J4James

355 Reputation

12 Badges

12 years, 346 days

MaplePrimes Activity


These are questions asked by J4James

restart:

FF := Q-1+(1/5)*K*dp^3*h^5+(1/3)*dp*h^3+h+h1*h;

DDP:=[solve(FF,dp)]:

h:=1+phi*cos(2*Pi*x):

h1:=2*Pi*alpha*beta*phi*cos(2*Pi*x);

beta:=1:alpha:=0:
phi:=0.5:

dpdx:=evalf(DDP[1]):

dpp:=Int((dpdx),x=0..1):

plot([subs(K=-0.1,Re(evalf(dpp)))],Q=-1..1,axes=box,color=[blue],adaptive= false);

I am unable to get any type of output. 

Cheers!

 

 

restart:assume(M>0);

Eq1 := diff(psi(y), y, y, y, y)-M*(diff(psi(y), y, y))-Gr*b*y = 0;

bcs1:=psi(0)=0,(D@@2)(psi)(0)=0,psi(h)=-F/2,D(psi)(h)=A;

res1:=(dsolve(Eq1));

res2:=(dsolve({Eq1,bcs1},psi(y)));

match(rhs(res2)=rhs(res1),y,s);

s:

C3:=eval(_C3, s);

I am unable to find the constants. Anyway around this?

restart:with(plots):

h3:=((1+lambda*m*x/a0+phi*((4/Pi*sum((-1)^(n+1)/(2*n-1)*cos(2*Pi*(2*n-1)*x),n=1..infinity)))));

q:=Q-1:

f:=sin(alpha)/E;

DP3:=Int(f-((q*(k+1)*(k+2))/((1-tau)^(k+1)*((h3^(k+2)))*(k+1+tau)))^(1/k),x=0..1);

E:=0.2:phi:=0.2:alpha:=0.1:k:=1:lambda:=0.1:a0:=0.5:m:=0.1:tau:=0.1:

plot((DP3),Q=0..1,axes=box,linestyle=1,color=[red]);

I am unable to plot DP3 vs Q, not only it take very long time but didn't give any output.

Please have a look.

 

Cheers!

 

restart:

ODE:=diff((-diff(u(y),y))^n,y)=A;

bcs:=D(u)(0)=0,u(h)=0;

dsolve({ODE,bcs});

             u(y) = 0

 

Hello,

restart:

F+(1/4)*(4*(-Lambda)^(3/2)*h*m^2-2*sqrt(-Lambda)*exp(Lambda*h^2*m^2)*h*m+sqrt(Pi)*erf(h*m*sqrt(-Lambda)))/(m^2*(-Lambda)^(3/2)) = 0;

how to solve this for m for real roots, where the rest are constants with Lambda>0.

 

 

5 6 7 8 9 10 11 Last Page 7 of 20