Question: problem plotting double integration expressions

hi everyone,

i have attached a maple worksheet which you can see the issue...azido_displacement.mw
i think tittle says by itself... thanks in advance for taking the time to review and aswer me.

 

theta__o := (1/4)*Pi

(1/4)*Pi

(1)

omega__o := 0

0

(2)

tau := 1

1

(3)

m := 2.28335

2.28335

(4)

g := 9.80665

9.80665

(5)

L := .35

.35

(6)

Iota := 0.9996799726e-1

0.9996799726e-1

(7)

with(DirectSearch)

[BoundedObjective, CompromiseProgramming, DataFit, ExponentialWeightedSum, GlobalOptima, GlobalSearch, Minimax, ModifiedTchebycheff, Search, SolveEquations, WeightedProduct, WeightedSum]

(8)

SolveEquations([omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau+(1/3)*alpha__3*tau = 0, theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*tau+(1/2)*alpha__3*((1/3)*tau)^2 = (1/2)*Pi, int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau)+int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. (1/3)*tau)+int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)+alpha__3*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)), t = 0 .. (1/3)*tau) = 0], initialpoint = [alpha__1 = 12.7751705882228, alpha__2 = 18.4817577058678, alpha__3 = 5.70658711764534])

[6.74607137501932*10^(-24), Vector(3, {(1) = HFloat(1.936228954946273e-13), (2) = HFloat(2.027322754116767e-12), (3) = 0.1612e-11}), [`#msub(mi("α",fontstyle = "normal"),mi("1"))` = 14.7208062595154, `#msub(mi("α",fontstyle = "normal"),mi("2"))` = 22.3730290484357, `#msub(mi("α",fontstyle = "normal"),mi("3"))` = 7.65222278892092], 139]

(9)

alpha__1 := 14.7208062595154

14.7208062595154

(10)

alpha__2 := 22.3730290484357

22.3730290484357

(11)

alpha__3 := 7.65222278892092

7.65222278892092

(12)

x__1 := int(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. t), t = 0 .. t2)

int(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. t), t = 0 .. t2)

(13)

x__2 := int(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. t), t = 0 .. (1/3)*tau)+t2*(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau))+int(int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. t), t = 0 .. t2)

int(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. t), t = 0 .. 1/3)+t2*(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. 1/3))+int(int(-.4379530076*(22.39201428*cos(-1.603220734-4.906935420*t+11.18651452*t^2)-20.11649647)/sin(-1.603220734-4.906935420*t+11.18651452*t^2), t = 0 .. t), t = 0 .. t2)

(14)

x__3 := int(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. t), t = 0 .. (1/3)*tau)+(1/3)*tau*(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau))+int(int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. t), t = 0 .. (1/3)*tau)+t2*(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau)+int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. (1/3)*tau))+int(int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)+alpha__3*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)), t = 0 .. t), t = 0 .. t2)

int(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. t), t = 0 .. 1/3)+(1/3)*(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. 1/3))+int(int(-.4379530076*(22.39201428*cos(-1.603220734-4.906935420*t+11.18651452*t^2)-20.11649647)/sin(-1.603220734-4.906935420*t+11.18651452*t^2), t = 0 .. t), t = 0 .. 1/3)+t2*(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. 1/3)+int(-.4379530076*(22.39201428*cos(-1.603220734-4.906935420*t+11.18651452*t^2)-20.11649647)/sin(-1.603220734-4.906935420*t+11.18651452*t^2), t = 0 .. 1/3))+int(int(.4379530076*(22.39201428*cos(1.995919816-2.550740930*t+3.826111394*t^2)+6.880423404)/sin(1.995919816-2.550740930*t+3.826111394*t^2), t = 0 .. t), t = 0 .. t2)

(15)

plot([x__1, x__2, x__3], t2 = 0 .. (1/3)*tau)

 

``


 

Download azido_displacement.mw

 

Please Wait...