Kitonum

21440 Reputation

26 Badges

17 years, 34 days

MaplePrimes Activity


These are answers submitted by Kitonum

f:= x-> (sign(4*x^2-4)*abs(4*x^2-4)^(1/5))^4;
evalf(f(0));

Use  plots:-display  command for this:

plots:-display(rect[i], i=1..21);

 

Edit: of course above should be
plots:-display(seq(rect[i], i=1..21));

Thanks to Carl for the amendment.
 

 

You can treat this as a curve in 3d.

Example:

restart;
eq1:=sin(z):
eq2:=cos(z):
plots:-spacecurve([eq1,eq2,z], z=0..4*Pi, color=red, thickness=3);

                         

 

Everything works with assuming:

simplify(A) assuming real;
simplify(B) assuming real;
simplify(A) assuming complex;
simplify(B) assuming complex;
combine(A);
combine(B);
combine(A*B);


                                                          1
                                                          1
                                                          1
                                                          1
                                                          1
                                                          1
                                                          1

Or

simplify(numer(A))/denom(A);

and so on ...


Several other ways:

is(A=1);
is(B=1);
is(A*B=1);
combine(convert(A, tan));
combine(convert(B, tan));
combine(convert(A*B, tan))
;


Edit.

I swapped  seq  and  plottools:-arrow  and added a few required parameters for  plottools:-arrow  command.

plot_arrows_sequence_new.mw


Addition.  [seq] means that the result of applying  seq  command will be surrounded by square brackets, i.e. we get a list.

Example:

seq(k^2, k=1..10);
[seq](k^2, k=1..10);
        

 

 

You can do this using  LinearAlgebra:-GenerateMatrix  command as below:


 

restart;
with(LinearAlgebra):
sys := [diff(tau__1(t),t,t)+2*diff(tau__1(t),t)+3*diff(tau__2(t),t)+4*tau__1(t)+5*tau__2(t)=6,
diff(tau__2(t),t,t)+7*diff(tau__1(t),t)+8*diff(tau__2(t),t)+9*tau__1(t)+10*tau__2(t)=11];
var[1],var[2],var[3]:=[diff(tau__1(t),t$2),diff(tau__2(t),t$2)],[diff(tau__1(t),t),diff(tau__2(t),t)], [tau__1(t),tau__2(t)];

[diff(diff(tau__1(t), t), t)+2*(diff(tau__1(t), t))+3*(diff(tau__2(t), t))+4*tau__1(t)+5*tau__2(t) = 6, diff(diff(tau__2(t), t), t)+7*(diff(tau__1(t), t))+8*(diff(tau__2(t), t))+9*tau__1(t)+10*tau__2(t) = 11]

 

[diff(diff(tau__1(t), t), t), diff(diff(tau__2(t), t), t)], [diff(tau__1(t), t), diff(tau__2(t), t)], [tau__1(t), tau__2(t)]

(1)

M:=seq(GenerateMatrix(sys,var[i])[1], i=1..3);

M := Matrix(2, 2, {(1, 1) = 1, (1, 2) = 0, (2, 1) = 0, (2, 2) = 1}), Matrix(2, 2, {(1, 1) = 2, (1, 2) = 3, (2, 1) = 7, (2, 2) = 8}), Matrix(2, 2, {(1, 1) = 4, (1, 2) = 5, (2, 1) = 9, (2, 2) = 10})

(2)

Eq:=add(M[i]%*convert(var[i],Vector), i=1..3)=<rhs(sys[1]),rhs(sys[2])>;

`%*`(Matrix(2, 2, {(1, 1) = 1, (1, 2) = 0, (2, 1) = 0, (2, 2) = 1}), Vector(2, {(1) = diff(diff(`&tau;__1`(t), t), t), (2) = diff(diff(`&tau;__2`(t), t), t)}))+`%*`(Matrix(2, 2, {(1, 1) = 2, (1, 2) = 3, (2, 1) = 7, (2, 2) = 8}), Vector(2, {(1) = diff(`&tau;__1`(t), t), (2) = diff(`&tau;__2`(t), t)}))+`%*`(Matrix(2, 2, {(1, 1) = 4, (1, 2) = 5, (2, 1) = 9, (2, 2) = 10}), Vector(2, {(1) = `&tau;__1`(t), (2) = `&tau;__2`(t)})) = (Vector(2, {(1) = 6, (2) = 11}))

(3)

 


 

Download MatrixForm1.mw

For matrices and vectors use  LinearAlgebra:-Equal  command:

for i from 2 while not LinearAlgebra:-Equal(M[i, 1], M[1, 1]) and i < 25 do
print(i, M[i, 1]); 
end do;

2 errors were fixed:
1. gamma is a protected constant in Maple. So I wrote  local gamma;
2. deq1  and   deq2  should be  instead of  deg1  and  deg2

restart;
with(plots):
local gamma;
fixedparameter1 := [n = .3, W[e] = .3, M = .2, gamma = 1, delta = -1, N[r] = .8, Pr = .72, Nb = .5, Nt = .5, Bi = 2, Pr = .72, Le = 5]:

eq1 := (1-n)*(diff(f(eta), eta, eta, eta))+f(eta)*(diff(f(eta), eta, eta))-M*(diff(f(eta), eta))+n*W[e]*(diff(f(eta), eta, eta, eta))*(diff(f(eta), eta, eta)) = 0:
 
deq1:=eval(eq1, fixedparameter1);

eq2 := (1+(4/3)*N[r])*(diff(theta(eta), eta, eta))+Pr*f(eta)*(diff(theta(eta), eta))+Nb*(diff(phi(eta), eta))*(diff(theta(eta), eta))+Nt*(diff(theta(eta), eta))*(diff(theta(eta), eta)) = 0:
          
 deq2:=eval(eq2, fixedparameter1);
           
          
eq3 := diff(phi(eta), eta, eta)+Pr*Le*f(eta)*(diff(phi(eta), eta))+Nt*(diff(theta(eta), eta, eta))/Nb = 0:
   
deq3 := eval(eq3, fixedparameter1);
   
bcs1 := f(0) = 0, D(f)(0) = 1+gamma*(D@D)(f)(0)+delta*(D@D@D)(f)(0), D(f)(8) = 0;

bc1 := eval(bcs1, fixedparameter1);
   
bcs2 := D(theta)(0) = Bi*(theta(0)-1), theta(8) = 0;
        
bc2 := eval(bcs2, fixedparameter1);
          
bcs3 := Nb*D(phi)(0)+Nt*D(theta)(0) = 0, Nb*D(phi)(0)+Nt*D(theta)(0) = 0, phi(8) = 0;
       
bc3 := eval(bcs3, fixedparameter1);
      
 

.7*(diff(diff(diff(f(eta), eta), eta), eta))+f(eta)*(diff(diff(f(eta), eta), eta))-.2*(diff(f(eta), eta))+0.9e-1*(diff(diff(diff(f(eta), eta), eta), eta))*(diff(diff(f(eta), eta), eta)) = 0

 

2.066666667*(diff(diff(theta(eta), eta), eta))+.72*f(eta)*(diff(theta(eta), eta))+.5*(diff(phi(eta), eta))*(diff(theta(eta), eta))+.5*(diff(theta(eta), eta))^2 = 0

 

diff(diff(phi(eta), eta), eta)+3.60*f(eta)*(diff(phi(eta), eta))+1.000000000*(diff(diff(theta(eta), eta), eta)) = 0

 

f(0) = 0, (D(f))(0) = 1+gamma*((D@@2)(f))(0)+delta*((D@@3)(f))(0), (D(f))(8) = 0

 

f(0) = 0, (D(f))(0) = 1+((D@@2)(f))(0)-((D@@3)(f))(0), (D(f))(8) = 0

 

(D(theta))(0) = Bi*(theta(0)-1), theta(8) = 0

 

(D(theta))(0) = 2*theta(0)-2, theta(8) = 0

 

Nb*(D(phi))(0)+Nt*(D(theta))(0) = 0, Nb*(D(phi))(0)+Nt*(D(theta))(0) = 0, phi(8) = 0

 

.5*(D(phi))(0)+.5*(D(theta))(0) = 0, .5*(D(phi))(0)+.5*(D(theta))(0) = 0, phi(8) = 0

(1)

R := dsolve({bc1, bc2, bc3, deq1, deq2, deq3}, {f(eta), theta(eta), phi(eta)}, numeric, output = listprocedure);

[eta = proc (eta) local _res, _dat, _solnproc; option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; _dat := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); _solnproc := _dat[1]; if member(eta, ["last", 'last']) then _res := _solnproc("last"); if type(_res, 'list') then return _res[1] end if elif type(eta, `=`) and member(lhs(eta), ["initial", 'initial']) then if type(rhs(eta), 'list') then _res := _solnproc("initial" = [0, op(rhs(eta))]) else _res := _solnproc("initial" = [1, rhs(eta)]) end if; if type(_res, 'list') then return _res[1] end if elif eta = "sysvars" then return _dat[3] end if; eta end proc, f(eta) = proc (eta) local res, data, solnproc, `f(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `f(eta)` := pointto(data[2][2]); return ('`f(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[2] catch: error  end try end proc, diff(f(eta), eta) = proc (eta) local res, data, solnproc, `diff(f(eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(f(eta),eta)` := pointto(data[2][3]); return ('`diff(f(eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[3] catch: error  end try end proc, diff(diff(f(eta), eta), eta) = proc (eta) local res, data, solnproc, `diff(diff(f(eta),eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(diff(f(eta),eta),eta)` := pointto(data[2][4]); return ('`diff(diff(f(eta),eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[4] catch: error  end try end proc, phi(eta) = proc (eta) local res, data, solnproc, `phi(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `phi(eta)` := pointto(data[2][5]); return ('`phi(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[5] catch: error  end try end proc, diff(phi(eta), eta) = proc (eta) local res, data, solnproc, `diff(phi(eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(phi(eta),eta)` := pointto(data[2][6]); return ('`diff(phi(eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[6] catch: error  end try end proc, theta(eta) = proc (eta) local res, data, solnproc, `theta(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `theta(eta)` := pointto(data[2][7]); return ('`theta(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[7] catch: error  end try end proc, diff(theta(eta), eta) = proc (eta) local res, data, solnproc, `diff(theta(eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = .5627762484149441, (1, 3) = -.437223751585056, (1, 4) = -.12930530049227085, (1, 5) = .18377008658537544, (1, 6) = .9081149567073121, (1, 7) = -.18377008658537544, (2, 1) = .16820743381717876, (2, 2) = .42442611541133096, (2, 3) = -.36868177666442775, (2, 4) = -0.6888982936019243e-1, (2, 5) = .1631589576561627, (2, 6) = .8454559259508081, (2, 7) = -.18195017526470997, (3, 1) = .29350657312406303, (3, 2) = .3112006740227627, (3, 3) = -.29215871530081017, (3, 4) = -0.2034054819955086e-1, (3, 5) = .11837278940056817, (3, 6) = .7838081012312816, (3, 7) = -.1774969013157699, (4, 1) = .38466192156159174, (4, 2) = .223274655711248, (4, 3) = -.22112760502697737, (4, 4) = 0.12283310057842476e-1, (4, 5) = 0.7270252279138063e-1, (4, 6) = .7237942991196952, (4, 7) = -.1715154763374011, (5, 1) = .4497688930296371, (5, 2) = .15759098974167732, (5, 3) = -.161899675781252, (5, 4) = 0.30979078272539175e-1, (5, 5) = 0.3786307101320403e-1, (5, 6) = .665791853169971, (5, 7) = -.1646486141317912, (6, 1) = .4956104956683891, (6, 2) = .10989899744384392, (6, 3) = -.11576707203877054, (6, 4) = 0.3987285728643545e-1, (6, 5) = 0.154135546269391e-1, (6, 6) = .6100581011248941, (6, 7) = -.1572707464440023, (7, 1) = .5275354732865953, (7, 2) = 0.759791325652013e-1, (7, 3) = -0.8141876808413781e-1, (7, 4) = 0.4275731888009632e-1, (7, 5) = 0.2492661818537566e-2, (7, 6) = .5567741035794076, (7, 7) = -.1496294028641501, (8, 1) = .5495881583349363, (8, 2) = 0.5220804685400005e-1, (8, 3) = -0.5660826240195144e-1, (8, 4) = 0.4230323405289647e-1, (8, 5) = -0.4332741150297426e-2, (8, 6) = .5060514727848512, (8, 7) = -.1419068438553658, (9, 1) = .5647320855521177, (9, 2) = 0.35720559780736044e-1, (9, 3) = -0.39050108477730806e-1, (9, 4) = 0.40140915711447296e-1, (9, 5) = -0.7653239617821186e-2, (9, 6) = .45793721507169494, (9, 7) = -.1342402703919028, (10, 1) = .5750884151367387, (10, 2) = 0.2436587279244878e-1, (10, 3) = -0.26794695458985492e-1, (10, 4) = 0.37182193444192886e-1, (10, 5) = -0.9088504345768472e-2, (10, 6) = .41242437819288436, (10, 7) = -.1267296097338024, (11, 1) = .5821496128892366, (11, 2) = 0.16583639301460524e-1, (11, 3) = -0.18319818708253905e-1, (11, 4) = 0.3390909640963977e-1, (11, 5) = -0.9553214856912485e-2, (11, 6) = .36946626954724165, (11, 7) = -.11944394284551062, (12, 1) = .5869534216593508, (12, 2) = 0.11266957337530902e-1, (12, 3) = -0.12495932264857805e-1, (12, 4) = 0.30566830206894834e-1, (12, 5) = -0.9533868729940394e-2, (12, 6) = .32898862508409443, (12, 7) = -.11242802566355797, (13, 1) = .5902155128968489, (13, 2) = 0.7642241008852904e-2, (13, 3) = -0.8510730766174358e-2, (13, 4) = 0.27276402274480575e-1, (13, 5) = -0.928013950450599e-2, (13, 6) = .29089972823458, (13, 7) = -.10570849363909571, (14, 1) = .5924267236001722, (14, 2) = 0.5174173579176912e-2, (14, 3) = -0.5791566808531541e-2, (14, 4) = 0.24095549333248385e-1, (14, 5) = -0.8917615683712042e-2, (14, 6) = .25509769251750664, (14, 7) = -0.9929902072480293e-1, (15, 1) = .593922447557672, (15, 2) = 0.349473494232728e-2, (15, 3) = -0.3939913398892213e-2, (15, 4) = 0.2105024313916317e-1, (15, 5) = -0.8508897282261446e-2, (15, 6) = .22147525887019717, (15, 7) = -0.9320423468855642e-1, (16, 1) = .5949312550849929, (16, 2) = 0.23520525354593746e-2, (16, 3) = -0.2680800924935071e-2, (16, 4) = 0.1815066556968027e-1, (16, 5) = -0.8085171919168329e-2, (16, 6) = .18992399651915998, (16, 7) = -0.874227459834754e-1, (17, 1) = .5956086558531347, (17, 2) = 0.15742289884058175e-2, (17, 3) = -0.18255590673500117e-2, (17, 4) = 0.15399131413099943e-1, (17, 5) = -0.7662075462582974e-2, (17, 6) = .16033657434440393, (17, 7) = -0.8194918842963826e-1, (18, 1) = .5960603309286839, (18, 2) = 0.10441541624113817e-2, (18, 3) = -0.1245198180138092e-2, (18, 4) = 0.12793968626676037e-1, (18, 5) = -0.7247527321089393e-2, (18, 6) = .13260769156751429, (18, 7) = -0.7677552671518297e-1, (19, 1) = .5963580226525087, (19, 2) = 0.682141336774282e-3, (19, 3) = -0.8517535368510485e-3, (19, 4) = 0.10331464565675635e-1, (19, 5) = -0.6845579140999972e-2, (19, 6) = .10663488125364048, (19, 7) = -0.7189199114079402e-1, (20, 1) = .5965503810293938, (20, 2) = 0.43401179558332425e-3, (20, 3) = -0.5853433626431303e-3, (20, 4) = 0.8006865285957806e-2, (20, 5) = -0.6458306790423337e-2, (20, 6) = 0.8231918667381466e-1, (20, 7) = -0.6728774975724722e-1, (21, 1) = .5966703587244946, (21, 2) = 0.2629403405775333e-3, (21, 3) = -0.40524792459109175e-3, (21, 4) = 0.5814827929805367e-2, (21, 5) = -0.6086733850555835e-2, (21, 6) = 0.5956487654925113e-1, (21, 7) = -0.6295123618191564e-1, (22, 1) = .5967402363896794, (22, 2) = 0.14389837512495667e-3, (22, 3) = -0.28380156879155273e-3, (22, 4) = 0.37496311823831422e-2, (22, 5) = -0.5731286863296137e-2, (22, 6) = 0.38278982370575164e-1, (22, 7) = -0.5887033025433539e-1, (23, 1) = .5967750256936428, (23, 2) = 0.5990263164445501e-4, (23, 3) = -0.20225173826772752e-3, (23, 4) = 0.18061064873143794e-2, (23, 5) = -0.5392169274861699e-2, (23, 6) = 0.18379332663688745e-1, (23, 7) = -0.5503410453326595e-1, (24, 1) = .5967848325890819, (24, 2) = .0, (24, 3) = -0.14837885567472252e-3, (24, 4) = .0, (24, 5) = -0.50730970879345316e-2, (24, 6) = .0, (24, 7) = -0.5147291272444585e-1}, datatype = float[8], order = C_order); YP := Matrix(24, 7, {(1, 1) = .5627762484149441, (1, 2) = -.437223751585056, (1, 3) = .17037050349388827, (1, 4) = .18377008658537544, (1, 5) = .0, (1, 6) = -.18377008658537544, (1, 7) = .0, (2, 1) = .42442611541133096, (2, 2) = -.36868177666442775, (2, 3) = .22030013829258496, (2, 4) = .1631589576561627, (2, 5) = -.10863570194853156, (2, 6) = -.18195017526470997, (2, 7) = 0.9835323490667666e-2, (3, 1) = .3112006740227627, (3, 2) = -.29215871530081017, (3, 3) = .2196665913751167, (3, 4) = .11837278940056817, (3, 5) = -.14068628643729705, (3, 6) = -.1774969013157699, (3, 7) = 0.15610796072147229e-1, (4, 1) = .223274655711248, (4, 2) = -.22112760502697737, (4, 3) = .19072869244215557, (4, 4) = 0.7270252279138063e-1, (4, 5) = -.11956190434424403, (4, 6) = -.1715154763374011, (4, 7) = 0.18884692714735613e-1, (5, 1) = .15759098974167732, (5, 2) = -.161899675781252, (5, 3) = .15221945885658486, (5, 4) = 0.3786307101320403e-1, (5, 5) = -0.8205565189365051e-1, (5, 6) = -.1646486141317912, (5, 7) = 0.20748978362929764e-1, (6, 1) = .10989899744384392, (6, 2) = -.11576707203877054, (6, 3) = .11507738705446725, (6, 4) = 0.154135546269391e-1, (6, 5) = -0.49258296261070325e-1, (6, 6) = -.1572707464440023, (6, 7) = 0.21757466245861633e-1, (7, 1) = 0.759791325652013e-1, (7, 2) = -0.8141876808413781e-1, (7, 3) = 0.8394606505272396e-1, (7, 4) = 0.2492661818537566e-2, (7, 5) = -0.26907307712165617e-1, (7, 6) = -.1496294028641501, (7, 7) = 0.2217342459629731e-1, (8, 1) = 0.5220804685400005e-1, (8, 2) = -0.5660826240195144e-1, (8, 3) = 0.5979641061727414e-1, (8, 4) = -0.4332741150297426e-2, (8, 5) = -0.13577676429214603e-1, (8, 6) = -.1419068438553658, (8, 7) = 0.22150080054816845e-1, (9, 1) = 0.35720559780736044e-1, (9, 2) = -0.39050108477730806e-1, (9, 3) = 0.4192041552491961e-1, (9, 4) = -0.7653239617821186e-2, (9, 5) = -0.6243499692527656e-2, (9, 6) = -.1342402703919028, (9, 7) = 0.21802807586695762e-1, (10, 1) = 0.2436587279244878e-1, (10, 2) = -0.26794695458985492e-1, (10, 3) = 0.29075155569386692e-1, (10, 4) = -0.9088504345768472e-2, (10, 5) = -0.2410372986947497e-2, (10, 6) = -.1267296097338024, (10, 7) = 0.21226469803564373e-1, (11, 1) = 0.16583639301460524e-1, (11, 2) = -0.18319818708253905e-1, (11, 3) = 0.200208761763957e-1, (11, 4) = -0.9553214856912485e-2, (11, 5) = -0.47606778896334273e-3, (11, 6) = -.11944394284551062, (11, 7) = 0.20497108979840847e-1, (12, 1) = 0.11266957337530902e-1, (12, 2) = -0.12495932264857805e-1, (12, 3) = 0.13719072287158976e-1, (12, 4) = -0.9533868729940394e-2, (12, 5) = 0.47270685540887203e-3, (12, 6) = -.11242802566355797, (12, 7) = 0.19672665886273703e-1, (13, 1) = 0.7642241008852904e-2, (13, 2) = -0.8510730766174358e-2, (13, 3) = 0.936970056564832e-2, (13, 4) = -0.928013950450599e-2, (13, 5) = 0.9228614938262443e-3, (13, 6) = -.10570849363909571, (13, 7) = 0.18795354776836484e-1, (14, 1) = 0.5174173579176912e-2, (14, 2) = -0.5791566808531541e-2, (14, 3) = 0.63846308516807265e-2, (14, 4) = -0.8917615683712042e-2, (14, 5) = 0.1124008778962498e-2, (14, 6) = -0.9929902072480293e-1, (14, 7) = 0.1789491305161483e-1, (15, 1) = 0.349473494232728e-2, (15, 2) = -0.3939913398892213e-2, (15, 3) = 0.4343557413007598e-2, (15, 4) = -0.8508897282261446e-2, (15, 5) = 0.12012751376145707e-2, (15, 6) = -0.9320423468855642e-1, (15, 7) = 0.16991775222016583e-1, (16, 1) = 0.23520525354593746e-2, (16, 2) = -0.2680800924935071e-2, (16, 3) = 0.29514498120589323e-2, (16, 4) = -0.8085171919168329e-2, (16, 5) = 0.12166977809156439e-2, (16, 6) = -0.874227459834754e-1, (16, 7) = 0.16099739537899872e-1, (17, 1) = 0.15742289884058175e-2, (17, 2) = -0.18255590673500117e-2, (17, 3) = 0.2003562522745346e-2, (17, 4) = -0.7662075462582974e-2, (17, 5) = 0.12009738771272607e-2, (17, 6) = -0.8194918842963826e-1, (17, 7) = 0.15227980605204324e-1, (18, 1) = 0.10441541624113817e-2, (18, 2) = -0.1245198180138092e-2, (18, 3) = 0.1358851936290594e-2, (18, 4) = -0.7247527321089393e-2, (18, 5) = 0.1169388768587798e-2, (18, 6) = -0.7677552671518297e-1, (18, 7) = 0.143824799517358e-1, (19, 1) = 0.682141336774282e-3, (19, 2) = -0.8517535368510485e-3, (19, 3) = 0.9206412810438365e-3, (19, 4) = -0.6845579140999972e-2, (19, 5) = 0.11296705197270246e-2, (19, 6) = -0.7189199114079402e-1, (19, 7) = 0.13567027225849786e-1, (20, 1) = 0.43401179558332425e-3, (20, 2) = -0.5853433626431303e-3, (20, 3) = 0.6228885420929874e-3, (20, 4) = -0.6458306790423337e-2, (20, 5) = 0.10858294457177422e-2, (20, 6) = -0.6728774975724722e-1, (20, 7) = 0.12783909910156604e-1, (21, 1) = 0.2629403405775333e-3, (21, 2) = -0.40524792459109175e-3, (21, 3) = 0.4205754743057986e-3, (21, 4) = -0.6086733850555835e-2, (21, 5) = 0.10400276525785682e-2, (21, 6) = -0.6295123618191564e-1, (21, 7) = 0.1203435755967946e-1, (22, 1) = 0.14389837512495667e-3, (22, 2) = -0.28380156879155273e-3, (22, 3) = 0.28306102894027333e-3, (22, 4) = -0.5731286863296137e-2, (22, 5) = 0.9934900326506388e-3, (22, 6) = -0.5887033025433539e-1, (22, 7) = 0.11318832086782806e-1, (23, 1) = 0.5990263164445501e-4, (23, 2) = -0.20225173826772752e-3, (23, 3) = 0.18954680412221935e-3, (23, 4) = -0.5392169274861699e-2, (23, 5) = 0.946970766111584e-3, (23, 6) = -0.5503410453326595e-1, (23, 7) = 0.10637512281068639e-1, (24, 1) = .0, (24, 2) = -0.14837885567472252e-3, (24, 3) = 0.12650277124839744e-3, (24, 4) = -0.50730970879345316e-2, (24, 5) = 0.9015019121498755e-3, (24, 6) = -0.5147291272444585e-1, (24, 7) = 0.9997668714642331e-2}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(24, {(1) = .0, (2) = .34213732494360244, (3) = .6848391016904152, (4) = 1.0285618770331162, (5) = 1.373536534455014, (6) = 1.7197333031754847, (7) = 2.0669461917013017, (8) = 2.4149158619484474, (9) = 2.763409733665893, (10) = 3.1122522465104994, (11) = 3.4613191861736516, (12) = 3.81052939922948, (13) = 4.159831956448902, (14) = 4.509196689436506, (15) = 4.858610256485098, (16) = 5.208063494251231, (17) = 5.557546378417319, (18) = 5.907050739854146, (19) = 6.256570428182387, (20) = 6.606099280942476, (21) = 6.955640421186449, (22) = 7.305220246568026, (23) = 7.654751609406003, (24) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(24, 7, {(1, 1) = .0, (1, 2) = 0.6546735675526883e-8, (1, 3) = 0.6546735881659167e-8, (1, 4) = -0.7186369392791985e-7, (1, 5) = 0.2715509745967141e-8, (1, 6) = -0.13577546619562965e-8, (1, 7) = -0.2715509745967141e-8, (2, 1) = -0.3877086495620192e-8, (2, 2) = 0.14831367630378412e-7, (2, 3) = -0.1223735661916804e-7, (2, 4) = -0.8204008629358766e-7, (2, 5) = 0.8963420405626207e-7, (2, 6) = 0.26784422067267497e-9, (2, 7) = -0.3911335866604798e-8, (3, 1) = 0.8768166034794609e-8, (3, 2) = 0.3306107826790559e-8, (3, 3) = -0.9408176507185982e-8, (3, 4) = -0.40764975480387957e-7, (3, 5) = 0.8185277700422551e-7, (3, 6) = -0.13785145041538965e-8, (3, 7) = -0.2448955941020152e-8, (4, 1) = 0.16850396990954743e-7, (4, 2) = -0.989790044023967e-8, (4, 3) = 0.4875114991596423e-8, (4, 4) = 0.25912234204188223e-7, (4, 5) = -0.2422262758657638e-7, (4, 6) = -0.32271872592793843e-8, (4, 7) = 0.5788092912865929e-9, (5, 1) = 0.15494239151128426e-7, (5, 2) = -0.12928548659470866e-7, (5, 3) = 0.1145277531308179e-7, (5, 4) = 0.3324542720036957e-7, (5, 5) = -0.55325660040182395e-7, (5, 6) = -0.33657869500369767e-8, (5, 7) = 0.11384511139866525e-8, (6, 1) = 0.9733652948426956e-8, (6, 2) = -0.8632931225430899e-8, (6, 3) = 0.865114682688892e-8, (6, 4) = 0.58682519244219146e-8, (6, 5) = -0.10655817879255403e-7, (6, 6) = -0.28783147901481797e-8, (6, 7) = 0.3048043011108377e-9, (7, 1) = 0.4379656264723742e-8, (7, 2) = -0.30560923599548526e-8, (7, 3) = 0.2863058530864614e-8, (7, 4) = -0.11770647701048478e-7, (7, 5) = 0.25301126236579303e-7, (7, 6) = -0.2618443192467879e-8, (7, 7) = -0.13589342098830686e-9, (8, 1) = 0.1212436204391611e-8, (8, 2) = 0.6653218790177271e-9, (8, 3) = -0.14380531050238957e-8, (8, 4) = -0.12417805370188472e-7, (8, 5) = 0.27908993354078522e-7, (8, 6) = -0.2577448270806963e-8, (8, 7) = -0.27435326236325037e-11, (9, 1) = 0.27595763437532452e-10, (9, 2) = 0.21674762510719166e-8, (9, 3) = -0.3235453895733246e-8, (9, 4) = -0.6415346958509221e-8, (9, 5) = 0.15136940092504448e-7, (9, 6) = -0.254568100664333e-8, (9, 7) = 0.2716244699374736e-9, (10, 1) = 0.19478294759621464e-10, (10, 2) = 0.22095638375560876e-8, (10, 3) = -0.3233172669982858e-8, (10, 4) = -0.13523906645494747e-8, (10, 5) = 0.35675899229408783e-8, (10, 6) = -0.2436848635564382e-8, (10, 7) = 0.4399944630092075e-9, (11, 1) = 0.4891117113968643e-9, (11, 2) = 0.16117049425980471e-8, (11, 3) = -0.24028986228299483e-8, (11, 4) = 0.9726527223179245e-9, (11, 5) = -0.2095401551377435e-8, (11, 6) = -0.22653178355165898e-8, (11, 7) = 0.485325440685087e-9, (12, 1) = 0.10214765713905027e-8, (12, 2) = 0.9041960281903961e-9, (12, 3) = -0.14188792583767126e-8, (12, 4) = 0.13963069338654862e-8, (12, 5) = -0.33635375663833727e-8, (12, 6) = -0.20682276762971285e-8, (12, 7) = 0.4669777385398658e-9, (13, 1) = 0.14365654556084592e-8, (13, 2) = 0.33287725077294894e-9, (13, 3) = -0.6078389276955468e-9, (13, 4) = 0.10328077404365575e-8, (13, 5) = -0.26869845936661275e-8, (13, 6) = -0.1870502599905875e-8, (13, 7) = 0.4340928464442853e-9, (14, 1) = 0.16937933319978754e-8, (14, 2) = -0.37319326423613866e-10, (14, 3) = -0.6309228285728638e-10, (14, 4) = 0.5437858073119463e-9, (14, 5) = -0.16098521114420472e-8, (14, 6) = -0.1681788889392835e-8, (14, 7) = 0.40926687590626064e-9, (15, 1) = 0.18162959088983172e-8, (15, 2) = -0.22883311417680153e-9, (15, 3) = 0.23884284003389813e-9, (15, 4) = 0.1789174908009654e-9, (15, 5) = -0.7541597435857138e-9, (15, 6) = -0.15028173987317334e-8, (15, 7) = 0.39751524194976534e-9, (16, 1) = 0.1846044466940835e-8, (16, 2) = -0.2928357210210094e-9, (16, 3) = 0.36209011227290477e-9, (16, 4) = -0.27826071220276516e-10, (16, 5) = -0.23399178628041435e-9, (16, 6) = -0.13310062779700352e-8, (16, 7) = 0.3965141195071489e-9, (17, 1) = 0.18224418028874794e-8, (17, 2) = -0.28002565754371733e-9, (17, 3) = 0.37246434934028015e-9, (17, 4) = -0.11713230681922728e-9, (17, 5) = 0.24254071305888206e-10, (17, 6) = -0.11633921120213289e-8, (17, 7) = 0.40236507361510605e-9, (18, 1) = 0.17748521330108844e-8, (18, 2) = -0.2296634086485409e-9, (18, 3) = 0.32225897196644287e-9, (18, 4) = -0.13769008396323416e-9, (18, 5) = 0.1237014673911987e-9, (18, 6) = -0.997680361905706e-9, (18, 7) = 0.41179499576486036e-9, (19, 1) = 0.17219866242849997e-8, (19, 2) = -0.16789662565653612e-9, (19, 3) = 0.2473505663319951e-9, (19, 4) = -0.12494286535749826e-9, (19, 5) = 0.14306843030162114e-9, (19, 6) = -0.8323992464823646e-9, (19, 7) = 0.4225844618680737e-9, (20, 1) = 0.16739772576801375e-8, (20, 2) = -0.10990577763588362e-9, (20, 3) = 0.1695051102957239e-9, (20, 4) = -0.9955138986373968e-10, (20, 5) = 0.1298052202361468e-9, (20, 6) = -0.6667463469109519e-9, (20, 7) = 0.4333741934655186e-9, (21, 1) = 0.1635005143328395e-8, (21, 2) = -0.6302758940693309e-10, (21, 3) = 0.10014388785342725e-9, (21, 4) = -0.7164616044397787e-10, (21, 5) = 0.10808438083498697e-9, (21, 6) = -0.5003844666594805e-9, (21, 7) = 0.44336730224597714e-9, (22, 1) = 0.16055972127745456e-8, (22, 2) = -0.29606031525834015e-10, (22, 3) = 0.43894304100126814e-10, (22, 4) = -0.4525274724971148e-10, (22, 5) = 0.881549830895136e-10, (22, 6) = -0.33327285228664734e-9, (22, 7) = 0.45209630299788874e-9, (23, 1) = 0.1584331417687642e-8, (23, 2) = -0.9172177169776256e-11, (23, 3) = 0.1367248929445401e-11, (23, 4) = -0.21382458862675603e-10, (23, 5) = 0.7312518508313324e-10, (23, 6) = -0.16563358480814716e-9, (23, 7) = 0.45927835475240954e-9, (24, 1) = 0.15691155515171358e-8, (24, 2) = .0, (24, 3) = -0.28705458374923586e-10, (24, 4) = .0, (24, 5) = 0.6292936381999063e-10, (24, 6) = .0, (24, 7) = 0.4648038436701092e-9}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [7, 24, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(7, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(7, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(24, 7, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)]'[i] = yout[i], i = 1 .. 7)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[24] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(8.963420405626207e-8) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [7, 24, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[24] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[24] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(7, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0.}); `dsolve/numeric/hermite`(24, 7, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 7)] end proc, (2) = Array(1..8, {(1) = 18446746457950836182, (2) = 18446746457950836622, (3) = 18446746457950836798, (4) = 18446746457950836974, (5) = 18446746457950837150, (6) = 18446746457950837326, (7) = 18446746457950837502, (8) = 18446746457950837678}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), phi(eta), diff(phi(eta), eta), theta(eta), diff(theta(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(theta(eta),eta)` := pointto(data[2][8]); return ('`diff(theta(eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[8] catch: error  end try end proc]

(2)

 


Addition - the plottings:

odeplot(R, [[eta,f(eta)],[eta,theta(eta)],[eta,phi(eta)]], eta=0..8, legend=[f(eta),theta(eta),phi(eta)]);
      

Download dsolve.mw

Here I try to explain why  plots:-implicitplot  command (without special methods like acer' ones) does not work. If I understand correctly, it works simply by calculating the values ​​of the function on the grid without using  fsolve  and the like. If at two points  (x1,y1)  and  (x2,y2)  the continuous function  F(x,y)  takes values ​​of different signs, then at some point of the segment with the ends   (x1,y1)  and  (x2,y2) it is  0 . In the first very simple example below  (x-sqrt(2))^2=0implicitplot  does not plot anything, because there is no change of signs.

Next, we find the domain of the original function  f(b,p) , using the fact that under the roots there are homogeneous functions. As a result, we find that this domain of definition is located between two very close straight lines  p=0.2466777778*b  and  p=0.25*b .

Since the curve  F(b,p)=0  itself is very close to the lower boundary of this domain, if we plot in large enough ranges (for example for  b=0..5, p=0..5) Maple simply skips the area of the sign change, because the grid sizes are much larger. Only if we consider a small rectangle (I took the range  b = 7.95..8.05p = 1.95..2, the plotting is happening (see the bottom 2 graphics) :


 

 plots:-implicitplot((x-sqrt(2))^2, x=0..2, y=0..2);  # Does not work - no change of signs!
fsolve((x-sqrt(2))^2);  # OK

 

1.414213562, 1.414213562

(1)

f:=(b,p)->sqrt(b)*sqrt(1-4*p/b)-2*arctan(sqrt((9*p/b-22201/10000)/(9/4-9*p/b)));

proc (b, p) options operator, arrow; sqrt(b)*sqrt(1-4*p/b)-2*arctan(sqrt((9*p/b-22201/10000)/(9/4-9*p/b))) end proc

(2)

evalf(solve({subs(p=k*b,1-4*p/b)>=0,subs(p=k*b,(9*p/b-22201/10000)/(9/4-9*p/b))>=0})); # The domain of the function f between 2 lines p=.2466777778*b  and  p=0.25*b

{.2466777778 <= k, k < .2500000000}

(3)

RealRange(.2466777778, Open(.2500000000))

(4)

# Below all the plottings on the fine grid (gridrefine=3) near the point (8,2)
 plots:-implicitplot(sqrt(b)*sqrt(1-4*p/b)-2*arctan(sqrt((9*p/b-22201/10000)/(9/4-9*p/b))) = 0, b = 7.95..8.05,
 p = 1.95..2, color=red, gridrefine=3, view=[7.95..8.05,1.95..2] );
 plots:-implicitplot(sqrt(b)*sqrt(1-4*p/b)-2*arctan(sqrt((9*p/b-22201/10000)/(9/4-9*p/b))) = 0, b = 7.95..8.05,
 p = 1.95..2,  color=red, gridrefine = 3, rational, view=[7.95..8.05,1.95..2]);

 

 

 


 

Download Plottings.mw

 

Here is another method based on applying  extrema  command and simplifying the result by  rationalize  and  simplify  commands:

restart;
f:=x->(cos(x)+sqrt(3)*sin(x))/(cos(x)+sin(x)+2);
convert(extrema(f(x), {}, x), list);
Min, Max:=simplify(rationalize(%))[];
evalf([Min,Max]);

Output:

    

 

 

You assigned  o8:=0  and  o8  stands in the denominators.

In Maple 2018 everything is the same.
Do not use  simplify  command, but just differentiate:

with(Physics):
Setup(noncommutativeprefix={P,Q});
diff(Q(t)^2*P(t)*Q(t) + Q(t)*P(t)*Q(t)^2, t);

Output:

          

Replace  e^(c*v)  by  exp(c*v) . e  is just a symbol in Maple.

This works:

restart:
with(Statistics): 
X := Vector([1, 2, 3, 4, 5, 6], datatype = float):
Y := Vector([2.2, 3, 4.8, 10.2, 24.5, 75.0], datatype = float): 
NonlinearFit(a+b*v+exp(c*v), X, Y, v);

sqrt(sqrt(p^2+1)-1)*sqrt(sqrt(p^2+1)+1);
simplify(combine(%)) assuming positive;


Here is another rather effective method of simplifying expressions containing radicals. Since this expression itself (we denote it by  ) is obviously positive for any real  p , it is equal to the square root of its square   A=sqrt(A^2) . Therefore, we first square it, then simplify and extract the square root:

A:=sqrt(sqrt(p^2+1)-1)*sqrt(sqrt(p^2+1)+1);
sqrt(simplify(A^2))  assuming p>0;
                         

  Edit.  

If you define a matrix or an array, you should specify ranges for the indexes and just specify non-zero elements. The rest of the elements are automatically considered zeros. 

Your example:

H:=Array((1..3)$4, {(1,1,1,1)= value1, (1,2,2,1) = value2, ...});


See help on  Matrix  and  Array  commands for details.

First 115 116 117 118 119 120 121 Last Page 117 of 289