Digits:=22
Let c be the MRB constant
c := .1878596424620671202485179340542732300559030949001387
Let ch be the Champernowne Constan.
ch := .123456789101112131415161718192021
P := c+21/29
Q := (1/5)*(10520*ch+1)/(2001*ch+38)
PQ = 4.4940*10^(18)
Let H9 be the 9th HundredDollar constant.
H9 := .7859336743503714545652439863275455829623954590618668
P := c+11/40
Q := (590*H9+3573)/(3*(9*H9+2900))
PQ = 2.071*10^(19)
let H10 be the 10th HundredDollar constant.
H10 := 0.38375879792512261034071331862048391007930055940e6
P := c+7/33
Q := (40709*H10240)/(60*(449*H1010))
PQ = 1.8691*10^(18)
Let r1 be the positive root of 1122113300 x^465158827,
fsolve(1122113300*x^465158827, x)
r1 := .4908899454923701491405
P := c+10/33
Q := r1
PQ = 1.4110*10^(18)
Let r2 be the positive root of
745964900 x^417929383,
fsolve(745964900*x^417929383, x)
r2 := .3937419954032435881006
P := c+7/34
Q := r2 PQ = 2.7361*10^(18)
Let B be the conjectured value of Bloch Constant.
B := .4718616534526817848744687936113161490770126217394432
P := c+11/34
Q := (4450*B238)/(6001*B+809)
PQ = 3.176*10^(19)
Let F be the FransénRobinson Constant.
F := 2.8077702420285193652215011865577729323080859209301982
P := c+15/17
Q := (208822007*F)/(1050+4700*F)
PQ = 1.739*10^(18)
Let p be the Pell constant.
p := .5805775582048924022900438922970257477660467656073332
P := c+24/35
Q := (10037*p903)/(8500*p+702
PQ = 2.425*10^(19)
Let d be the Dottie Number.
d := .7390851332151606416553120876738734040134117589007574
P := c+27/35
Q := (1880*d4900)/(7307*d9060)
PQ = 1.4186*10^(18)
Let pg be the Pogson's Ratio.
pg := 2.5118864315095801110850320677993273941585181007824754
P := c+32/35
Q := (10*pg+8033)/(9870+6840*pg)
PQ = 3.387*10^(18)
Let B be the conjectured value of Bloch Constant.
B := .4718616534526817848744687936113161490770126217394432
P := c+5/37
Q := (6311074*B)/(3060+7300*B)
PQ = 9.5444*10^(18)
Let T1 be Trott's first constant.
T1 := .1084101512231113615112908114064150911221580909390909
.P := c+36/37
Q := (260*T1+9200)/(1055*T18064)
PQ = 7.86*10^(19)
Let r be the rabbit constant.
r := .7098034428612913146417873994445755970125022057678605
P := c+16/19
Q := (8110900*r)/(6434*r12000)
PQ = 2.973*10^(18)
Let Lz be Lieb's square ice constant.
Lz := 1.5396007178390020386910634146718865483936046700536716
P := c+7/41
Q := (36*Lz120)/(406*Lz445)
PQ = 3.82447*10^(17)
Let Vt be the mean cubeintetrahedron volume.
Vt := 0.1384277574023640804683588379635363373365e1
P := c+36/41
Q := (12000*Vt1602)/(20090*Vt+1069)
PQ = 2.3538*10^(17)
Let tm be the magic angle [http://en.wikipedia.org/wiki/Magic_angle], .
tm := evalf(arcsec(sqrt(3)))
P := c+16/21
Q := (805*tm+2958)/(3040*tm+1020)
PQ = 1.3096*10^(18)

Enter your comment below. For information on using the editor, view the MaplePrimes Help.
Email me when new comments are added to this