Kitonum

21440 Reputation

26 Badges

17 years, 37 days

MaplePrimes Activity


These are answers submitted by Kitonum

If we assume that the cylinder (the rolled carpet) axis coincides with a spatial diagonal of the box, then the same solution can be made substantially shorter as a procedure. The main idea: the cylinder touches the box wall with which the spatial diagonal forms the smallest angle. Formal parameters of the procedure: L - list of the dimensions of the box, r - radius of the cylinder. The procedure returns the maximum length of the rolled carpet that is fitted inside the box.

MaxLength:=proc(L::list, r)
local a, b, c, d, k, s;
a, b, c:=sort(L)[];
d:=sqrt(a^2+b^2+c^2);
k:=a/sqrt(b^2+c^2);
s:=r/k;
evalf(d-2*s);
end proc:


Examples of use:

MaxLength([118, 58, 38],10);
                                                     
 67.66287620

fsolve(MaxLength([118, 58, 38], x)=120);  # The inverse problem
                                                       2.437052665

 

The procedure  New_list  helps to do this:

New_list:=(L::list, x::realcons)->[seq(`if`(x<l, 2*l, l), l=L)]:


Example of use: 

L:=[seq(rand(1..20)(), i=1..10)];
New_list(L, 7);
                                  
L := [14, 18, 2, 18, 4, 17, 18, 10, 5, 1]

                                     [28, 36, 2, 36, 4, 34, 36, 20, 5, 1]


Addition. If the list items must be doubled, which is less than  x , then simply change the inequality sign:

New_list:=(L::list, x::realcons)->[seq(`if`(l<x, 2*l, l), l=L)]:


Edit.

radnormal(-3*(sqrt(10+4*sqrt(5)))+sqrt(50+20*sqrt(5))+sqrt(10-4*sqrt(5))+sqrt(50-20*sqrt(5)));

                                                                               0


If you want to prove this manually, then here are 2 ways.

First way:

Transfer the term with a coefficient of -3 to the other side of the identity:

sqrt(50+20*sqrt(5))+sqrt(10-4*sqrt(5))+sqrt(50-20*sqrt(5))=3*(sqrt(10+4*sqrt(5)));

The left and right parts are positive numbers. Now you can square both parts. Further simplifications are obvious.


Second way:

From the second and fourth terms we take out the factors, then we group the roots in pairs. We obtain two summands. Then the multipliers before the roots are added under the roots. It remains to simplify expressions under the roots:   


Edit.

All plottings and calculations are performed in polar coordinates.

The first example:

F:=z=x^2+y^2:
solve({eval(F, [y=0,z=8]), x>0});
R:=eval(x, %);
plot3d([r*cos(t),r*sin(t),r^2], r=0..R, t=0..2*Pi, scaling=constrained);
Area:=int(eval(sqrt(1+diff(rhs(F),x)^2+diff(rhs(F),y)^2)*r, [x=r*cos(t),y=r*sin(t)]), [r=0..R, t=0..2*Pi]);

                                            


The second example (in order to this body to be clearly visible one quarter of the hemisphere is carved out):

restart;
F:=z = (x^2 + y^2)^(1/2): 
G:=x^2 + y^2 + z^2 = 16:
solve({eval([F, G],y=0)[], x>0});
R:=eval(x, %);
plots:-display(plot3d([r*cos(t),r*sin(t),r], r=0..R, t=0..2*Pi, style=surface, color=khaki), plot3d([4*cos(t)*sin(s),4*sin(t)*sin(s),4*cos(s)], t=Pi/2..2*Pi, s=0..Pi/2, color=khaki),  plot3d([4*cos(t)*sin(s),4*sin(t)*sin(s),4*cos(s)], t=0..2*Pi, s=0..Pi/4, style=surface, color=khaki), scaling=constrained, axes=normal, view=[-4.7..4.7, -4.7..4.7, 0..4.7]);
Volume:=int(eval(sqrt(16-x^2-y^2),[x=r*cos(t),y=r*sin(t)])*r-eval((x^2 + y^2)^(1/2),[x=r*cos(t),y=r*sin(t)])*r, [r=0..R, t=0..2*Pi]);

                                            
                                            

You wrote "...as the legth of this interval is 1, there is two integers in this interval"  It is wrong. The number of solutions can be from one to two. The function  f  returns the set of solutions for each :

restart;
solve(abs(a+2*i)<=1, i);
L:=[lhs(%[2,1]),rhs(%[1,1])];
f:=x->eval({floor(L[2]),ceil(L[1])}, a=x);

 

Examples of use:

f(1), f(0.5), f(3);

                                   {-1, 0},  {0},  {-2, -1}

The best and fastest way to enter a matrix is using the angle brackets from the keyboard. Try this and you will forget your palettes.

Example:

A:=<1, 2, 3; 4, 5, 6; 7, 8, 9>;

                                                   

 

If you still want to use this expression, then just remove the back quotes around it:

Matrix(2, 3, {(1, 1) = Typesetting:-msub(Typesetting:-mi("n"), Typesetting:-mrow(Typesetting:-mn("1"), Typesetting:-mo(","), Typesetting:-mn("1"))), (1, 2) = Typesetting:-msub(Typesetting:-mi("n"), Typesetting:-mrow(Typesetting:-mn("1"), Typesetting:-mo(","), Typesetting:-mn("2"))), (1, 3) = Typesetting:-msub(Typesetting:-mi("n"), Typesetting:-mrow(Typesetting:-mn("1"), Typesetting:-mo(","), Typesetting:-mn("3"))), (2, 1) = Typesetting:-msub(Typesetting:-mi("n"), Typesetting:-mrow(Typesetting:-mn("2"), Typesetting:-mo(","), Typesetting:-mn("1"))), (2, 2) = Typesetting:-msub(Typesetting:-mi("n"), Typesetting:-mrow(Typesetting:-mn("2"), Typesetting:-mo(","), Typesetting:-mn("2"))), (2, 3) = Typesetting:-msub(Typesetting:-mi("n"), Typesetting:-mrow(Typesetting:-mn("2"), Typesetting:-mo(","), Typesetting:-mn("3")))});

                                                     


Edit.

Go to the Help page  ?dsolve . There you will find a link to the Help page  dsolve, education , on which there are examples of a number of commands that will give you useful information about your equation. For example, you can find out the type of equation:

 restart;
ode:=diff(y(x),x)=sqrt(1-x^2)/y(x)^2;
DEtools:-odeadvisor(ode);

                                                  ode := diff(y(x), x) = sqrt(-x^2+1)/y(x)^2

                                                                       [_separable]

Using Heron's formula, it is easy to construct a system of equations connecting the lengths of the sides with the lengths of altitudes. Maple easily solves this system and we get formulas expressing the sides of the triangle through its altitudes (a triangle can be an arbitrary triangle - it may not be acute):

p:=(a+b+c)/2: S:=sqrt(p*(p-a)*(p-b)*(p-c)):
Sol:=[solve({hA=2*S/a, hB=2*S/b, hC=2*S/c}, {a,b,c}, explicit)][2];

simplify(eval(Sol, [hA=sqrt(3)/2, hB=sqrt(3)/2, hC=sqrt(3)/2]));  # Examples of use
simplify(eval(Sol, [hA=3, hB=4, hC=12/5]));
simplify(eval(Sol, [hA=2, hB=3, hC=3]));

                         
 

In the first example, we got an equilateral triangle (I took the equal  lengths of altitudes), in the second example - a rectangular triangle (I took the altitudes in the Pythagorean triangle with sides 3, 4, 5), in the third example we got an obtuse triangle.

To avoid problems with names, the graphical structure for each triangle is created using plots:-display command. The animation was not as fast, on each triangle is given 5 frames:

restart;
with(plots):
with(geometry):
for a from 4 to 6 do
b:=a+1: c:=a+2:
angA:=arccos((a+5)/2/(a+2));
point(A,0,0): point(B,c*cos(angA),c*sin(angA)): point(C,a+1,0):
t1||a:=display(draw(triangle(T1||a,[A,B,C]))):
end do:
 
display(seq(t1||i$5, i=4..6), insequence=true, scaling=constrained);

                    

 

Addition. When working with graphics, in particular when creating animations, I almost never use  geometry:-draw  command. I prefer  plot  command, as well as the various commands from  plots  and  plottools  packages. Also, instead of a  for loop, it is more convenient to use  seq  command. Here is the same animation with this technique with the addition of labels for the vertices of triangles:

restart;
with(plots):
angA:=arccos((a+5)/2/(a+2)): 
V:=[seq([[0,0],[(a+2)*cos(angA),(a+2)*sin(angA)],[a+1,0],[0,0]], a=4..6)]: NV:=[A,B,C]:
T:=seq(textplot([seq([V[i,j][],NV[j]], j=1..3)], font=[times,bold,18], align={above,left}),i=1..3):
display(seq(display(T[i],plot(V[i], color=red))$5,i=1..3), insequence, scaling=constrained);

                
Edit.

restart;
evalindets(u(i,j)^2*v(i,j)+u(i-1,j), 'specfunc(u)', f->subsop(1 = op(1,f)+1, f));
                                              
 u(i +1, j)^2*v(i, j) + u(i, j)                                       

or

restart;
evalindets(u[i,j]^2*v[i,j]+u[i-1,j], 'specindex(u)', f->subsop(1 = op(1,f)+1, f));
                                           
 u[i+1, j]^2*v[i, j]+u[i, j]



Edit.
                                                  

of the harmonic mean of the lengths of the three altitudes of the triangle ABC:

restart;
with(geometry):
triangle(ABC, [point(A,0,0),point(B,2,0), point(C,1,3)]):
altitude(hA, A, ABC): altitude(hB, B, ABC): altitude(hC, C, ABC):
line(AB,[A, B]): line(AC,[A, C]): line(BC,[B, C]):
intersection(A1,hA,BC): intersection(B1,hB,AC): intersection(C1,hC,AB): 
a:=simplify(distance(A,A1));
b:=simplify(distance(B,B1));
c:=simplify(distance(C,C1));
simplify(((a^(-1)+b^(-1)+c^(-1))/3)^(-1));
evalf(%);

 

Happy New Year to you!

restart;
with(GraphTheory):
A,B,C:=seq(RandomGraphs:-RandomGraph(8, 0.5), i=1..3);
plots:-display(DrawGraph~(<A | B | C>));

     

 


 

Obviously that the denominator is a periodic function (with respect to x-variable with period  2*Pi  and respect to t-variable with period  8*Pi ). Let us prove that the denominator of your fraction for any values of the variables is greater than 0. Due to the periodicity it is enough to check this on the rectangle  x=0..2*Pi , t=0..8*Pi . It's simplest to do this test geometrically. Here are two ways: using  plot3d  command and using  Explore command (we obtain slices of the graph  T(x,t)  for different  t ):

V := (x, t)->((5185/2592)*cos(x+(7/4)*t)+(5/72)*cos(3*x+(9/4)*t)+(1/18)*cos(2*x+(1/2)*t)+(1/72)*cos(4*x+4*t)+41489/20736)/``((5/36)*cos(x+(7/4)*t)+(1/32)*cos(2*x+(7/2)*t)+(5185/11664)*cos(3*x+(9/4)*t)+(1/2592)*cos(6*x+(9/2)*t)+(20737/41472)*cos(2*x+(1/2)*t)+(1297/10368)*cos(4*x+4*t)+29985553/26873856);
T:=expand(op(2,denom(V(x,t))));
plot3d(T, x = 0 .. 2*Pi, t = 0 .. 8*Pi, view = 0 .. 3, axes = normal);
Explore(plot(T, x=0..2*Pi, 0..3), t=0...evalf(8*Pi));


Analytically, we can establish the positivity of the denominator using  DirectSearch:-GlobalOptima  command:

DirectSearch:-GlobalOptima(T, [x = 0 .. 2*Pi, t = 0 .. 8*Pi]);


This package should be downloaded from the Maple Application Center and installed on your computer.

Use back quotes for this.

Example:


Addition. With back quotes you can make nonstandard names consisting of any symbols and even whole phrases, for example:

restart;
`My matrix`:=<1,2; 3,5>;
``('`My matrix`')^`-1`=`My matrix`^(-1);

                                                       

I propose a solution based on two procedures  SetPartition  and  Partition . More about them you can read  here  and  here. For completeness, I included the texts of both procedures in the worksheet below. The example is considered for 12 books, the number of pages for which are randomly generated. This method gives an exact solution, because is based on consideration of all variants of partitions.


 

SetPartition:=proc(S::set, Q::list(posint), K::symbol:=nonordered)  # Procedure finds all partitions of the set  S  into subsets of the specific size given Q.
local L, P, T, S1, S2, n, i, j, m, k, M;
uses ListTools,combinat;
if `+`(op(Q))<>nops(S) then error "Should be `+`(op(Q))=nops(S)" fi;
L:=convert(Q,set);
T:=[seq([L[i],Occurrences(L[i],Q)], i=1..nops(L))];
P:=`if`(K=ordered,convert(T,list),convert(T,set));
S1:=S;  S2:={`if`(K=ordered,[],{})}; n:=nops(P);
for i to n do
m:=P[i,1]; k:=P[i,2];
for j to k do
S2:={seq(seq(`if`(K=ordered,[op(s),t],{op(s),t}), t=choose(S1 minus `union`(op(s)),m)), s=S2)};
od; od;
if K=ordered then {map(op@permute,S2)[]} else S2 fi;
end proc:

Partition:=proc(n::nonnegint, k::{posint,range}, res::{range, nonnegint} := 1, S::set:={$0..n})  # Generates a list of all partitions of an integer n into k parts
local k_Partition, n1, k1, L;
k_Partition := proc (n, k::posint, res, S)
local m, M, a, b, S1, It, L0;
m:=S[1]; M:=S[-1];
if res::nonnegint then a := max(res,m); b := min(n-(k-1)*a,M)  else a := max(lhs(res),m); b := min(rhs(res),M) fi;
S1:={$a..b} intersect S;
if b < a or b*k < n or a*k > n  then return [ ] fi;
It := proc (L)
local m, j, P, R, i, N;
m := nops(L[1]); j := k-m; N := 0;
for i to nops(L) do
R := n-`+`(op(L[i]));
if R <= b*j and a*j <= R then N := N+1;
P[N] := [seq([op(L[i]), s], s = {$ max(a, R-b*(j-1)) .. min(R, b)} intersect select(t->t>=L[i,-1],S1) )] fi;
od;
[seq(op(P[s]), s = 1 .. N)];
end proc;
if k=1 then [[b]] else (It@@(k-1))(map(t->[t],S1))  fi;
end proc;
if k::posint then return k_Partition(n,k,res,S) else n1:=0;
for k1 from lhs(k) to rhs(k) do
n1:=n1+1; L[n1]:=k_Partition(n,k1,res,S)
od;
L:=convert(L,list);
[seq(op(L[i]), i=1..n1)] fi;
end proc:

roll := rand(100 .. 1000):
L := {seq([i, roll()], i = 1 .. 12)}:
L1:=map(t->t[2], L); # Number of pages in 12 books

{105, 199, 296, 382, 399, 400, 451, 649, 850, 858, 960, 989}

(1)

Parts := Partition(12, 3); # All possible partitions of the number 12 into 3 summands

[[1, 1, 10], [1, 2, 9], [1, 3, 8], [1, 4, 7], [1, 5, 6], [2, 2, 8], [2, 3, 7], [2, 4, 6], [2, 5, 5], [3, 3, 6], [3, 4, 5], [4, 4, 4]]

(2)

Mean := (1/3)*add(L[i, 2], i = 1 .. nops(L));

6538/3

(3)

evalf[4](Mean); # Number of pages for each worker

2179.

(4)

Err := infinity:
for p in Parts do S := SetPartition(L, p);
for s in S do r := max(seq(abs(`+`(seq(s[i, j, 2], j = 1 .. nops(s[i])))-Mean), i = 1 .. 3));
if r < Err then Sol := s; Err := r end if end do end do:
evalf[2](Err);  # The maximum deviation from Mean
map(t->[seq(t[i, 2], i = 1 .. nops(t))], convert(Sol, list)); # The final result

20.

 

[[858, 850, 451], [960, 199, 649, 382], [989, 400, 105, 399, 296]]

(5)

add~(%);

[2159, 2190, 2189]

(6)

 


 

Download Division_of_books.mw

First 134 135 136 137 138 139 140 Last Page 136 of 289