Question: How to solve a Jacobian in maple?

For example, given a 3d point p(x,y,z), with (x,y,z) as its coordinates. Then it is transformed by rotation and translation, as 

p'=R(p)*p+t(p), where R(p) is a 3x3 rotation matrix that is a matrix of functions of p, and t(p) is a 3x1 vector function of p. 

My question is how to derive dp'/d(as a 3x3 matrix) using maple? 

To make it clear,I want to do it in a way that dp'/dp = ∂p'/∂p + ∂p'/∂R*∂R/∂p +  ∂p'/∂t*∂t/∂p

And I'd like to know each intermediate quantity, such as p'/∂R, R/∂p.


Anyone can help?

Thanks a lot. 

Please Wait...