245317247521453005648864770420e-1, (5, 3) = -.146450166035350307503096446890, (5, 4) = 0.926156125630847079458281699384e-1, (6, 1) = -0.393594129556886094083609927890e-1, (6, 2) = 0.306340682702129632405865120379e-1, (6, 3) = -.143138191081194691732492279525, (6, 4) = .114168398708309994332534059877, (7, 1) = -0.382789509004209376270362609971e-1, (7, 2) = 0.365810282185339086645799863053e-1, (7, 3) = -.139136227772795070262326948027, (7, 4) = .134708901358279513465076390525, (8, 1) = -0.370050834164640706239289008175e-1, (8, 2) = 0.423285927002055343150955665203e-1, (8, 3) = -.134473640404928730955065493797, (8, 4) = .154046542881691690509003127979, (9, 1) = -0.355430666978353301004456438355e-1, (9, 2) = 0.478152309763707086857237423856e-1, (9, 3) = -.129184150653639913180339296795, (9, 4) = .172009222262183876316990297747, (10, 1) = -0.338996514341332362744586039196e-1, (10, 2) = 0.530483403819355203909450578475e-1, (10, 3) = -.123309402435914968709059844757, (10, 4) = .188418057649037683509320039945, (11, 1) = -0.320811535255449803783594409181e-1, (11, 2) = 0.580386035969920900596122629746e-1, (11, 3) = -.116897788001692351734299637415, (11, 4) = .203111195772213583531856423541, (12, 1) = -0.300952008682256435948952893278e-1, (12, 2) = 0.627051690198937255237604328375e-1, (12, 3) = -.110003476888521314071568840055, (12, 4) = .215964392836053540591762928651, (13, 1) = -0.279539951435678661130115255394e-1, (13, 2) = 0.669451913556345666877295507540e-1, (13, 3) = -.102688732839341259078776385337, (13, 4) = .226876796591557342967002510426, (14, 1) = -0.256717704859220285892589303119e-1, (14, 2) = 0.707108365845176422546103170179e-1, (14, 3) = -0.950173802011819919218247473315e-1, (14, 4) = .235771671328114604901977519702, (15, 1) = -0.232665637869585439255563647925e-1, (15, 2) = 0.739312404962339723787087922171e-1, (15, 3) = -0.870625031794968471273086065387e-1, (15, 4) = .242599833144142026218561232233, (16, 1) = -0.207586502981663340863554358712e-1, (16, 2) = 0.764799973234851939129211511372e-1, (16, 3) = -0.788940281560711562905132275917e-1, (16, 4) = .247360552568980594180638754039, (17, 1) = -0.181754087959969537220374811717e-1, (17, 2) = 0.782275606274785873571408173619e-1, (17, 3) = -0.705901067251145431213669926771e-1, (17, 4) = .250083577611787110483239934649, (18, 1) = -0.155472618097459859358733174342e-1, (18, 2) = 0.789876378036949348168224963628e-1, (18, 3) = -0.622208717484466492254364131335e-1, (18, 4) = .250847861677352054192338372208, (19, 1) = -0.129162894570841010103554311923e-1, (19, 2) = 0.784014200873658416766392631622e-1, (19, 3) = -0.538610365188893765759995677916e-1, (19, 4) = .249794175327188799174218670894, (20, 1) = -0.103360312526601844301026931311e-1, (20, 2) = 0.760345666662382724449597132968e-1, (20, 3) = -0.455723675162219599630137359264e-1, (20, 4) = .247111080481342951078937626501, (21, 1) = -0.787405462303557050522646252833e-2, (21, 2) = 0.715393608379376772408137658668e-1, (21, 3) = -0.374130419657301270398786336868e-1, (21, 4) = .243012288593164536402168256912, (22, 1) = -0.560624490587345573859011891843e-2, (22, 2) = 0.646372840419167368071007364032e-1, (22, 3) = -0.294287424404581990517326485261e-1, (22, 4) = .237746683124911425256347183461, (23, 1) = -0.361439580811366705651777455464e-2, (23, 2) = 0.551763573703212923290231221512e-1, (23, 3) = -0.216514846254149691845313920014e-1, (23, 4) = .231601837173792134741603278385, (24, 1) = -0.197857878445721425223870689179e-2, (24, 2) = 0.434575298461207765943761758305e-1, (24, 3) = -0.141042783001380103562223853137e-1, (24, 4) = .224878187109038195570131063288, (25, 1) = -0.768743887783363527894191179458e-3, (25, 2) = 0.305007595831056547748521936423e-1, (25, 3) = -0.687331028739049564186833125153e-2, (25, 4) = .217961677914272197352286892511, (26, 1) = 0., (26, 2) = 0.175597263317259620401627185857e-1, (26, 3) = 0., (26, 4) = .211270018795719900814270278282}, order = C_order); YP := Matrix(26, 4, {(1, 1) = 0., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (2, 1) = 0.587964398213174728491489290076e-2, (2, 2) = .188207860698419842669052104643, (2, 3) = 0.237449596007158396551473933562e-1, (2, 4) = .744930481043342352306610225375, (3, 1) = 0.119894532209655408446269214363e-1, (3, 2) = .195999516928021623044238385392, (3, 3) = 0.472285473831814408111168831860e-1, (3, 4) = .732111620798706235426794740600, (4, 1) = 0.182781717530506509775565726344e-1, (4, 2) = .197870643697466383057316354104, (4, 3) = 0.702401290473931078973474532554e-1, (4, 4) = .713104979459192962355834584741, (5, 1) = 0.245317247521453005648864770420e-1, (5, 2) = .193486187762315252370392608539, (5, 3) = 0.926156125630847079458281699384e-1, (5, 4) = .688356004673473778348245692969, (6, 1) = 0.306340682702129632405865120379e-1, (6, 2) = .187890955066698460046280800155, (6, 3) = .114168398708309994332534059877, (6, 4) = .657324271146286659052462250288, (7, 1) = 0.365810282185339086645799863053e-1, (7, 2) = .181995130698257182177663369087, (7, 3) = .134708901358279513465076390525, (7, 4) = .620151684258593597234712526988, (8, 1) = 0.423285927002055343150955665203e-1, (8, 2) = .173846724883588284753344914511, (8, 3) = .154046542881691690509003127979, (8, 4) = .577549765658193274786555904755, (9, 1) = 0.478152309763707086857237423856e-1, (9, 2) = .164737735391649970038680734560, (9, 3) = .172009222262183876316990297747, (9, 4) = .529760813655976289151269635302, (10, 1) = 0.530483403819355203909450578475e-1, (10, 2) = .156724165842604574480890763959, (10, 3) = .188418057649037683509320039945, (10, 4) = .477036017674953720635468440699, (11, 1) = 0.580386035969920900596122629746e-1, (11, 2) = .147803957918641860183063991109, (11, 3) = .203111195772213583531856423541, (11, 4) = .420428967628705013281937619582, (12, 1) = 0.627051690198937255237604328375e-1, (12, 2) = .135539940263701311721513963546, (12, 3) = .215964392836053540591762928651, (12, 4) = .361128162926964774033202588541, (13, 1) = 0.669451913556345666877295507540e-1, (13, 2) = .121201300449132054410962752915, (13, 3) = .226876796591557342967002510426, (13, 4) = .299755153046326015603381398592, (14, 1) = 0.707108365845176422546103170179e-1, (14, 2) = .105784042672313261595941665515, (14, 3) = .235771671328114604901977519702, (14, 4) = .236980424882564042910243594076, (15, 1) = 0.739312404962339723787087922171e-1, (15, 2) = 0.873592128179632673949139734915e-1, (15, 3) = .242599833144142026218561232233, (15, 4) = .174036141225325413677428471768, (16, 1) = 0.764799973234851939129211511372e-1, (16, 2) = 0.650514188940584624865627028084e-1, (16, 3) = .247360552568980594180638754039, (16, 4) = .111955538111664288328378416555, (17, 1) = 0.782275606274785873571408173619e-1, (17, 2) = 0.388827657906458243021990087949e-1, (17, 3) = .250083577611787110483239934649, (17, 4) = 0.516962269764907625315789523497e-1, (18, 1) = 0.789876378036949348168224963628e-1, (18, 2) = 0.479285692252017589103451401562e-2, (18, 3) = .250847861677352054192338372208, (18, 4) = -0.519706217945242669578332591618e-2, (19, 1) = 0.784014200873658416766392631622e-1, (19, 2) = -0.422187328367536264327389286127e-1, (19, 3) = .249794175327188799174218670894, (19, 4) = -0.570056274443786637772883503017e-1, (20, 1) = 0.760345666662382724449597132968e-1, (20, 2) = -.101502894782270037559079426313, (20, 3) = .247111080481342951078937626501, (20, 4) = -.102916807613309560198160194565, (21, 1) = 0.715393608379376772408137658668e-1, (21, 2) = -.170122585768129976899282449612, (21, 3) = .243012288593164536402168256912, (21, 4) = -.142214016834657834875526271436, (22, 1) = 0.646372840419167368071007364032e-1, (22, 2) = -.246677007212163782265732105392, (22, 3) = .237746683124911425256347183461, (22, 4) = -.173524489734175423685768856787, (23, 1) = 0.551763573703212923290231221512e-1, (23, 2) = -.323089847628623618380291749422, (23, 3) = .231601837173792134741603278385, (23, 4) = -.195916372867914308705766173700, (24, 1) = 0.434575298461207765943761758305e-1, (24, 2) = -.381214459729273785376605722034, (24, 3) = .224878187109038195570131063288, (24, 4) = -.209283769313023018138869608402, (25, 1) = 0.305007595831056547748521936423e-1, (25, 2) = -.406432803612339766213925022169, (25, 3) = .217961677914272197352286892511, (25, 4) = -.212433186141134615856414399153, (26, 1) = 0.175597263317259620401627185857e-1, (26, 2) = -.395284894555758532290944666179, (26, 3) = .211270018795719900814270278282, (26, 4) = -.203177911611525501202733433972}, order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 30; outpoint := evalf(x_bvp); X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.521342520901378405278663216654e-12, (1, 2) = 0., (1, 3) = -0.540312300449916544421797558501e-13, (1, 4) = 0., (2, 1) = 0.249210074088782991857766626670e-12, (2, 2) = -0.109190851772744450761561613277e-10, (2, 3) = -0.129804922820449594448851756599e-12, (2, 4) = 0.231452738892664426708068958916e-11, (3, 1) = 0.115456455887029082748087423559e-11, (3, 2) = -0.169408005417746288754305445425e-10, (3, 3) = -0.222715550624457184500590643954e-12, (3, 4) = 0.217023692479464036699528336591e-11, (4, 1) = 0.584931133878896812341734056651e-12, (4, 2) = -0.104472142421320265051429973554e-10, (4, 3) = -0.156997483999620257398634211311e-12, (4, 4) = 0.607963224375092802381490199139e-12, (5, 1) = -0.510973517867085493383434562153e-12, (5, 2) = 0.408831817366032827522603961184e-11, (5, 3) = -0.333143588511703680098804022933e-13, (5, 4) = 0.782944844281035109872069908880e-13, (6, 1) = -0.434526106690500602541326377730e-12, (6, 2) = 0.951145319122084828763410782818e-11, (6, 3) = -0.268515141521155836126881083564e-13, (6, 4) = 0.621119798783119337255956099422e-12, (7, 1) = 0.247477924277054510148679257138e-12, (7, 2) = 0.157556409526514233931342678488e-11, (7, 3) = -0.808380191941245941656860502859e-13, (7, 4) = 0.633114035961826535904395095501e-12, (8, 1) = 0.120415812250308214621156029596e-12, (8, 2) = -0.368628061709309149208840641870e-11, (8, 3) = -0.487513284087388099371732323709e-13, (8, 4) = 0.781288580314667718580478200658e-13, (9, 1) = -0.347665364702397965402493876161e-12, (9, 2) = 0.148987431778512367711638748648e-11, (9, 3) = 0.154723872753122625360967753075e-13, (9, 4) = 0.112069468003906430512228466830e-12, (10, 1) = -0.747325206960181208807910607994e-13, (10, 2) = 0.425774744917936315541542890359e-11, (10, 3) = -0.745116223686361430857242713731e-14, (10, 4) = 0.509801296273227060415641578441e-12, (11, 1) = 0.309656503680833153479611057855e-12, (11, 2) = -0.993937153477365356565300757158e-12, (11, 3) = -0.438615060808811251132277279376e-13, (11, 4) = 0.296355837184858818995652813808e-12, (12, 1) = -0.315708105110803233195062673759e-13, (12, 2) = -0.271815964785012310260399571861e-11, (12, 3) = 0.481611737543103578640838773875e-14, (12, 4) = -0.641004686816172471313190375599e-13, (13, 1) = -0.292017938738921918178136494830e-12, (13, 2) = 0.135697376207902682967096240924e-11, (13, 3) = 0.414516757912452454606373644484e-13, (13, 4) = 0.220524040141485719968371244620e-12, (14, 1) = 0.904487199585855893779279209964e-13, (14, 2) = 0.109189797916837599089072245204e-11, (14, 3) = -0.362402170251024880034402802907e-14, (14, 4) = 0.433248322496686048236216433209e-12, (15, 1) = 0.171242644045959061954425467197e-12, (15, 2) = -0.198109702812825161434564160011e-11, (15, 3) = -0.785297465428687796812005174798e-14, (15, 4) = 0.211894538091235478116460481680e-13, (16, 1) = -0.248111303408729335133836573493e-12, (16, 2) = -0.668979758640117719905583060697e-14, (16, 3) = 0.584757842951030939070918630495e-13, (16, 4) = -0.653052104304814880379195668414e-13, (17, 1) = -0.114220171997200104745527284733e-12, (17, 2) = 0.218627621169235890528728244099e-11, (17, 3) = 0.513946168107376096926601048973e-13, (17, 4) = 0.408009023243946482924204367332e-12, (18, 1) = 0.365214639614096436016276107021e-12, (18, 2) = 0.345627252025037416089364046511e-13, (18, 3) = -0.953245479726528308274101213220e-14, (18, 4) = 0.318166094505488373943169445306e-12, (19, 1) = 0.854898667790888633224984158677e-13, (19, 2) = -0.649678672568424719061469709331e-12, (19, 3) = 0.302309007382134077561013766885e-13, (19, 4) = -0.198892519616287515248595029425e-12, (20, 1) = -0.401584956558512285132195842847e-12, (20, 2) = 0.324685849906694431334368010206e-12, (20, 3) = 0.986724732042785822672997280291e-13, (20, 4) = 0.486091596825707803044576943811e-13, (21, 1) = -0.619147250123538833264415359350e-13, (21, 2) = -0.174071706145471048343584943063e-11, (21, 3) = 0.442490489883311980373756083631e-13, (21, 4) = 0.552332924129501050629621834267e-12, (22, 1) = 0.253149541104163644494969553458e-12, (22, 2) = -0.290457338375483866306372365600e-11, (22, 3) = -0.118474547379905425081066215665e-13, (22, 4) = 0.130311572027120093530492025336e-12, (23, 1) = -0.386020515274107623543392096596e-12, (23, 2) = -0.946951786085997115239974740802e-12, (23, 3) = 0.759106975513015331432505085445e-13, (23, 4) = -0.405804648686779306570708856561e-12, (24, 1) = -0.878207338705768294484080456286e-12, (24, 2) = -0.249337015584493003403148442499e-11, (24, 3) = 0.148369282950566915230800255773e-12, (24, 4) = 0.118921401092554737882722292645e-12, (25, 1) = -0.346923414280937606377641207111e-12, (25, 2) = -0.597461143065034399969762030001e-11, (25, 3) = 0.640154648489789617917907956550e-13, (25, 4) = 0.660114509730747494852007608139e-12, (26, 1) = 0., (26, 2) = -0.382931341681480126793241681005e-11, (26, 3) = 0., (26, 4) = 0.255469306674372572468536749913e-12}, order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 26, [xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, yout, L, V) end if; [r = outpoint, seq('[xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 26, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(1..5, {(1) = 18446744074427911966, (2) = 18446744074427904350, (3) = 18446744074427904526, (4) = 18446744074427904702, (5) = 18446744074427904878}), (3) = [r, xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(r) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(r) else `xi__1(r)` := pointto(data[2][2]); return ('`xi__1(r)`')(r) end if end if; try res := solnproc(outpoint); res[2] catch: error  end try end proc, diff(xi__1(r), r) = proc (r) local res, data, solnproc, `diff(xi__1(r),r)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 30; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](r) else outpoint := evalf(r) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.417837476883387270539837260044e-1, (1, 2) = 0., (1, 3) = -.152427230076931103622722113027, (1, 4) = 0., (2, 1) = -0.416908244192419568619486842224e-1, (2, 2) = 0.587964398213174728491489290076e-2, (2, 3) = -.152049963483661994872900221460, (2, 4) = 0.237449596007158396551473933562e-1, (3, 1) = -0.414076176285653956421443059320e-1, (3, 2) = 0.119894532209655408446269214363e-1, (3, 3) = -.150921361213592383354594726145, (3, 4) = 0.472285473831814408111168831860e-1, (4, 1) = -0.409261459753638474170839546814e-1, (4, 2) = 0.182781717530506509775565726344e-1, (4, 3) = -.149050553358661581575602005730, (4, 4) = 0.702401290473931078973474532554e-1, (5, 1) = -0.402427525796225936043453700331e-1, (5, 2) = 0.245317247521453005648864770420e-1, (5, 3) = -.146450166035350307503096446890, (5, 4) = 0.926156125630847079458281699384e-1, (6, 1) = -0.393594129556886094083609927890e-1, (6, 2) = 0.306340682702129632405865120379e-1, (6, 3) = -.143138191081194691732492279525, (6, 4) = .114168398708309994332534059877, (7, 1) = -0.382789509004209376270362609971e-1, (7, 2) = 0.365810282185339086645799863053e-1, (7, 3) = -.139136227772795070262326948027, (7, 4) = .134708901358279513465076390525, (8, 1) = -0.370050834164640706239289008175e-1, (8, 2) = 0.423285927002055343150955665203e-1, (8, 3) = -.134473640404928730955065493797, (8, 4) = .154046542881691690509003127979, (9, 1) = -0.355430666978353301004456438355e-1, (9, 2) = 0.478152309763707086857237423856e-1, (9, 3) = -.129184150653639913180339296795, (9, 4) = .172009222262183876316990297747, (10, 1) = -0.338996514341332362744586039196e-1, (10, 2) = 0.530483403819355203909450578475e-1, (10, 3) = -.123309402435914968709059844757, (10, 4) = .188418057649037683509320039945, (11, 1) = -0.320811535255449803783594409181e-1, (11, 2) = 0.580386035969920900596122629746e-1, (11, 3) = -.116897788001692351734299637415, (11, 4) = .203111195772213583531856423541, (12, 1) = -0.300952008682256435948952893278e-1, (12, 2) = 0.627051690198937255237604328375e-1, (12, 3) = -.110003476888521314071568840055, (12, 4) = .215964392836053540591762928651, (13, 1) = -0.279539951435678661130115255394e-1, (13, 2) = 0.669451913556345666877295507540e-1, (13, 3) = -.102688732839341259078776385337, (13, 4) = .226876796591557342967002510426, (14, 1) = -0.256717704859220285892589303119e-1, (14, 2) = 0.707108365845176422546103170179e-1, (14, 3) = -0.950173802011819919218247473315e-1, (14, 4) = .235771671328114604901977519702, (15, 1) = -0.232665637869585439255563647925e-1, (15, 2) = 0.739312404962339723787087922171e-1, (15, 3) = -0.870625031794968471273086065387e-1, (15, 4) = .242599833144142026218561232233, (16, 1) = -0.207586502981663340863554358712e-1, (16, 2) = 0.764799973234851939129211511372e-1, (16, 3) = -0.788940281560711562905132275917e-1, (16, 4) = .247360552568980594180638754039, (17, 1) = -0.181754087959969537220374811717e-1, (17, 2) = 0.782275606274785873571408173619e-1, (17, 3) = -0.705901067251145431213669926771e-1, (17, 4) = .250083577611787110483239934649, (18, 1) = -0.155472618097459859358733174342e-1, (18, 2) = 0.789876378036949348168224963628e-1, (18, 3) = -0.622208717484466492254364131335e-1, (18, 4) = .250847861677352054192338372208, (19, 1) = -0.129162894570841010103554311923e-1, (19, 2) = 0.784014200873658416766392631622e-1, (19, 3) = -0.538610365188893765759995677916e-1, (19, 4) = .249794175327188799174218670894, (20, 1) = -0.103360312526601844301026931311e-1, (20, 2) = 0.760345666662382724449597132968e-1, (20, 3) = -0.455723675162219599630137359264e-1, (20, 4) = .247111080481342951078937626501, (21, 1) = -0.787405462303557050522646252833e-2, (21, 2) = 0.715393608379376772408137658668e-1, (21, 3) = -0.374130419657301270398786336868e-1, (21, 4) = .243012288593164536402168256912, (22, 1) = -0.560624490587345573859011891843e-2, (22, 2) = 0.646372840419167368071007364032e-1, (22, 3) = -0.294287424404581990517326485261e-1, (22, 4) = .237746683124911425256347183461, (23, 1) = -0.361439580811366705651777455464e-2, (23, 2) = 0.551763573703212923290231221512e-1, (23, 3) = -0.216514846254149691845313920014e-1, (23, 4) = .231601837173792134741603278385, (24, 1) = -0.197857878445721425223870689179e-2, (24, 2) = 0.434575298461207765943761758305e-1, (24, 3) = -0.141042783001380103562223853137e-1, (24, 4) = .224878187109038195570131063288, (25, 1) = -0.768743887783363527894191179458e-3, (25, 2) = 0.305007595831056547748521936423e-1, (25, 3) = -0.687331028739049564186833125153e-2, (25, 4) = .217961677914272197352286892511, (26, 1) = 0., (26, 2) = 0.175597263317259620401627185857e-1, (26, 3) = 0., (26, 4) = .211270018795719900814270278282}, order = C_order); YP := Matrix(26, 4, {(1, 1) = 0., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (2, 1) = 0.587964398213174728491489290076e-2, (2, 2) = .188207860698419842669052104643, (2, 3) = 0.237449596007158396551473933562e-1, (2, 4) = .744930481043342352306610225375, (3, 1) = 0.119894532209655408446269214363e-1, (3, 2) = .195999516928021623044238385392, (3, 3) = 0.472285473831814408111168831860e-1, (3, 4) = .732111620798706235426794740600, (4, 1) = 0.182781717530506509775565726344e-1, (4, 2) = .197870643697466383057316354104, (4, 3) = 0.702401290473931078973474532554e-1, (4, 4) = .713104979459192962355834584741, (5, 1) = 0.245317247521453005648864770420e-1, (5, 2) = .193486187762315252370392608539, (5, 3) = 0.926156125630847079458281699384e-1, (5, 4) = .688356004673473778348245692969, (6, 1) = 0.306340682702129632405865120379e-1, (6, 2) = .187890955066698460046280800155, (6, 3) = .114168398708309994332534059877, (6, 4) = .657324271146286659052462250288, (7, 1) = 0.365810282185339086645799863053e-1, (7, 2) = .181995130698257182177663369087, (7, 3) = .134708901358279513465076390525, (7, 4) = .620151684258593597234712526988, (8, 1) = 0.423285927002055343150955665203e-1, (8, 2) = .173846724883588284753344914511, (8, 3) = .154046542881691690509003127979, (8, 4) = .577549765658193274786555904755, (9, 1) = 0.478152309763707086857237423856e-1, (9, 2) = .164737735391649970038680734560, (9, 3) = .172009222262183876316990297747, (9, 4) = .529760813655976289151269635302, (10, 1) = 0.530483403819355203909450578475e-1, (10, 2) = .156724165842604574480890763959, (10, 3) = .188418057649037683509320039945, (10, 4) = .477036017674953720635468440699, (11, 1) = 0.580386035969920900596122629746e-1, (11, 2) = .147803957918641860183063991109, (11, 3) = .203111195772213583531856423541, (11, 4) = .420428967628705013281937619582, (12, 1) = 0.627051690198937255237604328375e-1, (12, 2) = .135539940263701311721513963546, (12, 3) = .215964392836053540591762928651, (12, 4) = .361128162926964774033202588541, (13, 1) = 0.669451913556345666877295507540e-1, (13, 2) = .121201300449132054410962752915, (13, 3) = .226876796591557342967002510426, (13, 4) = .299755153046326015603381398592, (14, 1) = 0.707108365845176422546103170179e-1, (14, 2) = .105784042672313261595941665515, (14, 3) = .235771671328114604901977519702, (14, 4) = .236980424882564042910243594076, (15, 1) = 0.739312404962339723787087922171e-1, (15, 2) = 0.873592128179632673949139734915e-1, (15, 3) = .242599833144142026218561232233, (15, 4) = .174036141225325413677428471768, (16, 1) = 0.764799973234851939129211511372e-1, (16, 2) = 0.650514188940584624865627028084e-1, (16, 3) = .247360552568980594180638754039, (16, 4) = .111955538111664288328378416555, (17, 1) = 0.782275606274785873571408173619e-1, (17, 2) = 0.388827657906458243021990087949e-1, (17, 3) = .250083577611787110483239934649, (17, 4) = 0.516962269764907625315789523497e-1, (18, 1) = 0.789876378036949348168224963628e-1, (18, 2) = 0.479285692252017589103451401562e-2, (18, 3) = .250847861677352054192338372208, (18, 4) = -0.519706217945242669578332591618e-2, (19, 1) = 0.784014200873658416766392631622e-1, (19, 2) = -0.422187328367536264327389286127e-1, (19, 3) = .249794175327188799174218670894, (19, 4) = -0.570056274443786637772883503017e-1, (20, 1) = 0.760345666662382724449597132968e-1, (20, 2) = -.101502894782270037559079426313, (20, 3) = .247111080481342951078937626501, (20, 4) = -.102916807613309560198160194565, (21, 1) = 0.715393608379376772408137658668e-1, (21, 2) = -.170122585768129976899282449612, (21, 3) = .243012288593164536402168256912, (21, 4) = -.142214016834657834875526271436, (22, 1) = 0.646372840419167368071007364032e-1, (22, 2) = -.246677007212163782265732105392, (22, 3) = .237746683124911425256347183461, (22, 4) = -.173524489734175423685768856787, (23, 1) = 0.551763573703212923290231221512e-1, (23, 2) = -.323089847628623618380291749422, (23, 3) = .231601837173792134741603278385, (23, 4) = -.195916372867914308705766173700, (24, 1) = 0.434575298461207765943761758305e-1, (24, 2) = -.381214459729273785376605722034, (24, 3) = .224878187109038195570131063288, (24, 4) = -.209283769313023018138869608402, (25, 1) = 0.305007595831056547748521936423e-1, (25, 2) = -.406432803612339766213925022169, (25, 3) = .217961677914272197352286892511, (25, 4) = -.212433186141134615856414399153, (26, 1) = 0.175597263317259620401627185857e-1, (26, 2) = -.395284894555758532290944666179, (26, 3) = .211270018795719900814270278282, (26, 4) = -.203177911611525501202733433972}, order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 30; outpoint := evalf(x_bvp); X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.521342520901378405278663216654e-12, (1, 2) = 0., (1, 3) = -0.540312300449916544421797558501e-13, (1, 4) = 0., (2, 1) = 0.249210074088782991857766626670e-12, (2, 2) = -0.109190851772744450761561613277e-10, (2, 3) = -0.129804922820449594448851756599e-12, (2, 4) = 0.231452738892664426708068958916e-11, (3, 1) = 0.115456455887029082748087423559e-11, (3, 2) = -0.169408005417746288754305445425e-10, (3, 3) = -0.222715550624457184500590643954e-12, (3, 4) = 0.217023692479464036699528336591e-11, (4, 1) = 0.584931133878896812341734056651e-12, (4, 2) = -0.104472142421320265051429973554e-10, (4, 3) = -0.156997483999620257398634211311e-12, (4, 4) = 0.607963224375092802381490199139e-12, (5, 1) = -0.510973517867085493383434562153e-12, (5, 2) = 0.408831817366032827522603961184e-11, (5, 3) = -0.333143588511703680098804022933e-13, (5, 4) = 0.782944844281035109872069908880e-13, (6, 1) = -0.434526106690500602541326377730e-12, (6, 2) = 0.951145319122084828763410782818e-11, (6, 3) = -0.268515141521155836126881083564e-13, (6, 4) = 0.621119798783119337255956099422e-12, (7, 1) = 0.247477924277054510148679257138e-12, (7, 2) = 0.157556409526514233931342678488e-11, (7, 3) = -0.808380191941245941656860502859e-13, (7, 4) = 0.633114035961826535904395095501e-12, (8, 1) = 0.120415812250308214621156029596e-12, (8, 2) = -0.368628061709309149208840641870e-11, (8, 3) = -0.487513284087388099371732323709e-13, (8, 4) = 0.781288580314667718580478200658e-13, (9, 1) = -0.347665364702397965402493876161e-12, (9, 2) = 0.148987431778512367711638748648e-11, (9, 3) = 0.154723872753122625360967753075e-13, (9, 4) = 0.112069468003906430512228466830e-12, (10, 1) = -0.747325206960181208807910607994e-13, (10, 2) = 0.425774744917936315541542890359e-11, (10, 3) = -0.745116223686361430857242713731e-14, (10, 4) = 0.509801296273227060415641578441e-12, (11, 1) = 0.309656503680833153479611057855e-12, (11, 2) = -0.993937153477365356565300757158e-12, (11, 3) = -0.438615060808811251132277279376e-13, (11, 4) = 0.296355837184858818995652813808e-12, (12, 1) = -0.315708105110803233195062673759e-13, (12, 2) = -0.271815964785012310260399571861e-11, (12, 3) = 0.481611737543103578640838773875e-14, (12, 4) = -0.641004686816172471313190375599e-13, (13, 1) = -0.292017938738921918178136494830e-12, (13, 2) = 0.135697376207902682967096240924e-11, (13, 3) = 0.414516757912452454606373644484e-13, (13, 4) = 0.220524040141485719968371244620e-12, (14, 1) = 0.904487199585855893779279209964e-13, (14, 2) = 0.109189797916837599089072245204e-11, (14, 3) = -0.362402170251024880034402802907e-14, (14, 4) = 0.433248322496686048236216433209e-12, (15, 1) = 0.171242644045959061954425467197e-12, (15, 2) = -0.198109702812825161434564160011e-11, (15, 3) = -0.785297465428687796812005174798e-14, (15, 4) = 0.211894538091235478116460481680e-13, (16, 1) = -0.248111303408729335133836573493e-12, (16, 2) = -0.668979758640117719905583060697e-14, (16, 3) = 0.584757842951030939070918630495e-13, (16, 4) = -0.653052104304814880379195668414e-13, (17, 1) = -0.114220171997200104745527284733e-12, (17, 2) = 0.218627621169235890528728244099e-11, (17, 3) = 0.513946168107376096926601048973e-13, (17, 4) = 0.408009023243946482924204367332e-12, (18, 1) = 0.365214639614096436016276107021e-12, (18, 2) = 0.345627252025037416089364046511e-13, (18, 3) = -0.953245479726528308274101213220e-14, (18, 4) = 0.318166094505488373943169445306e-12, (19, 1) = 0.854898667790888633224984158677e-13, (19, 2) = -0.649678672568424719061469709331e-12, (19, 3) = 0.302309007382134077561013766885e-13, (19, 4) = -0.198892519616287515248595029425e-12, (20, 1) = -0.401584956558512285132195842847e-12, (20, 2) = 0.324685849906694431334368010206e-12, (20, 3) = 0.986724732042785822672997280291e-13, (20, 4) = 0.486091596825707803044576943811e-13, (21, 1) = -0.619147250123538833264415359350e-13, (21, 2) = -0.174071706145471048343584943063e-11, (21, 3) = 0.442490489883311980373756083631e-13, (21, 4) = 0.552332924129501050629621834267e-12, (22, 1) = 0.253149541104163644494969553458e-12, (22, 2) = -0.290457338375483866306372365600e-11, (22, 3) = -0.118474547379905425081066215665e-13, (22, 4) = 0.130311572027120093530492025336e-12, (23, 1) = -0.386020515274107623543392096596e-12, (23, 2) = -0.946951786085997115239974740802e-12, (23, 3) = 0.759106975513015331432505085445e-13, (23, 4) = -0.405804648686779306570708856561e-12, (24, 1) = -0.878207338705768294484080456286e-12, (24, 2) = -0.249337015584493003403148442499e-11, (24, 3) = 0.148369282950566915230800255773e-12, (24, 4) = 0.118921401092554737882722292645e-12, (25, 1) = -0.346923414280937606377641207111e-12, (25, 2) = -0.597461143065034399969762030001e-11, (25, 3) = 0.640154648489789617917907956550e-13, (25, 4) = 0.660114509730747494852007608139e-12, (26, 1) = 0., (26, 2) = -0.382931341681480126793241681005e-11, (26, 3) = 0., (26, 4) = 0.255469306674372572468536749913e-12}, order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 26, [xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, yout, L, V) end if; [r = outpoint, seq('[xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 26, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(1..5, {(1) = 18446744074427911966, (2) = 18446744074427904350, (3) = 18446744074427904526, (4) = 18446744074427904702, (5) = 18446744074427904878}), (3) = [r, xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(r) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(r) else `diff(xi__1(r),r)` := pointto(data[2][3]); return ('`diff(xi__1(r),r)`')(r) end if end if; try res := solnproc(outpoint); res[3] catch: error  end try end proc, xi__2(r) = proc (r) local res, data, solnproc, `xi__2(r)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 30; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](r) else outpoint := evalf(r) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.417837476883387270539837260044e-1, (1, 2) = 0., (1, 3) = -.152427230076931103622722113027, (1, 4) = 0., (2, 1) = -0.416908244192419568619486842224e-1, (2, 2) = 0.587964398213174728491489290076e-2, (2, 3) = -.152049963483661994872900221460, (2, 4) = 0.237449596007158396551473933562e-1, (3, 1) = -0.414076176285653956421443059320e-1, (3, 2) = 0.119894532209655408446269214363e-1, (3, 3) = -.150921361213592383354594726145, (3, 4) = 0.472285473831814408111168831860e-1, (4, 1) = -0.409261459753638474170839546814e-1, (4, 2) = 0.182781717530506509775565726344e-1, (4, 3) = -.149050553358661581575602005730, (4, 4) = 0.702401290473931078973474532554e-1, (5, 1) = -0.402427525796225936043453700331e-1, (5, 2) = 0.245317247521453005648864770420e-1, (5, 3) = -.146450166035350307503096446890, (5, 4) = 0.926156125630847079458281699384e-1, (6, 1) = -0.393594129556886094083609927890e-1, (6, 2) = 0.306340682702129632405865120379e-1, (6, 3) = -.143138191081194691732492279525, (6, 4) = .114168398708309994332534059877, (7, 1) = -0.382789509004209376270362609971e-1, (7, 2) = 0.365810282185339086645799863053e-1, (7, 3) = -.139136227772795070262326948027, (7, 4) = .134708901358279513465076390525, (8, 1) = -0.370050834164640706239289008175e-1, (8, 2) = 0.423285927002055343150955665203e-1, (8, 3) = -.134473640404928730955065493797, (8, 4) = .154046542881691690509003127979, (9, 1) = -0.355430666978353301004456438355e-1, (9, 2) = 0.478152309763707086857237423856e-1, (9, 3) = -.129184150653639913180339296795, (9, 4) = .172009222262183876316990297747, (10, 1) = -0.338996514341332362744586039196e-1, (10, 2) = 0.530483403819355203909450578475e-1, (10, 3) = -.123309402435914968709059844757, (10, 4) = .188418057649037683509320039945, (11, 1) = -0.320811535255449803783594409181e-1, (11, 2) = 0.580386035969920900596122629746e-1, (11, 3) = -.116897788001692351734299637415, (11, 4) = .203111195772213583531856423541, (12, 1) = -0.300952008682256435948952893278e-1, (12, 2) = 0.627051690198937255237604328375e-1, (12, 3) = -.110003476888521314071568840055, (12, 4) = .215964392836053540591762928651, (13, 1) = -0.279539951435678661130115255394e-1, (13, 2) = 0.669451913556345666877295507540e-1, (13, 3) = -.102688732839341259078776385337, (13, 4) = .226876796591557342967002510426, (14, 1) = -0.256717704859220285892589303119e-1, (14, 2) = 0.707108365845176422546103170179e-1, (14, 3) = -0.950173802011819919218247473315e-1, (14, 4) = .235771671328114604901977519702, (15, 1) = -0.232665637869585439255563647925e-1, (15, 2) = 0.739312404962339723787087922171e-1, (15, 3) = -0.870625031794968471273086065387e-1, (15, 4) = .242599833144142026218561232233, (16, 1) = -0.207586502981663340863554358712e-1, (16, 2) = 0.764799973234851939129211511372e-1, (16, 3) = -0.788940281560711562905132275917e-1, (16, 4) = .247360552568980594180638754039, (17, 1) = -0.181754087959969537220374811717e-1, (17, 2) = 0.782275606274785873571408173619e-1, (17, 3) = -0.705901067251145431213669926771e-1, (17, 4) = .250083577611787110483239934649, (18, 1) = -0.155472618097459859358733174342e-1, (18, 2) = 0.789876378036949348168224963628e-1, (18, 3) = -0.622208717484466492254364131335e-1, (18, 4) = .250847861677352054192338372208, (19, 1) = -0.129162894570841010103554311923e-1, (19, 2) = 0.784014200873658416766392631622e-1, (19, 3) = -0.538610365188893765759995677916e-1, (19, 4) = .249794175327188799174218670894, (20, 1) = -0.103360312526601844301026931311e-1, (20, 2) = 0.760345666662382724449597132968e-1, (20, 3) = -0.455723675162219599630137359264e-1, (20, 4) = .247111080481342951078937626501, (21, 1) = -0.787405462303557050522646252833e-2, (21, 2) = 0.715393608379376772408137658668e-1, (21, 3) = -0.374130419657301270398786336868e-1, (21, 4) = .243012288593164536402168256912, (22, 1) = -0.560624490587345573859011891843e-2, (22, 2) = 0.646372840419167368071007364032e-1, (22, 3) = -0.294287424404581990517326485261e-1, (22, 4) = .237746683124911425256347183461, (23, 1) = -0.361439580811366705651777455464e-2, (23, 2) = 0.551763573703212923290231221512e-1, (23, 3) = -0.216514846254149691845313920014e-1, (23, 4) = .231601837173792134741603278385, (24, 1) = -0.197857878445721425223870689179e-2, (24, 2) = 0.434575298461207765943761758305e-1, (24, 3) = -0.141042783001380103562223853137e-1, (24, 4) = .224878187109038195570131063288, (25, 1) = -0.768743887783363527894191179458e-3, (25, 2) = 0.305007595831056547748521936423e-1, (25, 3) = -0.687331028739049564186833125153e-2, (25, 4) = .217961677914272197352286892511, (26, 1) = 0., (26, 2) = 0.175597263317259620401627185857e-1, (26, 3) = 0., (26, 4) = .211270018795719900814270278282}, order = C_order); YP := Matrix(26, 4, {(1, 1) = 0., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (2, 1) = 0.587964398213174728491489290076e-2, (2, 2) = .188207860698419842669052104643, (2, 3) = 0.237449596007158396551473933562e-1, (2, 4) = .744930481043342352306610225375, (3, 1) = 0.119894532209655408446269214363e-1, (3, 2) = .195999516928021623044238385392, (3, 3) = 0.472285473831814408111168831860e-1, (3, 4) = .732111620798706235426794740600, (4, 1) = 0.182781717530506509775565726344e-1, (4, 2) = .197870643697466383057316354104, (4, 3) = 0.702401290473931078973474532554e-1, (4, 4) = .713104979459192962355834584741, (5, 1) = 0.245317247521453005648864770420e-1, (5, 2) = .193486187762315252370392608539, (5, 3) = 0.926156125630847079458281699384e-1, (5, 4) = .688356004673473778348245692969, (6, 1) = 0.306340682702129632405865120379e-1, (6, 2) = .187890955066698460046280800155, (6, 3) = .114168398708309994332534059877, (6, 4) = .657324271146286659052462250288, (7, 1) = 0.365810282185339086645799863053e-1, (7, 2) = .181995130698257182177663369087, (7, 3) = .134708901358279513465076390525, (7, 4) = .620151684258593597234712526988, (8, 1) = 0.423285927002055343150955665203e-1, (8, 2) = .173846724883588284753344914511, (8, 3) = .154046542881691690509003127979, (8, 4) = .577549765658193274786555904755, (9, 1) = 0.478152309763707086857237423856e-1, (9, 2) = .164737735391649970038680734560, (9, 3) = .172009222262183876316990297747, (9, 4) = .529760813655976289151269635302, (10, 1) = 0.530483403819355203909450578475e-1, (10, 2) = .156724165842604574480890763959, (10, 3) = .188418057649037683509320039945, (10, 4) = .477036017674953720635468440699, (11, 1) = 0.580386035969920900596122629746e-1, (11, 2) = .147803957918641860183063991109, (11, 3) = .203111195772213583531856423541, (11, 4) = .420428967628705013281937619582, (12, 1) = 0.627051690198937255237604328375e-1, (12, 2) = .135539940263701311721513963546, (12, 3) = .215964392836053540591762928651, (12, 4) = .361128162926964774033202588541, (13, 1) = 0.669451913556345666877295507540e-1, (13, 2) = .121201300449132054410962752915, (13, 3) = .226876796591557342967002510426, (13, 4) = .299755153046326015603381398592, (14, 1) = 0.707108365845176422546103170179e-1, (14, 2) = .105784042672313261595941665515, (14, 3) = .235771671328114604901977519702, (14, 4) = .236980424882564042910243594076, (15, 1) = 0.739312404962339723787087922171e-1, (15, 2) = 0.873592128179632673949139734915e-1, (15, 3) = .242599833144142026218561232233, (15, 4) = .174036141225325413677428471768, (16, 1) = 0.764799973234851939129211511372e-1, (16, 2) = 0.650514188940584624865627028084e-1, (16, 3) = .247360552568980594180638754039, (16, 4) = .111955538111664288328378416555, (17, 1) = 0.782275606274785873571408173619e-1, (17, 2) = 0.388827657906458243021990087949e-1, (17, 3) = .250083577611787110483239934649, (17, 4) = 0.516962269764907625315789523497e-1, (18, 1) = 0.789876378036949348168224963628e-1, (18, 2) = 0.479285692252017589103451401562e-2, (18, 3) = .250847861677352054192338372208, (18, 4) = -0.519706217945242669578332591618e-2, (19, 1) = 0.784014200873658416766392631622e-1, (19, 2) = -0.422187328367536264327389286127e-1, (19, 3) = .249794175327188799174218670894, (19, 4) = -0.570056274443786637772883503017e-1, (20, 1) = 0.760345666662382724449597132968e-1, (20, 2) = -.101502894782270037559079426313, (20, 3) = .247111080481342951078937626501, (20, 4) = -.102916807613309560198160194565, (21, 1) = 0.715393608379376772408137658668e-1, (21, 2) = -.170122585768129976899282449612, (21, 3) = .243012288593164536402168256912, (21, 4) = -.142214016834657834875526271436, (22, 1) = 0.646372840419167368071007364032e-1, (22, 2) = -.246677007212163782265732105392, (22, 3) = .237746683124911425256347183461, (22, 4) = -.173524489734175423685768856787, (23, 1) = 0.551763573703212923290231221512e-1, (23, 2) = -.323089847628623618380291749422, (23, 3) = .231601837173792134741603278385, (23, 4) = -.195916372867914308705766173700, (24, 1) = 0.434575298461207765943761758305e-1, (24, 2) = -.381214459729273785376605722034, (24, 3) = .224878187109038195570131063288, (24, 4) = -.209283769313023018138869608402, (25, 1) = 0.305007595831056547748521936423e-1, (25, 2) = -.406432803612339766213925022169, (25, 3) = .217961677914272197352286892511, (25, 4) = -.212433186141134615856414399153, (26, 1) = 0.175597263317259620401627185857e-1, (26, 2) = -.395284894555758532290944666179, (26, 3) = .211270018795719900814270278282, (26, 4) = -.203177911611525501202733433972}, order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 30; outpoint := evalf(x_bvp); X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.521342520901378405278663216654e-12, (1, 2) = 0., (1, 3) = -0.540312300449916544421797558501e-13, (1, 4) = 0., (2, 1) = 0.249210074088782991857766626670e-12, (2, 2) = -0.109190851772744450761561613277e-10, (2, 3) = -0.129804922820449594448851756599e-12, (2, 4) = 0.231452738892664426708068958916e-11, (3, 1) = 0.115456455887029082748087423559e-11, (3, 2) = -0.169408005417746288754305445425e-10, (3, 3) = -0.222715550624457184500590643954e-12, (3, 4) = 0.217023692479464036699528336591e-11, (4, 1) = 0.584931133878896812341734056651e-12, (4, 2) = -0.104472142421320265051429973554e-10, (4, 3) = -0.156997483999620257398634211311e-12, (4, 4) = 0.607963224375092802381490199139e-12, (5, 1) = -0.510973517867085493383434562153e-12, (5, 2) = 0.408831817366032827522603961184e-11, (5, 3) = -0.333143588511703680098804022933e-13, (5, 4) = 0.782944844281035109872069908880e-13, (6, 1) = -0.434526106690500602541326377730e-12, (6, 2) = 0.951145319122084828763410782818e-11, (6, 3) = -0.268515141521155836126881083564e-13, (6, 4) = 0.621119798783119337255956099422e-12, (7, 1) = 0.247477924277054510148679257138e-12, (7, 2) = 0.157556409526514233931342678488e-11, (7, 3) = -0.808380191941245941656860502859e-13, (7, 4) = 0.633114035961826535904395095501e-12, (8, 1) = 0.120415812250308214621156029596e-12, (8, 2) = -0.368628061709309149208840641870e-11, (8, 3) = -0.487513284087388099371732323709e-13, (8, 4) = 0.781288580314667718580478200658e-13, (9, 1) = -0.347665364702397965402493876161e-12, (9, 2) = 0.148987431778512367711638748648e-11, (9, 3) = 0.154723872753122625360967753075e-13, (9, 4) = 0.112069468003906430512228466830e-12, (10, 1) = -0.747325206960181208807910607994e-13, (10, 2) = 0.425774744917936315541542890359e-11, (10, 3) = -0.745116223686361430857242713731e-14, (10, 4) = 0.509801296273227060415641578441e-12, (11, 1) = 0.309656503680833153479611057855e-12, (11, 2) = -0.993937153477365356565300757158e-12, (11, 3) = -0.438615060808811251132277279376e-13, (11, 4) = 0.296355837184858818995652813808e-12, (12, 1) = -0.315708105110803233195062673759e-13, (12, 2) = -0.271815964785012310260399571861e-11, (12, 3) = 0.481611737543103578640838773875e-14, (12, 4) = -0.641004686816172471313190375599e-13, (13, 1) = -0.292017938738921918178136494830e-12, (13, 2) = 0.135697376207902682967096240924e-11, (13, 3) = 0.414516757912452454606373644484e-13, (13, 4) = 0.220524040141485719968371244620e-12, (14, 1) = 0.904487199585855893779279209964e-13, (14, 2) = 0.109189797916837599089072245204e-11, (14, 3) = -0.362402170251024880034402802907e-14, (14, 4) = 0.433248322496686048236216433209e-12, (15, 1) = 0.171242644045959061954425467197e-12, (15, 2) = -0.198109702812825161434564160011e-11, (15, 3) = -0.785297465428687796812005174798e-14, (15, 4) = 0.211894538091235478116460481680e-13, (16, 1) = -0.248111303408729335133836573493e-12, (16, 2) = -0.668979758640117719905583060697e-14, (16, 3) = 0.584757842951030939070918630495e-13, (16, 4) = -0.653052104304814880379195668414e-13, (17, 1) = -0.114220171997200104745527284733e-12, (17, 2) = 0.218627621169235890528728244099e-11, (17, 3) = 0.513946168107376096926601048973e-13, (17, 4) = 0.408009023243946482924204367332e-12, (18, 1) = 0.365214639614096436016276107021e-12, (18, 2) = 0.345627252025037416089364046511e-13, (18, 3) = -0.953245479726528308274101213220e-14, (18, 4) = 0.318166094505488373943169445306e-12, (19, 1) = 0.854898667790888633224984158677e-13, (19, 2) = -0.649678672568424719061469709331e-12, (19, 3) = 0.302309007382134077561013766885e-13, (19, 4) = -0.198892519616287515248595029425e-12, (20, 1) = -0.401584956558512285132195842847e-12, (20, 2) = 0.324685849906694431334368010206e-12, (20, 3) = 0.986724732042785822672997280291e-13, (20, 4) = 0.486091596825707803044576943811e-13, (21, 1) = -0.619147250123538833264415359350e-13, (21, 2) = -0.174071706145471048343584943063e-11, (21, 3) = 0.442490489883311980373756083631e-13, (21, 4) = 0.552332924129501050629621834267e-12, (22, 1) = 0.253149541104163644494969553458e-12, (22, 2) = -0.290457338375483866306372365600e-11, (22, 3) = -0.118474547379905425081066215665e-13, (22, 4) = 0.130311572027120093530492025336e-12, (23, 1) = -0.386020515274107623543392096596e-12, (23, 2) = -0.946951786085997115239974740802e-12, (23, 3) = 0.759106975513015331432505085445e-13, (23, 4) = -0.405804648686779306570708856561e-12, (24, 1) = -0.878207338705768294484080456286e-12, (24, 2) = -0.249337015584493003403148442499e-11, (24, 3) = 0.148369282950566915230800255773e-12, (24, 4) = 0.118921401092554737882722292645e-12, (25, 1) = -0.346923414280937606377641207111e-12, (25, 2) = -0.597461143065034399969762030001e-11, (25, 3) = 0.640154648489789617917907956550e-13, (25, 4) = 0.660114509730747494852007608139e-12, (26, 1) = 0., (26, 2) = -0.382931341681480126793241681005e-11, (26, 3) = 0., (26, 4) = 0.255469306674372572468536749913e-12}, order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 26, [xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, yout, L, V) end if; [r = outpoint, seq('[xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 26, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(1..5, {(1) = 18446744074427911966, (2) = 18446744074427904350, (3) = 18446744074427904526, (4) = 18446744074427904702, (5) = 18446744074427904878}), (3) = [r, xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(r) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(r) else `xi__2(r)` := pointto(data[2][4]); return ('`xi__2(r)`')(r) end if end if; try res := solnproc(outpoint); res[4] catch: error  end try end proc, diff(xi__2(r), r) = proc (r) local res, data, solnproc, `diff(xi__2(r),r)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 30; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](r) else outpoint := evalf(r) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.417837476883387270539837260044e-1, (1, 2) = 0., (1, 3) = -.152427230076931103622722113027, (1, 4) = 0., (2, 1) = -0.416908244192419568619486842224e-1, (2, 2) = 0.587964398213174728491489290076e-2, (2, 3) = -.152049963483661994872900221460, (2, 4) = 0.237449596007158396551473933562e-1, (3, 1) = -0.414076176285653956421443059320e-1, (3, 2) = 0.119894532209655408446269214363e-1, (3, 3) = -.150921361213592383354594726145, (3, 4) = 0.472285473831814408111168831860e-1, (4, 1) = -0.409261459753638474170839546814e-1, (4, 2) = 0.182781717530506509775565726344e-1, (4, 3) = -.149050553358661581575602005730, (4, 4) = 0.702401290473931078973474532554e-1, (5, 1) = -0.402427525796225936043453700331e-1, (5, 2) = 0.245317247521453005648864770420e-1, (5, 3) = -.146450166035350307503096446890, (5, 4) = 0.926156125630847079458281699384e-1, (6, 1) = -0.393594129556886094083609927890e-1, (6, 2) = 0.306340682702129632405865120379e-1, (6, 3) = -.143138191081194691732492279525, (6, 4) = .114168398708309994332534059877, (7, 1) = -0.382789509004209376270362609971e-1, (7, 2) = 0.365810282185339086645799863053e-1, (7, 3) = -.139136227772795070262326948027, (7, 4) = .134708901358279513465076390525, (8, 1) = -0.370050834164640706239289008175e-1, (8, 2) = 0.423285927002055343150955665203e-1, (8, 3) = -.134473640404928730955065493797, (8, 4) = .154046542881691690509003127979, (9, 1) = -0.355430666978353301004456438355e-1, (9, 2) = 0.478152309763707086857237423856e-1, (9, 3) = -.129184150653639913180339296795, (9, 4) = .172009222262183876316990297747, (10, 1) = -0.338996514341332362744586039196e-1, (10, 2) = 0.530483403819355203909450578475e-1, (10, 3) = -.123309402435914968709059844757, (10, 4) = .188418057649037683509320039945, (11, 1) = -0.320811535255449803783594409181e-1, (11, 2) = 0.580386035969920900596122629746e-1, (11, 3) = -.116897788001692351734299637415, (11, 4) = .203111195772213583531856423541, (12, 1) = -0.300952008682256435948952893278e-1, (12, 2) = 0.627051690198937255237604328375e-1, (12, 3) = -.110003476888521314071568840055, (12, 4) = .215964392836053540591762928651, (13, 1) = -0.279539951435678661130115255394e-1, (13, 2) = 0.669451913556345666877295507540e-1, (13, 3) = -.102688732839341259078776385337, (13, 4) = .226876796591557342967002510426, (14, 1) = -0.256717704859220285892589303119e-1, (14, 2) = 0.707108365845176422546103170179e-1, (14, 3) = -0.950173802011819919218247473315e-1, (14, 4) = .235771671328114604901977519702, (15, 1) = -0.232665637869585439255563647925e-1, (15, 2) = 0.739312404962339723787087922171e-1, (15, 3) = -0.870625031794968471273086065387e-1, (15, 4) = .242599833144142026218561232233, (16, 1) = -0.207586502981663340863554358712e-1, (16, 2) = 0.764799973234851939129211511372e-1, (16, 3) = -0.788940281560711562905132275917e-1, (16, 4) = .247360552568980594180638754039, (17, 1) = -0.181754087959969537220374811717e-1, (17, 2) = 0.782275606274785873571408173619e-1, (17, 3) = -0.705901067251145431213669926771e-1, (17, 4) = .250083577611787110483239934649, (18, 1) = -0.155472618097459859358733174342e-1, (18, 2) = 0.789876378036949348168224963628e-1, (18, 3) = -0.622208717484466492254364131335e-1, (18, 4) = .250847861677352054192338372208, (19, 1) = -0.129162894570841010103554311923e-1, (19, 2) = 0.784014200873658416766392631622e-1, (19, 3) = -0.538610365188893765759995677916e-1, (19, 4) = .249794175327188799174218670894, (20, 1) = -0.103360312526601844301026931311e-1, (20, 2) = 0.760345666662382724449597132968e-1, (20, 3) = -0.455723675162219599630137359264e-1, (20, 4) = .247111080481342951078937626501, (21, 1) = -0.787405462303557050522646252833e-2, (21, 2) = 0.715393608379376772408137658668e-1, (21, 3) = -0.374130419657301270398786336868e-1, (21, 4) = .243012288593164536402168256912, (22, 1) = -0.560624490587345573859011891843e-2, (22, 2) = 0.646372840419167368071007364032e-1, (22, 3) = -0.294287424404581990517326485261e-1, (22, 4) = .237746683124911425256347183461, (23, 1) = -0.361439580811366705651777455464e-2, (23, 2) = 0.551763573703212923290231221512e-1, (23, 3) = -0.216514846254149691845313920014e-1, (23, 4) = .231601837173792134741603278385, (24, 1) = -0.197857878445721425223870689179e-2, (24, 2) = 0.434575298461207765943761758305e-1, (24, 3) = -0.141042783001380103562223853137e-1, (24, 4) = .224878187109038195570131063288, (25, 1) = -0.768743887783363527894191179458e-3, (25, 2) = 0.305007595831056547748521936423e-1, (25, 3) = -0.687331028739049564186833125153e-2, (25, 4) = .217961677914272197352286892511, (26, 1) = 0., (26, 2) = 0.175597263317259620401627185857e-1, (26, 3) = 0., (26, 4) = .211270018795719900814270278282}, order = C_order); YP := Matrix(26, 4, {(1, 1) = 0., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (2, 1) = 0.587964398213174728491489290076e-2, (2, 2) = .188207860698419842669052104643, (2, 3) = 0.237449596007158396551473933562e-1, (2, 4) = .744930481043342352306610225375, (3, 1) = 0.119894532209655408446269214363e-1, (3, 2) = .195999516928021623044238385392, (3, 3) = 0.472285473831814408111168831860e-1, (3, 4) = .732111620798706235426794740600, (4, 1) = 0.182781717530506509775565726344e-1, (4, 2) = .197870643697466383057316354104, (4, 3) = 0.702401290473931078973474532554e-1, (4, 4) = .713104979459192962355834584741, (5, 1) = 0.245317247521453005648864770420e-1, (5, 2) = .193486187762315252370392608539, (5, 3) = 0.926156125630847079458281699384e-1, (5, 4) = .688356004673473778348245692969, (6, 1) = 0.306340682702129632405865120379e-1, (6, 2) = .187890955066698460046280800155, (6, 3) = .114168398708309994332534059877, (6, 4) = .657324271146286659052462250288, (7, 1) = 0.365810282185339086645799863053e-1, (7, 2) = .181995130698257182177663369087, (7, 3) = .134708901358279513465076390525, (7, 4) = .620151684258593597234712526988, (8, 1) = 0.423285927002055343150955665203e-1, (8, 2) = .173846724883588284753344914511, (8, 3) = .154046542881691690509003127979, (8, 4) = .577549765658193274786555904755, (9, 1) = 0.478152309763707086857237423856e-1, (9, 2) = .164737735391649970038680734560, (9, 3) = .172009222262183876316990297747, (9, 4) = .529760813655976289151269635302, (10, 1) = 0.530483403819355203909450578475e-1, (10, 2) = .156724165842604574480890763959, (10, 3) = .188418057649037683509320039945, (10, 4) = .477036017674953720635468440699, (11, 1) = 0.580386035969920900596122629746e-1, (11, 2) = .147803957918641860183063991109, (11, 3) = .203111195772213583531856423541, (11, 4) = .420428967628705013281937619582, (12, 1) = 0.627051690198937255237604328375e-1, (12, 2) = .135539940263701311721513963546, (12, 3) = .215964392836053540591762928651, (12, 4) = .361128162926964774033202588541, (13, 1) = 0.669451913556345666877295507540e-1, (13, 2) = .121201300449132054410962752915, (13, 3) = .226876796591557342967002510426, (13, 4) = .299755153046326015603381398592, (14, 1) = 0.707108365845176422546103170179e-1, (14, 2) = .105784042672313261595941665515, (14, 3) = .235771671328114604901977519702, (14, 4) = .236980424882564042910243594076, (15, 1) = 0.739312404962339723787087922171e-1, (15, 2) = 0.873592128179632673949139734915e-1, (15, 3) = .242599833144142026218561232233, (15, 4) = .174036141225325413677428471768, (16, 1) = 0.764799973234851939129211511372e-1, (16, 2) = 0.650514188940584624865627028084e-1, (16, 3) = .247360552568980594180638754039, (16, 4) = .111955538111664288328378416555, (17, 1) = 0.782275606274785873571408173619e-1, (17, 2) = 0.388827657906458243021990087949e-1, (17, 3) = .250083577611787110483239934649, (17, 4) = 0.516962269764907625315789523497e-1, (18, 1) = 0.789876378036949348168224963628e-1, (18, 2) = 0.479285692252017589103451401562e-2, (18, 3) = .250847861677352054192338372208, (18, 4) = -0.519706217945242669578332591618e-2, (19, 1) = 0.784014200873658416766392631622e-1, (19, 2) = -0.422187328367536264327389286127e-1, (19, 3) = .249794175327188799174218670894, (19, 4) = -0.570056274443786637772883503017e-1, (20, 1) = 0.760345666662382724449597132968e-1, (20, 2) = -.101502894782270037559079426313, (20, 3) = .247111080481342951078937626501, (20, 4) = -.102916807613309560198160194565, (21, 1) = 0.715393608379376772408137658668e-1, (21, 2) = -.170122585768129976899282449612, (21, 3) = .243012288593164536402168256912, (21, 4) = -.142214016834657834875526271436, (22, 1) = 0.646372840419167368071007364032e-1, (22, 2) = -.246677007212163782265732105392, (22, 3) = .237746683124911425256347183461, (22, 4) = -.173524489734175423685768856787, (23, 1) = 0.551763573703212923290231221512e-1, (23, 2) = -.323089847628623618380291749422, (23, 3) = .231601837173792134741603278385, (23, 4) = -.195916372867914308705766173700, (24, 1) = 0.434575298461207765943761758305e-1, (24, 2) = -.381214459729273785376605722034, (24, 3) = .224878187109038195570131063288, (24, 4) = -.209283769313023018138869608402, (25, 1) = 0.305007595831056547748521936423e-1, (25, 2) = -.406432803612339766213925022169, (25, 3) = .217961677914272197352286892511, (25, 4) = -.212433186141134615856414399153, (26, 1) = 0.175597263317259620401627185857e-1, (26, 2) = -.395284894555758532290944666179, (26, 3) = .211270018795719900814270278282, (26, 4) = -.203177911611525501202733433972}, order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 30; outpoint := evalf(x_bvp); X := Vector(26, {(1) = 0., (2) = 0.317433341276649904801306210732e-1, (3) = 0.635163341272466023319195191692e-1, (4) = 0.953410411021658172205237845658e-1, (5) = .127250120891246805433889283712, (6) = .159257675483038807732426772970, (7) = .191392090110678396281745879870, (8) = .223660851853616006733060135298, (9) = .256080483037970393726043504503, (10) = .288653404206240093987086498526, (11) = .321379236553034104341238659511, (12) = .354256211732636605246286435341, (13) = .387266555895536669555097853746, (14) = .420404485266437618652725426824, (15) = .453638413012414547340493196190, (16) = .486958373317163732085744847025, (17) = .520322237460373295579862483115, (18) = .553715810213495389726196652118, (19) = .587093049149554470400987045214, (20) = .620437089173641290919897834313, (21) = .653717265507567301176519711116, (22) = .686920686626011443220354609359, (23) = .720052610323941001893480975003, (24) = .753114240628388451273073758700, (25) = .785770214131827510157790885968, (26) = .8178}, order = C_order); Y := Matrix(26, 4, {(1, 1) = -0.521342520901378405278663216654e-12, (1, 2) = 0., (1, 3) = -0.540312300449916544421797558501e-13, (1, 4) = 0., (2, 1) = 0.249210074088782991857766626670e-12, (2, 2) = -0.109190851772744450761561613277e-10, (2, 3) = -0.129804922820449594448851756599e-12, (2, 4) = 0.231452738892664426708068958916e-11, (3, 1) = 0.115456455887029082748087423559e-11, (3, 2) = -0.169408005417746288754305445425e-10, (3, 3) = -0.222715550624457184500590643954e-12, (3, 4) = 0.217023692479464036699528336591e-11, (4, 1) = 0.584931133878896812341734056651e-12, (4, 2) = -0.104472142421320265051429973554e-10, (4, 3) = -0.156997483999620257398634211311e-12, (4, 4) = 0.607963224375092802381490199139e-12, (5, 1) = -0.510973517867085493383434562153e-12, (5, 2) = 0.408831817366032827522603961184e-11, (5, 3) = -0.333143588511703680098804022933e-13, (5, 4) = 0.782944844281035109872069908880e-13, (6, 1) = -0.434526106690500602541326377730e-12, (6, 2) = 0.951145319122084828763410782818e-11, (6, 3) = -0.268515141521155836126881083564e-13, (6, 4) = 0.621119798783119337255956099422e-12, (7, 1) = 0.247477924277054510148679257138e-12, (7, 2) = 0.157556409526514233931342678488e-11, (7, 3) = -0.808380191941245941656860502859e-13, (7, 4) = 0.633114035961826535904395095501e-12, (8, 1) = 0.120415812250308214621156029596e-12, (8, 2) = -0.368628061709309149208840641870e-11, (8, 3) = -0.487513284087388099371732323709e-13, (8, 4) = 0.781288580314667718580478200658e-13, (9, 1) = -0.347665364702397965402493876161e-12, (9, 2) = 0.148987431778512367711638748648e-11, (9, 3) = 0.154723872753122625360967753075e-13, (9, 4) = 0.112069468003906430512228466830e-12, (10, 1) = -0.747325206960181208807910607994e-13, (10, 2) = 0.425774744917936315541542890359e-11, (10, 3) = -0.745116223686361430857242713731e-14, (10, 4) = 0.509801296273227060415641578441e-12, (11, 1) = 0.309656503680833153479611057855e-12, (11, 2) = -0.993937153477365356565300757158e-12, (11, 3) = -0.438615060808811251132277279376e-13, (11, 4) = 0.296355837184858818995652813808e-12, (12, 1) = -0.315708105110803233195062673759e-13, (12, 2) = -0.271815964785012310260399571861e-11, (12, 3) = 0.481611737543103578640838773875e-14, (12, 4) = -0.641004686816172471313190375599e-13, (13, 1) = -0.292017938738921918178136494830e-12, (13, 2) = 0.135697376207902682967096240924e-11, (13, 3) = 0.414516757912452454606373644484e-13, (13, 4) = 0.220524040141485719968371244620e-12, (14, 1) = 0.904487199585855893779279209964e-13, (14, 2) = 0.109189797916837599089072245204e-11, (14, 3) = -0.362402170251024880034402802907e-14, (14, 4) = 0.433248322496686048236216433209e-12, (15, 1) = 0.171242644045959061954425467197e-12, (15, 2) = -0.198109702812825161434564160011e-11, (15, 3) = -0.785297465428687796812005174798e-14, (15, 4) = 0.211894538091235478116460481680e-13, (16, 1) = -0.248111303408729335133836573493e-12, (16, 2) = -0.668979758640117719905583060697e-14, (16, 3) = 0.584757842951030939070918630495e-13, (16, 4) = -0.653052104304814880379195668414e-13, (17, 1) = -0.114220171997200104745527284733e-12, (17, 2) = 0.218627621169235890528728244099e-11, (17, 3) = 0.513946168107376096926601048973e-13, (17, 4) = 0.408009023243946482924204367332e-12, (18, 1) = 0.365214639614096436016276107021e-12, (18, 2) = 0.345627252025037416089364046511e-13, (18, 3) = -0.953245479726528308274101213220e-14, (18, 4) = 0.318166094505488373943169445306e-12, (19, 1) = 0.854898667790888633224984158677e-13, (19, 2) = -0.649678672568424719061469709331e-12, (19, 3) = 0.302309007382134077561013766885e-13, (19, 4) = -0.198892519616287515248595029425e-12, (20, 1) = -0.401584956558512285132195842847e-12, (20, 2) = 0.324685849906694431334368010206e-12, (20, 3) = 0.986724732042785822672997280291e-13, (20, 4) = 0.486091596825707803044576943811e-13, (21, 1) = -0.619147250123538833264415359350e-13, (21, 2) = -0.174071706145471048343584943063e-11, (21, 3) = 0.442490489883311980373756083631e-13, (21, 4) = 0.552332924129501050629621834267e-12, (22, 1) = 0.253149541104163644494969553458e-12, (22, 2) = -0.290457338375483866306372365600e-11, (22, 3) = -0.118474547379905425081066215665e-13, (22, 4) = 0.130311572027120093530492025336e-12, (23, 1) = -0.386020515274107623543392096596e-12, (23, 2) = -0.946951786085997115239974740802e-12, (23, 3) = 0.759106975513015331432505085445e-13, (23, 4) = -0.405804648686779306570708856561e-12, (24, 1) = -0.878207338705768294484080456286e-12, (24, 2) = -0.249337015584493003403148442499e-11, (24, 3) = 0.148369282950566915230800255773e-12, (24, 4) = 0.118921401092554737882722292645e-12, (25, 1) = -0.346923414280937606377641207111e-12, (25, 2) = -0.597461143065034399969762030001e-11, (25, 3) = 0.640154648489789617917907956550e-13, (25, 4) = 0.660114509730747494852007608139e-12, (26, 1) = 0., (26, 2) = -0.382931341681480126793241681005e-11, (26, 3) = 0., (26, 4) = 0.255469306674372572468536749913e-12}, order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 26, [xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(26, 4, X, Y, outpoint, yout, L, V) end if; [r = outpoint, seq('[xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[26] elif outpoint = "order" then return 8 elif outpoint = "error" then return 0.169408005417746288754305445425e-10 elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 26, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[26] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[26] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (true), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(26, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(1..5, {(1) = 18446744074427911966, (2) = 18446744074427904350, (3) = 18446744074427904526, (4) = 18446744074427904702, (5) = 18446744074427904878}), (3) = [r, xi__1(r), diff(xi__1(r), r), xi__2(r), diff(xi__2(r), r)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(r) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(r) else `diff(xi__2(r),r)` := pointto(data[2][5]); return ('`diff(xi__2(r),r)`')(r) end if end if; try res := solnproc(outpoint); res[5] catch: error  end try end proc]

(2)

plots:-odeplot( dsol, [[r, xi__1(r)],[r, xi__2(r)]], r=0..0.8178, color=[red, blue] );

 

 


 

Download oddODEprob.mw

 

the attached

restart;
with(LinearAlgebra):
for i from 1 to 8 do  
    M[i]:=RandomMatrix(3,3):  
    N[i]:=Eigenvalues(M[i]):
end do:
seq(simplify(expand(mul(N[j]))), j=1..8);
seq(Determinant(M[k]), k=1..8);
     

-327244, 83178, 44125, 2895, -166214, -465220, -59392, 557755

 

-327244, 83178, 44125, 2895, -166214, -465220, -59392, 557755

(1)

 

Download getDet.mw

First 111 112 113 114 115 116 117 Last Page 113 of 207