Kitonum

21565 Reputation

26 Badges

17 years, 137 days

MaplePrimes Activity


These are answers submitted by Kitonum

If you think  diff  command is  too long to write, in 1d input you can use  D  command instead:

restart;
f:=x->x^2;
D(f);
D(f)(x);

D command is especially useful if you need to calculate the derivative at a point, for example

D(f)(3);

 

See the plot:

plot(arccos(cos(phi)), phi=0..4*Pi, scaling=constrained);


To get  0  you need to restrict  phi :

cc:=arctan(sin(phi)/cos(phi))-arccos(cos(phi));      
simplify(cc) assuming phi>0 and phi<Pi/2;


Addition. Here are 2 exercises for students (should be solved manually) and to  check in Maple: to calculate  arccos(cos(20))arccos(sin(20))  (20 radians rather than degrees)
 


 

Add the line  simplify(Cr);


It's not a bug. In Maple there are cases when the calculation is not performed immediately, but some additional commands are required. Here are 2 examples:

eval(sqrt(a), a=4);
simplify(%);
cos(2*arccos(1/3));
expand(%);

 

Use  plottools:-getdata  command.

P:=a*s^3+b*s^2+c*s+d;
n:=degree(P, s);
add(C||k*s^k, k=0..n);

The example:

convert(F32, string);
parse(substring(%, 2..-1));
                                                   
 "F32"
                                                       32

# Or

parse(convert(F3, string)[2..-1]);

You cannot mix a variable and an indexed variable with the same name in the same code. Take a look:

a:=1; a[1]:=2;
a+a[1];
                                                 

In your code, exactly the same situation with  r  and  r[1] .

restart:
with(DETools):
with(PDEtools):
u[o](r,z):=(-1/4)*diff(p[o](z),z)*(1-r^2):
ode:=gamma1*diff(u[o](r,z),z)+(1/r)*diff(v[1](r)*r,r)=0:
IC1 := v[1](0) = 0:
ans2 := dsolve({ode, IC1}, v[1](r));

The built-in command  diff  does not allow you to search for the derivative of a function by function, but if you use the well-known chain rule to differentiate the composition of functions, then we get:

q := [q1(t),q2(t),q3(t)];
L:=cos(q1(t))+sin(q2(t))+5*diff(q1(t),t) + 4*diff(q3(t),t);
diff(diff(L,t)/diff(q1(t),t), t);
                   


Edit.

h1 := solve(Vdc = 0.1500000000e-2*sqrt(2.53669508*10^8*u^3-6.06101011*10^8*u^2+3.46343435*10^8*u), u): 
A := plot([h1], Vdc = 0 .. 11.5, color = [magenta], thickness = 1): 
B := plot(Vector([0, 3.38, 5.21, 6.97, 8.4108, 10.099, 10.9232, 11.8091]), Vector([0, 0.760e-1, .1275, .1994, .2286, .3222, .3637, .999]), style = point, symbol = asterisk, color = "Blue"):
plots:-display(A, B);

For example:

restart;

eval(x+y, {x=13, y=259});

# or

assign({x=13, y=259});
x+y, x*y;

 

Should be   lambda:=3;  not  lamba:=3  in the line after  restart;

Use an inert form to avoid automatic simplification:

a%^(-3/4);
                            

 

 

restart;
plot3d(x^2 + y^2, x=0..1, y=0..x, filled=true, grid=[20,20]);

# or

plots:-shadebetween(0, x^2 + y^2, x=0..1, y=0..x, grid=[20,20]);


We see that  plots:-shadebetween   also works.
 

restart;
d1:=3: d2:=3: d3:=5:
plots:-implicitplot3d(max(x^2+y^2+z^2-d1^2, (x-3)^2+y^2+z^2-d2^2, x^2+y^2+(z-4)^2-d3^2), x=0..4, y=-3..3, z=-2..3, style=surface, color=khaki, numpoints=500000, axes=normal, scaling=constrained);
               

The user lighting was used.


Addition. We can build everything together in one plot:

restart;
d1:=3: d2:=3: d3:=5:
A:=plots:-implicitplot3d(max(x^2+y^2+z^2-d1^2,(x-3)^2+y^2+z^2-d2^2,x^2+y^2+(z-4)^2-d3^2), x=0..4,y=-3..3,z=-2..3, style=surface, color=khaki, numpoints=500000, axes=normal, scaling=constrained):    
B:=plots:-implicitplot3d([x^2+y^2+z^2=d1^2,(x-3)^2+y^2+z^2=d2^2,x^2+y^2+(z-4)^2=d3^2],x=-5..6,y=-5..5,z=-4..9,color=["LightPink","LightGreen","LightBlue"], style= wireframe, thickness=0,  numpoints=5000):
plots:-display(A, B);
                

First 105 106 107 108 109 110 111 Last Page 107 of 290