Question: Infinite value for parameter...

hi.how i can allocate infinite value for a parameter such as N ,which is attached below ( N := infinite) .i encounter with error.please see it and help

thanks..

 

restart; Digits := 55; a := 0; m := 1; n := 1; x[0] := 0; a := 0; h1 := proc (theta) options operator, arrow; cos(n*theta) end proc; h3 := proc (theta) options operator, arrow; cos(n*theta) end proc; h2 := proc (theta) options operator, arrow; sin(n*theta) end proc; N := infinite; `#mover(mi("z"),mo("ˆ"))` := z+z__c; z__c := (1/2)*h; `λ__c` := E__c*`υ__c`/(-`υ__c`^2+1); `μ__c` := E__c/(2*(1+`υ__c`)); `η__c` := E__c/(-`υ__c`^2+1); `λ__m` := E__m*`υ__m`/(-`υ__m`^2+1); `μ__m` := E__m/(2*(1+`υ__m`)); `η__m` := E__m/(-`υ__m`^2+1); E__m := 42.9*10^9; `υ__m` := .325; `ρ__m` := 6020; E__c := 170*10^9; `υ__c` := .25; `ρ__c` := 4640; h := 10^(-9); R := 10*h; L := 20*R; `ℓ` := 0; f := 0; `ε__r` := 0; `ε` := 8.8541878176*10^(-12)*`ε__r`; f__z := 0; `f__θ` := 0; f__x := 0; lambda := proc (`#mover(mi("z"),mo("ˆ"))`) options operator, arrow; (`λ__m`-`λ__c`)*(`#mover(mi("z"),mo("ˆ"))`/h)^N+`λ__c` end proc; mu := proc (`#mover(mi("z"),mo("ˆ"))`) options operator, arrow; (`μ__m`-`μ__c`)*(`#mover(mi("z"),mo("ˆ"))`/h)^N+`μ__c` end proc; rho := proc (`#mover(mi("z"),mo("ˆ"))`) options operator, arrow; (`ρ__m`-`ρ__c`)*(`#mover(mi("z"),mo("ˆ"))`/h)^N+`ρ__c` end proc; eta := proc (`#mover(mi("z"),mo("ˆ"))`) options operator, arrow; (`η__m`-`η__c`)*(`#mover(mi("z"),mo("ˆ"))`/h)^N+`η__c` end proc; `D__1,0` := int(eta(`#mover(mi("z"),mo("ˆ"))`), z = -z__c .. h-z__c); `D__1,1` := int(eta(`#mover(mi("z"),mo("ˆ"))`)*z, z = -z__c .. h-z__c); `D__1,2` := int(eta(`#mover(mi("z"),mo("ˆ"))`)*z^2, z = -z__c .. h-z__c); `D__3,0` := int(lambda(`#mover(mi("z"),mo("ˆ"))`), z = -z__c .. h-z__c); `D__3,1` := int(lambda(`#mover(mi("z"),mo("ˆ"))`)*z, z = -z__c .. h-z__c); `D__3,2` := int(lambda(`#mover(mi("z"),mo("ˆ"))`)*z^2, z = -z__c .. h-z__c); `D__5,0` := int(lambda(`#mover(mi("z"),mo("ˆ"))`), z = -z__c .. h-z__c); `D__5,1` := int(lambda(`#mover(mi("z"),mo("ˆ"))`)*z, z = -z__c .. h-z__c); `D__5,2` := int(lambda(`#mover(mi("z"),mo("ˆ"))`)*z^2, z = -z__c .. h-z__c); `I__1,0` := int(rho(`#mover(mi("z"),mo("ˆ"))`), z = -z__c .. h-z__c); `I__1,1` := int(rho(`#mover(mi("z"),mo("ˆ"))`)*z, z = -z__c .. h-z__c); `I__1,2` := int(rho(`#mover(mi("z"),mo("ˆ"))`)*z^2, z = -z__c .. h-z__c); with(Student[Calculus1])

[AntiderivativePlot, AntiderivativeTutor, ApproximateInt, ApproximateIntTutor, ArcLength, ArcLengthTutor, Asymptotes, Clear, CriticalPoints, CurveAnalysisTutor, DerivativePlot, DerivativeTutor, DiffTutor, ExtremePoints, FunctionAverage, FunctionAverageTutor, FunctionChart, FunctionPlot, GetMessage, GetNumProblems, GetProblem, Hint, InflectionPoints, IntTutor, Integrand, InversePlot, InverseTutor, LimitTutor, MeanValueTheorem, MeanValueTheoremTutor, NewtonQuotient, NewtonsMethod, NewtonsMethodTutor, PointInterpolation, RiemannSum, RollesTheorem, Roots, Rule, Show, ShowIncomplete, ShowSolution, ShowSteps, Summand, SurfaceOfRevolution, SurfaceOfRevolutionTutor, Tangent, TangentSecantTutor, TangentTutor, TaylorApproximation, TaylorApproximationTutor, Understand, Undo, VolumeOfRevolution, VolumeOfRevolutionTutor, WhatProblem]

(1)

NULL

 

 

infinite.mw

Please Wait...