Kitonum

21435 Reputation

26 Badges

17 years, 24 days

MaplePrimes Activity


These are answers submitted by Kitonum

If  n = 1  then you get  0  in the denominator of  c(n) , so I chose  n = 2 .. infinity . The method you use to find the convergence region is guaranteed to only give an open interval. Therefore, we must separately investigate the convergence at the ends of this interval:

 

restart;
c:=n-> 1/(n^2-1);
u:=n->c(n)*(x-2)^n; # The function of the general term of the series
S:=Sum(u(n), n=2..infinity);
limit(abs(u(n+1)/u(n)), n=infinity); # We use the ratio test (d'Alembert test) for a series of absolute values
solve(%<1); # We get the (open) convergence interval
x1,x2:=op(op(1,%)),op(op(2,%)); # The left and right ends of the convergence interval 

value(eval(S, x=x1)); # The series converges at the left end
value(eval(S, x=x2)); # The series converges at the right end

                                


Edit.

We will denote  U[n]=u(x[n])  for all  n=1..N


 

restart;
h:=0.01: r:=0.02: N:=10: f:=y->y^5: K:=(x,y)->sin(x)*y^5:
assign(seq(x[n]=sin(h*n), n=1..N));
assign(seq(y[m]=cos(r*m), m=1..N));
Sys:={seq(add(K(x[n],y[m])*U[n],n=1..N)=f(y[m]), m=1..N)};
solve(Sys);
assign(%);
plot([seq([x[n],U[n]], n=1..N)]);

{0.9041977446e-2*U[1]+0.1808214671e-1*U[2]+0.2711870069e-1*U[3]+0.3614983446e-1*U[4]+0.4517374631e-1*U[5]+0.5418863892e-1*U[6]+0.6319272033e-1*U[7]+0.7218420503e-1*U[8]+0.8116131509e-1*U[9]+0.9012228112e-1*U[10] = .9042278847, 0.9217561686e-2*U[1]+0.1843328007e-1*U[2]+0.2764531298e-1*U[3]+0.3685182042e-1*U[4]+0.4605096570e-1*U[5]+0.5524091660e-1*U[6]+0.6441984635e-1*U[7]+0.7358593478e-1*U[8]+0.8273736944e-1*U[9]+0.9187234656e-1*U[10] = .9217868940, 0.9377158775e-2*U[1]+0.1875244234e-1*U[2]+0.2812397660e-1*U[3]+0.3748988973e-1*U[4]+0.4684831323e-1*U[5]+0.5619738315e-1*U[6]+0.6553524110e-1*U[7]+0.7486003540e-1*U[8]+0.8416992218e-1*U[9]+0.9346306649e-1*U[10] = .9377471349, 0.9519961947e-2*U[1]+0.1903802012e-1*U[2]+0.2855227191e-1*U[3]+0.3806081695e-1*U[4]+0.4756175830e-1*U[5]+0.5705320364e-1*U[6]+0.6653326625e-1*U[7]+0.7600006627e-1*U[8]+0.8545173175e-1*U[9]+0.9488639979e-1*U[10] = .9520279281, 0.9645244800e-2*U[1]+0.1928856077e-1*U[2]+0.2892802026e-1*U[3]+0.3856169791e-1*U[4]+0.4818767181e-1*U[5]+0.5780402472e-1*U[6]+0.6740884511e-1*U[7]+0.7700022837e-1*U[8]+0.8657627792e-1*U[9]+0.9613510634e-1*U[10] = .9645566310, 0.9752366583e-2*U[1]+0.1950278292e-1*U[2]+0.2924929994e-1*U[3]+0.3898997090e-1*U[4]+0.4872285256e-1*U[5]+0.5844600637e-1*U[6]+0.6815749959e-1*U[7]+0.7785540643e-1*U[8]+0.8753780928e-1*U[9]+0.9720279972e-1*U[10] = .9752691664, 0.9840776929e-2*U[1]+0.1967958593e-1*U[2]+0.2951446027e-1*U[3]+0.3934343555e-1*U[4]+0.4916455091e-1*U[5]+0.5897585024e-1*U[6]+0.6877538326e-1*U[7]+0.7856120675e-1*U[8]+0.8833138568e-1*U[9]+0.9808399436e-1*U[10] = .9841104957, 0.9910019883e-2*U[1]+0.1981805799e-1*U[2]+0.2972213375e-1*U[3]+0.3962026895e-1*U[4]+0.4951048892e-1*U[5]+0.5939082379e-1*U[6]+0.6925930955e-1*U[7]+0.7911398932e-1*U[8]+0.8895291446e-1*U[9]+0.9877414571e-1*U[10] = .9910350219, 0.9959737274e-2*U[1]+0.1991748283e-1*U[2]+0.2987124616e-1*U[3]+0.3981903912e-1*U[4]+0.4975887715e-1*U[5]+0.5968878048e-1*U[6]+0.6960677527e-1*U[7]+0.7951089479e-1*U[8]+0.8939918065e-1*U[9]+0.9926968385e-1*U[10] = .9960069267, 0.9989671343e-2*U[1]+0.1997734498e-1*U[2]+0.2996102443e-1*U[3]+0.3993871556e-1*U[4]+0.4990842785e-1*U[5]+0.5986817559e-1*U[6]+0.6981597898e-1*U[7]+0.7974986542e-1*U[8]+0.8966787059e-1*U[9]+0.9956803967e-1*U[10] = .9990004334}

 

{U[1] = 43.01571534, U[2] = 2.129649377, U[3] = -.6317112735, U[4] = .3228390822, U[5] = -1.905151633, U[6] = 2.229722710, U[7] = 0.7779033052e-2, U[8] = 1.952960982, U[9] = 2.850101312, U[10] = .8287345356}

 

 

 


 

Download Sys.mw

Of course, the indefinite integral is calculated up to an additive constant. Here's a way to get the desired result.

NULL

restart

randomize

NULL

v := RandomTools:-Generate(choose({m, t, x, z}))

z

(1)

NULL

f := RandomTools:-Generate(polynom(integer(range = -10 .. 10, exclude = {0}), v, degree = 2))

z^2+3*z-1

(2)

fp := g(v)^4

g(z)^4

(3)

fd := diff(g(v), v)

diff(g(z), z)

(4)

NULL

fs := fd*g(v)^5

(diff(g(z), z))*g(z)^5

(5)

NULL

NULL

PE := Int(fs, v)

Int((diff(g(z), z))*g(z)^5, z)

(6)

PR := int(fs, v)

(1/6)*g(z)^6

(7)

subs(g(v)=f, PR);

(1/6)*(z^2+3*z-1)^6

(8)

``


 

Download QuestionInt_new.mw

You can use  combinat:-permute  for this:

restart;
S:=[1,2,3]:
combinat:-permute(map(`$`,S, 2), 2);

                   [[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]]


or a little shorter

combinat:-permute(`$`~(S, 2), 2);


Edit. If you use  the  Iterator  package then the  CartesianProduct  command can be used.


 

restart;
V1 := Vector(8, [1, 2, 2, 1, 3, A, B, 1/(A + B)^2]);
V2 := Vector(8, [1, 2, 2, 1, 3, A, B, 1/(A^2 + 2*A*B + B^2)]);
V2:=simplify(V2);
LinearAlgebra:-Equal(V1[6 .. 8], V2[6 .. 8]);

Vector(8, {(1) = 1, (2) = 2, (3) = 2, (4) = 1, (5) = 3, (6) = A, (7) = B, (8) = 1/(A+B)^2})

 

Vector(8, {(1) = 1, (2) = 2, (3) = 2, (4) = 1, (5) = 3, (6) = A, (7) = B, (8) = 1/(A^2+2*A*B+B^2)})

 

Vector[column](%id = 18446746221073234750)

 

true

(1)

 


 

Download simplify.mw


 

restart

NULL

"f(x):=18*log10(x);"

proc (x) options operator, arrow, function_assign; 18*log10(x) end proc

(1)

"g(x):=1/(2) x^(3)-8*x^(2)+(69/(2))^()*x-27;"

proc (x) options operator, arrow, function_assign; (1/2)*x^3-8*x^2+(69/2)*x-27 end proc

(2)

plot([f(x), g(x)], x = -1 .. 11, -30 .. 25, size = [800, 500])

 

NULL

sort([RootFinding:-Analytic(f(x)-g(x), re = 0 .. 12, im = -1 .. 1)])

[0.372146548487319e-1, 1.00000000000000, 4.50616492819266, 10.0000000000000]

(3)

``


 

Download intersect_curve_new.mw

restart;
f:=unapply(int(diff(Y1(x), x), x)+C1, x);
solve({Y1(0) = f(0)}, {C1});

                                    f := x -> Y1(x) + C1
                                           {C1 = 0}

For drawing arrows see help on  plots:-arrow

restart;
with(plots): with(plottools):
S:=seq(seq(disk([x,y], 0.05, color=blue), x=-1..6), y=-1..3):
T:=textplot([[0,0,"(0,0)",align=[left,below]],[1,1,"(1,1)",align=[right,above]],[2,1,"(2,1)",align=[right,above]]], font=[times,18]):
display(S,T, scaling=constrained, size=[800,500],axes=none);

                           

Two-argument  arctan(y,x)  returns the polar angle  phi  of a point  A(x,y) in the range  -Pi < phi <= Pi

Examples:

restart;
arctan(1,sqrt(3)), arctan(-1,sqrt(3)), arctan(-1,-sqrt(3)), arctan(0,-1);  

                                 


See help on  ?arctan  for details  .

Example:

combs := combinat:-choose({a, b, c, d, e}, 3);

     combs := {{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}}

What functions are you talking about? Inside contourplot command, you simply calculate the sum of the values of one function  BesselJ  in a finite number of points, and skip one  sum command, since you have a double sum:

restart;
sum(sum(BesselJ(n,r),n=0..5),r=-10..10);

                 1+2*BesselJ(0, 10)+2*BesselJ(2, 10)+2*BesselJ(4, 10)+2*BesselJ(0, 9)+2*BesselJ(2, 9)+2*BesselJ(4, 9)+2*BesselJ(0, 8)+2*BesselJ(2, 8)+2*BesselJ(4, 8)+2*BesselJ(0, 7)+2*BesselJ(2, 7)+2*BesselJ(4, 7)+2*BesselJ(0, 6)+2*BesselJ(2, 6)+2*BesselJ(4, 6)+2*BesselJ(0, 5)+2*BesselJ(2, 5)+2*BesselJ(4, 5)+2*BesselJ(0, 4)+2*BesselJ(2, 4)+2*BesselJ(4, 4)+2*BesselJ(0, 3)+2*BesselJ(2, 3)+2*BesselJ(4, 3)+2*BesselJ(0, 2)+2*BesselJ(2, 2)+2*BesselJ(4, 2)+2*BesselJ(0, 1)+2*BesselJ(2, 1)+2*BesselJ(4, 1)


Of course, you can plot  a  contourplot for the function of two variables  BesselJ(n,r)  in appropriate ranges for n and r without any problem:

plots:-contourplot(BesselJ(n,r), n=0..5, r=-10..10, grid=[200,200]);

                  

 

Maple finds both real and complex solutions. The  select  command helps to select real roots:
 

restart;

F := -1 - y - exp(x);
G := x^2 + y*(exp(x) - 1);
sol1 := solve({F, G}, {x, y});
sol2:=allvalues(sol1);
``;
select(p->type(eval(x,p),realcons) and type(eval(y,p),realcons),[sol2])[];

-1-y-exp(x)

 

x^2+y*(exp(x)-1)

 

{x = RootOf(-(exp(_Z))^2+_Z^2+1), y = -1-exp(RootOf(-(exp(_Z))^2+_Z^2+1))}

 

{x = 0, y = -2}, {x = RootOf(-(exp(_Z))^2+_Z^2+1, 0.8091750422e-1+1.468988335*I), y = -1-exp(RootOf(-(exp(_Z))^2+_Z^2+1, 0.8091750422e-1+1.468988335*I))}, {x = RootOf(-(exp(_Z))^2+_Z^2+1, 0.8091750422e-1-1.468988335*I), y = -1-exp(RootOf(-(exp(_Z))^2+_Z^2+1, 0.8091750422e-1-1.468988335*I))}

 

``

 

{x = 0, y = -2}

(1)

 


Edit. Of course, you can immediately get the solution (as float number) you want using  fsolve  command:

sol := fsolve({F, G}, {x, y});

                                       sol := {x = 0., y = -2.000000000}

 

Download solve.mw

@Zeineb  What you want to calculate is called a (matrix) norm. Carl showed one way (the  infinity-norm). But there are other formulas for calculating a norm, and Maple has a suitable command. See help on  ?LinearAlgebra:-Norm .

 

Obviously, the function  g  depends not only on x, but also on p , so  g(x,p)=max{h(x,p),f(x,p) . It is useful to use graphic illustration to obtain this dependence. First, we plot a red line  x-p=x^2+p*x . It is easy to check that above this line (pink area) we have  g(x,p)=x^2+p*x, and below (blue area)  g(x,p)=x-p


 

restart;
eq:=x-p=x^2+p*x;
f:=unapply(solve(eq, p), x);
P1:=plot(f, 0..10, p=-1..1, color=red, thickness=3):
P2:=plots:-inequal(p>f(x),x=0..10,p=-1..1,color="LightPink",optionsexcluded = [color = "LightBlue"],nolines):
T:=plots:-textplot([[5,0.3,g(x,p)=x^2+p*x],[1,-0.7,g(x,p)=x-p]], font=[times,bold,16]):
plots:-display(P1,P2,T, size=[800,400]);

g:=unapply(piecewise(p>=f(x),x^2+p*x,x-p), x,p);
Sol:=unapply(int(g(x,p), x=0..10), p);

# Examples of use
Sol(2), Sol(1), Sol(0), Sol(-2);

eq := x-p = p*x+x^2

 

f := proc (x) options operator, arrow; -x*(x-1)/(x+1) end proc

 

 

g := proc (x, p) options operator, arrow; piecewise(-x*(x-1)/(x+1) <= p, p*x+x^2, x-p) end proc

 

proc (p) options operator, arrow; 50*p-60*p*piecewise(-p < 90/11, 0, 1)+1000/3-(850/3)*piecewise(-p < 90/11, 0, 1)+piecewise(And(p <= 3-2*2^(1/2), 0 < p), (1/8)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p^2*(p^2-6*p+1)^(1/2)-(3/4)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p*(p^2-6*p+1)^(1/2)-(1/12)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)+(1/12)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p^3-(3/4)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p^2+(1/8)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*(p^2-6*p+1)^(1/2)-(1/24)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*(p^2-6*p+1)^(3/2)+(3/4)*piecewise(-signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p+(1/12)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)+(3/4)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p*(p^2-6*p+1)^(1/2)-(1/8)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p^2*(p^2-6*p+1)^(1/2)+(3/4)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p^2-(3/4)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p-(1/8)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*(p^2-6*p+1)^(1/2)-(1/12)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*p^3+(1/24)*piecewise(signum((p^2-6*p+1)^(1/2)/(p-3+(p^2-6*p+1)^(1/2))) = 1, 1, 0)*(p^2-6*p+1)^(3/2), 0)+piecewise(And(p <= 3-2*2^(1/2), -90/11 < p), (1/12)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p^3-(3/4)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p^2-(1/8)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*(p^2-6*p+1)^(1/2)+(1/24)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*(p^2-6*p+1)^(3/2)+(3/4)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p-(1/8)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p^2*(p^2-6*p+1)^(1/2)+(3/4)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p*(p^2-6*p+1)^(1/2)+(1/8)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p^2*(p^2-6*p+1)^(1/2)-(3/4)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p*(p^2-6*p+1)^(1/2)-(1/12)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p^3+(3/4)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p^2+(1/8)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*(p^2-6*p+1)^(1/2)-(1/24)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*(p^2-6*p+1)^(3/2)-(3/4)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)*p-(1/12)*piecewise(-signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0)+(1/12)*piecewise(signum((p^2-6*p+1)^(1/2)/(-p+(p^2-6*p+1)^(1/2)+3)) = 1, 1, 0), 0) end proc

 

1300/3, 1150/3, 667/2, 2863/12+(17/12)*17^(1/2)

(1)

 


 

Download int.mw


Here's another solution that is slightly more cumbersome but gives more compact results:


 

restart;
eq:=x-p=x^2+p*x;
f:=unapply(solve(eq, p), x);
plot(f, 0..10, p=-1..1);
maximize(f(x), x=0..10, location);
M:=expand~([%])[];
p1:=f(0); p2:=M[1];
x1,x2:=solve(eq, x);
g:=unapply(piecewise(p>=p2,x^2+p*x,p<p2 and p>p1,piecewise(x>x2 and x<x1,x-p,x^2+p*x),p<=p1,piecewise(x<=x1,x-p,x^2+p*x)), x,p);
Sol:=unapply(simplify(int(g(x,p), x=0..10)), p);

# Examples of use
Sol(2), Sol(1), Sol(0), Sol(-2);
 

eq := x-p = p*x+x^2

 

f := proc (x) options operator, arrow; -x*(x-1)/(x+1) end proc

 

 

-(1/2)*(sqrt(2)-1)*(sqrt(2)-2)*sqrt(2), {[{x = sqrt(2)-1}, -(1/2)*(sqrt(2)-1)*(sqrt(2)-2)*sqrt(2)]}

 

M := -2*sqrt(2)+3, {[{x = sqrt(2)-1}, -2*sqrt(2)+3]}

 

p1 := 0

 

p2 := -2*sqrt(2)+3

 

x1, x2 := -(1/2)*p+1/2+(1/2)*sqrt(p^2-6*p+1), -(1/2)*p+1/2-(1/2)*sqrt(p^2-6*p+1)

 

g := proc (x, p) options operator, arrow; piecewise(-2*sqrt(2)+3 <= p, p*x+x^2, 0 < p and p < -2*sqrt(2)+3, piecewise(-(1/2)*p+1/2-(1/2)*sqrt(p^2-6*p+1) < x and x < -(1/2)*p+1/2+(1/2)*sqrt(p^2-6*p+1), x-p, p*x+x^2), p <= 0, piecewise(x <= -(1/2)*p+1/2+(1/2)*sqrt(p^2-6*p+1), x-p, p*x+x^2)) end proc

 

proc (p) options operator, arrow; piecewise(p < -90/11, 50-10*p, p <= 0, (1/12)*(p^2-6*p+1)^(3/2)-(1/12)*p^3+(3/4)*p^2+(197/4)*p+4001/12, p < -2*2^(1/2)+3, (1/6)*(p^2-6*p+1)^(3/2)+50*p+1000/3, -2*2^(1/2)+3 <= p, 50*p+1000/3) end proc

 

1300/3, 1150/3, 667/2, (17/12)*17^(1/2)+2863/12

(1)

 


 

Download int1.mw

Edit.


 

restart;
P:=proc()
uses combinat;
Matrix(2,3,randperm([$1..6]));
end proc:

# Examples
seq(P(), i=1..10);

Matrix(2, 3, {(1, 1) = 4, (1, 2) = 6, (1, 3) = 2, (2, 1) = 3, (2, 2) = 1, (2, 3) = 5}), Matrix(2, 3, {(1, 1) = 5, (1, 2) = 1, (1, 3) = 2, (2, 1) = 4, (2, 2) = 6, (2, 3) = 3}), Matrix(2, 3, {(1, 1) = 3, (1, 2) = 5, (1, 3) = 2, (2, 1) = 6, (2, 2) = 1, (2, 3) = 4}), Matrix(2, 3, {(1, 1) = 6, (1, 2) = 1, (1, 3) = 5, (2, 1) = 4, (2, 2) = 2, (2, 3) = 3}), Matrix(2, 3, {(1, 1) = 5, (1, 2) = 3, (1, 3) = 2, (2, 1) = 4, (2, 2) = 6, (2, 3) = 1}), Matrix(2, 3, {(1, 1) = 5, (1, 2) = 2, (1, 3) = 1, (2, 1) = 4, (2, 2) = 6, (2, 3) = 3}), Matrix(2, 3, {(1, 1) = 6, (1, 2) = 4, (1, 3) = 3, (2, 1) = 5, (2, 2) = 1, (2, 3) = 2}), Matrix(2, 3, {(1, 1) = 5, (1, 2) = 6, (1, 3) = 3, (2, 1) = 2, (2, 2) = 1, (2, 3) = 4}), Matrix(2, 3, {(1, 1) = 1, (1, 2) = 2, (1, 3) = 4, (2, 1) = 3, (2, 2) = 6, (2, 3) = 5}), Matrix(2, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 5, (2, 1) = 3, (2, 2) = 6, (2, 3) = 4})

(1)

 


 

Download RM.mw

First 46 47 48 49 50 51 52 Last Page 48 of 289