
This is the Classroom Tips & Techniques article for the May, 2011 Maplesoft Reporter, which, after publication, finds its way into the Maple Application Center. The article takes the liberty to rail against the stress placed on a particular manipulative skill in the precalculus curriculum, and likewise, I take the liberty to post it as a blog. The windmill at which I tilt is the "skill" of factoring a quadratic polynomial by inspection, a technique in which I find little intrinsic value.
My guess is that for historic reasons, factoring a quadratic was the way to obtain its zeros. The essence of the concept one would want a student to absorb is the factorremainder theorem, so finding zeros becomes important. But demanding that students learn about the factorremainder theorem via the travail of factoring a quadratic by inspection seems to me rather senseless, given that shortly, the student learns to complete the square and thereby obtain the roots of a quadratic equation. In fact, the quadratic formula is derived by completing the square, and not by "factoring."
I remember in my high school math curriculum (mid 1950s) that I learned to multiply and divide large numbers via the addition and subtraction of their logarithms. This material disappeared from the curriculum as soon as calculators became a commodity in the 1970s. If the curriculum can change in one way because of technology, why, using the same technology, can't it change in another? The higher cognitive merit is in understanding the relationship between zeros and factors. It isn't really necessary to torment students with factoringbyinspection as a way of finding zeros. There are other ways  either use an electronic technology or use the quadratic formula.
Indeed, consider how a cubic is factored in the precalculus curriculum. First, zeros are found; then from the zeros, the factors are written. Just the opposite of the process imposed in the quadratic case!
Finally, I would conjecture that in some appropriate space, the set of quadratics that can be factored by "inspection" has measure zero. Any quadratic worth factoring probably doesn't yield to "inspection" anyway.
OK, now that I've ranted, I'd like to finish with a tool I just wrote, a tool for helping a student with the task of factoring a quadratic polynomial. I never thought I'd find myself creating such an applet, but I get asked about this as part of many of the webinars I present for Maplesoft. Just recently, after again getting that question, I found I just couldn't let it go. I kept thinking about what it takes for a student to master the appropriate skill. So, the tool I built reflects the way I think about the task.
