Kitonum

21435 Reputation

26 Badges

17 years, 24 days

MaplePrimes Activity


These are answers submitted by Kitonum

Try using splines for this (CurveFitting:-Spline).

You can also use CurveFitting:-PolynomialInterpolation  command.  But  if you want your plot to look like the plot in the picture ((in particular, the part of the graph below Ox-axis does not have inflection points), then you need to reduce the values of your function at the points  x=3  and  x=4 .

An example:

restart;
XY:=[[-4,3],[-3.5,1.8],[-3,1],[-2,1],[-1,1],[0,0],[1,-1],[2,-1.62],[3,-2],[4,-2],[5,1]]:
f:=unapply(CurveFitting:-PolynomialInterpolation(XY, x), x);
plot(f(x), x = -4 .. 5.2, thickness=2, gridlines, size=[600,500]);

                   

Edit.

In a for-loop:

for i from 11 to 20 do
i^2;
od;


Directly (elementwise):

[$11..20]^~2;

 

If you want to create a matrix consisting of matrices, then here is an example of how to do it:


 

A:=<1,2; 3,4>;
B:=<5,6; 7,8>;
C:=<0,0; 0,0>;
L:=[[A,C],[C,B]];
Matrix(2,2, (i,j)->[[A,C],[C,B]][i,j]);
# Compare with
convert(L, Matrix);

Matrix(2, 2, {(1, 1) = 1, (1, 2) = 2, (2, 1) = 3, (2, 2) = 4})

 

Matrix(2, 2, {(1, 1) = 5, (1, 2) = 6, (2, 1) = 7, (2, 2) = 8})

 

Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0})

 

[[Matrix(2, 2, {(1, 1) = 1, (1, 2) = 2, (2, 1) = 3, (2, 2) = 4}), Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0})], [Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0}), Matrix(2, 2, {(1, 1) = 5, (1, 2) = 6, (2, 1) = 7, (2, 2) = 8})]]

 

Matrix(2, 2, {(1, 1) = Matrix(2, 2, {(1, 1) = 1, (1, 2) = 2, (2, 1) = 3, (2, 2) = 4}), (1, 2) = Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0}), (2, 1) = Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0}), (2, 2) = Matrix(2, 2, {(1, 1) = 5, (1, 2) = 6, (2, 1) = 7, (2, 2) = 8})})

 

Matrix(%id = 18446746250364056870)

(1)

 


 

Download matrix_of_matrices.mw


 

restart;
f:=-x^4-2*y^4+14*x^2*y^2/5:
plot3d(f, x=-5..5,y=-5..5,
   axes     = boxed,
   axesfont = [Times,default,10],
   axis[1]  = [tickmarks=[3,subticks=5],thickness=0,color=red],
   axis[2]  = [tickmarks=[3,subticks=5],thickness=0,color=blue],
   axis[3]  = [tickmarks=[3,subticks=5],thickness=0,color=green],
   labeldirections = [horizontal, horizontal, horizontal],        
   labels   = ['x', 'y', 'z'],
   scaling  = unconstrained, view=[-5.2..5.2,-5.2..5.2,-1300..40]);

 

 


In Maple everything look a little better.
 

Download plot3d.mw


 

NULL

restart

g := proc (m, n) options operator, arrow; sum(sum(h(m-k, n-l)*f(k, l), l = 1 .. N), k = 1 .. N) end proc

proc (m, n) options operator, arrow; sum(sum(h(m-k, n-l)*f(k, l), l = 1 .. N), k = 1 .. N) end proc

(1)

NULL

Example; N := 7; g(4, 5)

h(0, 2)*f(4, 3)+h(0, 1)*f(4, 4)+h(0, 0)*f(4, 5)+h(0, -1)*f(4, 6)+h(0, -2)*f(4, 7)+h(-1, 4)*f(5, 1)+h(-1, 3)*f(5, 2)+h(-1, 2)*f(5, 3)+h(-1, 1)*f(5, 4)+h(-1, 0)*f(5, 5)+h(-1, -1)*f(5, 6)+h(-1, -2)*f(5, 7)+h(-2, 4)*f(6, 1)+h(-2, 3)*f(6, 2)+h(-2, 2)*f(6, 3)+h(-2, 1)*f(6, 4)+h(-2, 0)*f(6, 5)+h(-2, -1)*f(6, 6)+h(-2, -2)*f(6, 7)+h(-3, 4)*f(7, 1)+h(-3, 3)*f(7, 2)+h(-3, 2)*f(7, 3)+h(-3, 1)*f(7, 4)+h(-3, 0)*f(7, 5)+h(-3, -1)*f(7, 6)+h(-3, -2)*f(7, 7)+h(3, 4)*f(1, 1)+h(3, 3)*f(1, 2)+h(3, 2)*f(1, 3)+h(3, 1)*f(1, 4)+h(3, 0)*f(1, 5)+h(3, -1)*f(1, 6)+h(3, -2)*f(1, 7)+h(2, 4)*f(2, 1)+h(2, 3)*f(2, 2)+h(2, 2)*f(2, 3)+h(2, 1)*f(2, 4)+h(2, 0)*f(2, 5)+h(2, -1)*f(2, 6)+h(2, -2)*f(2, 7)+h(1, 4)*f(3, 1)+h(1, 3)*f(3, 2)+h(1, 2)*f(3, 3)+h(1, 1)*f(3, 4)+h(1, 0)*f(3, 5)+h(1, -1)*f(3, 6)+h(1, -2)*f(3, 7)+h(0, 4)*f(4, 1)+h(0, 3)*f(4, 2)

(2)

NULL


 

Download convolution_new.mw

We use polar coordinates for this. One focus of the conic is at the origin. The eccentricity   varies from 0 to   in increments of  0.02. When e = 1 we get a parabola. Different types of conics are made in different colors:

 

restart;
A:=plots:-animate(plot,[1/(1-e*cos(phi)), phi=0..2*Pi, color=blue, thickness=2, coords=polar, caption="Ellipse", captionfont=[times,bold,20]],e=0..0.98, frames=50):
B:=plots:-animate(plot,[1/(1-e*cos(phi)), phi=0..2*Pi, color=red,thickness=2,coords=polar, caption="Parabola", captionfont=[times,bold,20]],e=1..1, frames=15):
C:=plots:-animate(plot,[1/(1-e*cos(phi)), phi=0..2*Pi, color=green,thickness=2,coords=polar, discont, caption="Hyperbole", captionfont=[times,bold,20]],e=1.02..2, frames=50):
plots:-display([A,B,C], insequence=true, scaling=constrained, view=[-7..20,-7..7], size=[1000,450]);

 

 


 

Download conics_animation.mw

Contoures lines for y in red:


 

restart; with(plots)

z := proc (x, y) options operator, arrow; (x^2+x*y+y^2)*sqrt((1-y^2)^2/(x+y)^2-(x-y)^2) end proc; A := plot3d(z(x, y), x = 0 .. .99, y = 0 .. .7, style = surface, grid = [100, 100]); B := seq(spacecurve([x, C, z(x, C)], x = 0 .. .99, color = red, thickness = 2), C = 0 .. .7, .1); display(A, B)

 

contourplot(z, x = 0 .. 1, y = 0 .. 1, axes = boxed)

 

``


 

Download Contour_Plot_MaplePrimes_new.mw

I think that from a pedagogical point of view, a beginner should first of all master the  dsolve  command with  numeric option. This is the basic command for numerically solving differential equations. It allows you to find the values of dependent variables at individual points and also to build graphs of solutions using  plots:-odeplot  command. In the example below, we see that the graph is a spiral that rotates very quickly with an ever increasing speed.

dsolve.mw
 

restart;
Sol:=dsolve({diff(r(t),t)=r(t)^2*(r(t)+sin(theta(t))),diff(theta(t),t)=r(t)^3*(r(t)+cos(theta(t))+theta(t)),r(0)=0.5,theta(0)=0}, range=0..1.5, numeric);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "left" ) = 0., ( "right" ) = 1.5, ( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 1, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 1.5, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.26920846697821577e-1, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = .5, (2) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = .1, (2) = .1}, datatype = float[8], order = C_order), Array(1..2, {(1) = 4.03993869601271, (2) = 39.72383718188243}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 76.46208754452793, (2) = 2892.3849062306804}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = 76.46208754452793, (1, 2) = 81.57435475556674, (1, 3) = 81.53404551239558, (1, 4) = 77.48153031880281, (1, 5) = 76.46794418129483, (1, 6) = 81.15076544319359, (2, 1) = 2892.3849062306804, (2, 2) = 2830.1675227864716, (2, 3) = 2839.4518924388617, (2, 4) = 2884.8443020463124, (2, 5) = 2892.3521428488093, (2, 6) = 2848.862778708166}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..2, {(1) = 4.028393810849183, (2) = 39.32007682860968}, datatype = float[8], order = C_order), Array(1..2, {(1) = 4.0528361925773515, (2) = 40.194383580912316}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0.22749057126958405e-5, (2) = 0.2410245869555183e-5}, datatype = float[8], order = C_order), Array(1..2, {(1) = .5, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 80.4352523367064, (2) = 2858.7170538968494}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..2, {(1) = .5, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .125, (2) = .1875}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = .0, (1, 2) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = theta(t)]`; YP[1] := Y[1]^2*(Y[1]+sin(Y[2])); YP[2] := Y[1]^3*(Y[1]+cos(Y[2])+Y[2]); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = theta(t)]`; YP[1] := Y[1]^2*(Y[1]+sin(Y[2])); YP[2] := Y[1]^3*(Y[1]+cos(Y[2])+Y[2]); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] )), ( 3 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 1, (9) = 0, (10) = 1, (11) = 277, (12) = 277, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 484, (19) = 30000, (20) = 5, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 1.5, (2) = 0.10e-5, (3) = 0.36127865351587296e-3, (4) = 0.500001e-14, (5) = .0, (6) = 0.26920846697821577e-1, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = .5, (2) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = .1, (2) = .1}, datatype = float[8], order = C_order), Array(1..2, {(1) = 4.03993869601271, (2) = 39.72383718188243}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 76.46208754452793, (2) = 2892.3849062306804}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = 76.46208754452793, (1, 2) = 81.57435475556674, (1, 3) = 81.53404551239558, (1, 4) = 77.48153031880281, (1, 5) = 76.46794418129483, (1, 6) = 81.15076544319359, (2, 1) = 2892.3849062306804, (2, 2) = 2830.1675227864716, (2, 3) = 2839.4518924388617, (2, 4) = 2884.8443020463124, (2, 5) = 2892.3521428488093, (2, 6) = 2848.862778708166}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..2, {(1) = 4.028393810849183, (2) = 39.32007682860968}, datatype = float[8], order = C_order), Array(1..2, {(1) = 4.0528361925773515, (2) = 40.194383580912316}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0.22749057126958405e-5, (2) = 0.2410245869555183e-5}, datatype = float[8], order = C_order), Array(1..2, {(1) = .5, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 80.4352523367064, (2) = 2858.7170538968494}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..2, {(1) = .5, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 76.46208754452793, (2) = 2892.3849062306804}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = 1.4998964000654498, (1, 2) = 4.019976554030829, (2, 0) = 4.019976554030829, (2, 1) = 39.02778707064729, (2, 2) = 1.4999987328466202, (3, 0) = 1.4999987328466202, (3, 1) = 4.0282904188096, (3, 2) = 39.31649027708087, (4, 0) = 39.31649027708087, (4, 1) = 1.5001010656277907, (4, 2) = 4.036628105536827, (5, 0) = 4.036628105536827, (5, 1) = 39.60706406212269, (5, 2) = 1.5002033984089613, (6, 0) = 1.5002033984089613, (6, 1) = 4.044852179958918, (6, 2) = 39.89961631328814}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = theta(t)]`; YP[1] := Y[1]^2*(Y[1]+sin(Y[2])); YP[2] := Y[1]^3*(Y[1]+cos(Y[2])+Y[2]); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (Array(1..277, 0..2, {(1, 1) = .0, (1, 2) = .5, (2, 0) = .5, (2, 1) = .0, (2, 2) = 0.6730211674455394e-2, (3, 0) = 0.6730211674455394e-2, (3, 1) = .5008444737760009, (3, 2) = 0.12660007025111339e-2, (4, 0) = 0.12660007025111339e-2, (4, 1) = 0.13460423348910788e-1, (4, 2) = .501695392408529, (5, 0) = .501695392408529, (5, 1) = 0.2540239849715986e-2, (5, 2) = 0.20190635023366182e-1, (6, 0) = 0.20190635023366182e-1, (6, 1) = .5025528321929613, (6, 2) = 0.38228183765511847e-2, (7, 0) = 0.38228183765511847e-2, (7, 1) = 0.26920846697821577e-1, (7, 2) = .5034168707055675, (8, 0) = .5034168707055675, (8, 1) = 0.5113838962684419e-2, (8, 2) = 0.62075861902002476e-1, (9, 0) = 0.62075861902002476e-1, (9, 1) = .5080405619287401, (9, 2) = 0.1199884680687997e-1, (10, 0) = 0.1199884680687997e-1, (10, 1) = 0.9723087710618337e-1, (10, 2) = .5128583646358998, (11, 0) = .5128583646358998, (11, 1) = 0.19132848149161268e-1, (11, 2) = .13238589231036427, (12, 0) = .13238589231036427, (12, 1) = .5178832628730948, (12, 2) = 0.26533111309795396e-1, (13, 0) = 0.26533111309795396e-1, (13, 1) = .16754090751454517, (13, 2) = .523129516638007, (14, 0) = .523129516638007, (14, 1) = 0.34218659828584026e-1, (14, 2) = .20174414903758303, (15, 0) = .20174414903758303, (15, 1) = .5284610520959622, (15, 2) = 0.4198983219623699e-1, (16, 0) = 0.4198983219623699e-1, (16, 1) = .23594739056062086, (16, 2) = .5340327072795225, (17, 0) = .5340327072795225, (17, 1) = 0.500720308726731e-1, (17, 2) = .27015063208365875, (18, 0) = .27015063208365875, (18, 1) = .5398619656640467, (18, 2) = 0.5848879274220799e-1, (19, 0) = 0.5848879274220799e-1, (19, 1) = .3043538736066966, (19, 2) = .545968184524283, (20, 0) = .545968184524283, (20, 1) = 0.6726627359515339e-1, (20, 2) = .3360808197664634, (21, 0) = .3360808197664634, (21, 1) = .551898558329817, (21, 2) = 0.7575602433806104e-1, (22, 0) = 0.7575602433806104e-1, (22, 1) = .3678077659262303, (22, 2) = .5581044552704737, (23, 0) = .5581044552704737, (23, 1) = 0.8460668662791287e-1, (23, 2) = .39953471208599717, (24, 0) = .39953471208599717, (24, 1) = .5646068147196572, (24, 2) = 0.9384685340614429e-1, (25, 0) = 0.9384685340614429e-1, (25, 1) = .431261658245764, (25, 2) = .5714289192925981, (26, 0) = .5714289192925981, (26, 1) = .10350845155641661, (26, 2) = .4603011246829164, (27, 0) = .4603011246829164, (27, 1) = .5779753733150049, (27, 2) = .11275127690017486, (28, 0) = .11275127690017486, (28, 1) = .4893405911200687, (28, 2) = .5848332350655269, (29, 0) = .5848332350655269, (29, 1) = .12240719505582542, (29, 2) = .518380057557221, (30, 0) = .518380057557221, (30, 1) = .5920269698530735, (30, 2) = .13251015322462384, (31, 0) = .13251015322462384, (31, 1) = .5474195239943734, (31, 2) = .5995838732416999, (32, 0) = .5995838732416999, (32, 1) = .14309820517169386, (32, 2) = .5737509114846615, (33, 0) = .5737509114846615, (33, 1) = .6067753948015295, (33, 2) = .15315376601424854, (34, 0) = .15315376601424854, (34, 1) = .6000822989749497, (34, 2) = .6143155940419286, (35, 0) = .6143155940419286, (35, 1) = .16367842013801692, (35, 2) = .6264136864652378, (36, 0) = .6264136864652378, (36, 1) = .6222326063206725, (36, 2) = .17471190810354323, (37, 0) = .17471190810354323, (37, 1) = .6527450739555258, (37, 2) = .6305579088705825, (38, 0) = .6305579088705825, (38, 1) = .18629892420612668, (38, 2) = .6764441172769591, (39, 0) = .6764441172769591, (39, 1) = .638429001805023, (39, 2) = .19724219974255675, (40, 0) = .19724219974255675, (40, 1) = .7001431605983923, (40, 2) = .6466877382243884, (41, 0) = .6466877382243884, (41, 1) = .20871520942281516, (41, 2) = .7238422039198257, (42, 0) = .7238422039198257, (42, 1) = .6553660786897049, (42, 2) = .2207639888420826, (43, 0) = .2207639888420826, (43, 1) = .7475412472412589, (43, 2) = .6644998596653215, (44, 0) = .6644998596653215, (44, 1) = .23344045415444573, (44, 2) = .7687443861593518, (45, 0) = .7687443861593518, (45, 1) = .6730904079577603, (45, 2) = .2453614867852162, (46, 0) = .2453614867852162, (46, 1) = .7899475250774446, (46, 2) = .6821095368083456, (47, 0) = .6821095368083456, (47, 1) = .2578783830580562, (47, 2) = .8111506639955375, (48, 0) = .8111506639955375, (48, 1) = .6915931943239628, (48, 2) = .2710440407523676, (49, 0) = .2710440407523676, (49, 1) = .8323538029136304, (49, 2) = .7015817577962088, (50, 0) = .7015817577962088, (50, 1) = .28491824983339936, (50, 2) = .8512339026504174, (51, 0) = .8512339026504174, (51, 1) = .7109374957899072, (51, 2) = .2979232085532866, (52, 0) = .2979232085532866, (52, 1) = .8701140023872045, (52, 2) = .7207650070863364, (53, 0) = .7207650070863364, (53, 1) = .31159660157310076, (53, 2) = .8889941021239917, (54, 0) = .8889941021239917, (54, 1) = .7311043957063642, (54, 2) = .3259988313308352, (55, 0) = .3259988313308352, (55, 1) = .9078742018607787, (55, 2) = .742000763361076, (56, 0) = .742000763361076, (56, 1) = .34119829487228465, (56, 2) = .9246230975665276, (57, 0) = .9246230975665276, (57, 1) = .7521739813444387, (57, 2) = .3554113385597959, (58, 0) = .3554113385597959, (58, 1) = .9413719932722766, (58, 2) = .762864720898245, (59, 0) = .762864720898245, (59, 1) = .3703729255478553, (59, 2) = .9581208889780255, (60, 0) = .9581208889780255, (60, 1) = .7741174132747939, (60, 2) = .38615169298397034, (61, 0) = .38615169298397034, (61, 1) = .9748697846837744, (61, 2) = .785982065514902, (62, 0) = .785982065514902, (62, 1) = .40282547269136193, (62, 2) = .98968589435827, (63, 0) = .98968589435827, (63, 1) = .7970325111269001, (63, 2) = .4183914457899486, (64, 0) = .4183914457899486, (64, 1) = 1.0045020040327657, (64, 2) = .8086490951786633, (65, 0) = .8086490951786633, (65, 1) = .43479489740550925, (65, 2) = 1.0193181137072616, (66, 0) = 1.0193181137072616, (66, 1) = .8208807437025644, (66, 2) = .4521135318871279, (67, 0) = .4521135318871279, (67, 1) = 1.0341342233817572, (67, 2) = .8337825378066184, (68, 0) = .8337825378066184, (68, 1) = .470435553636609, (68, 2) = 1.0472139865419436, (69, 0) = 1.0472139865419436, (69, 1) = .8457784940084667, (69, 2) = .4875236582735091, (70, 0) = .4875236582735091, (70, 1) = 1.0602937497021299, (70, 2) = .8583923880348423, (71, 0) = .8583923880348423, (71, 1) = .5055485393966834, (71, 2) = 1.0733735128623163, (72, 0) = 1.0733735128623163, (72, 1) = .8716777916614151, (72, 2) = .5245979216160793, (73, 0) = .5245979216160793, (73, 1) = 1.0864532760225027, (73, 2) = .8856949992314437, (74, 0) = .8856949992314437, (74, 1) = .544771448695892, (74, 2) = 1.0979854586401714, (75, 0) = 1.0979854586401714, (75, 1) = .8987144937454656, (75, 2) = .5635801174107131, (76, 0) = .5635801174107131, (76, 1) = 1.10951764125784, (76, 2) = .912407192914424, (77, 0) = .912407192914424, (77, 1) = .5834370821737793, (77, 2) = 1.1210498238755089, (78, 0) = 1.1210498238755089, (78, 1) = .9268314256179756, (78, 2) = .6044411835823874, (79, 0) = .6044411835823874, (79, 1) = 1.1325820064931775, (79, 2) = .9420527786214039, (80, 0) = .9420527786214039, (80, 1) = .6267047233141321, (80, 2) = 1.1427441196282497, (81, 0) = 1.1427441196282497, (81, 1) = .9561848070702439, (81, 2) = .6474679884711299, (82, 0) = .6474679884711299, (82, 1) = 1.1529062327633222, (82, 2) = .9710489688771742, (83, 0) = .9710489688771742, (83, 1) = .6694055636820425, (83, 2) = 1.1630683458983944, (84, 0) = 1.1630683458983944, (84, 1) = .9867083816095997, (84, 2) = .6926286705430017, (85, 0) = .6926286705430017, (85, 1) = 1.1732304590334666, (85, 2) = 1.0032338916790522, (86, 0) = 1.0032338916790522, (86, 1) = .7172636662096666, (86, 2) = 1.1821866961133722, (87, 0) = 1.1821866961133722, (87, 1) = 1.018579376386631, (87, 2) = .7402593627830867, (88, 0) = .7402593627830867, (88, 1) = 1.191142933193278, (88, 2) = 1.034719568875713, (89, 0) = 1.034719568875713, (89, 1) = .7645726725617855, (89, 2) = 1.2000991702731836, (90, 0) = 1.2000991702731836, (90, 1) = 1.0517222580510783, (90, 2) = .7903286634100852, (91, 0) = .7903286634100852, (91, 1) = 1.2090554073530893, (91, 2) = 1.069663317359751, (92, 0) = 1.069663317359751, (92, 1) = .8176693561669504, (92, 2) = 1.2169556218587494, (93, 0) = 1.2169556218587494, (93, 1) = 1.0863351890554984, (93, 2) = .8432294286348657, (94, 0) = .8432294286348657, (94, 1) = 1.2248558363644095, (94, 2) = 1.1038675334488528, (95, 0) = 1.1038675334488528, (95, 1) = .8702711325514594, (95, 2) = 1.2327560508700697, (96, 0) = 1.2327560508700697, (96, 1) = 1.122332426430725, (96, 2) = .8989350807599789, (97, 0) = .8989350807599789, (97, 1) = 1.2406562653757298, (97, 2) = 1.141810188611142, (98, 0) = 1.141810188611142, (98, 1) = .9293808107699466, (98, 2) = 1.2476355898315898, (99, 0) = 1.2476355898315898, (99, 1) = 1.1599313008267476, (99, 2) = .9579036353471481, (100, 0) = .9579036353471481, (100, 1) = 1.2546149142874499, (100, 2) = 1.1789805196433198, (101, 0) = 1.1789805196433198, (101, 1) = .9880969462395337, (101, 2) = 1.2615942387433097, (102, 0) = 1.2615942387433097, (102, 1) = 1.1990333570863814, (102, 2) = 1.020118861911805, (103, 0) = 1.020118861911805, (103, 1) = 1.2685735631991697, (103, 2) = 1.2201734092883998, (104, 0) = 1.2201734092883998, (104, 1) = 1.0541485648512368, (104, 2) = 1.274752314404952, (105, 0) = 1.274752314404952, (105, 1) = 1.239869679417322, (105, 2) = 1.086112132027566, (106, 0) = 1.086112132027566, (106, 1) = 1.2809310656107344, (106, 2) = 1.2605605916694904, (107, 0) = 1.2605605916694904, (107, 1) = 1.119964594084494, (107, 2) = 1.2871098168165167, (108, 0) = 1.2871098168165167, (108, 1) = 1.282323447180719, (108, 2) = 1.1558838044604105, (109, 0) = 1.1558838044604105, (109, 1) = 1.293288568022299, (109, 2) = 1.3052429591969281, (110, 0) = 1.3052429591969281, (110, 1) = 1.1940710061621354, (110, 2) = 1.2987721086719728, (111, 0) = 1.2987721086719728, (111, 1) = 1.3266267813947281, (111, 2) = 1.2300432755668522, (112, 0) = 1.2300432755668522, (112, 1) = 1.3042556493216464, (112, 2) = 1.3490647156327127, (113, 0) = 1.3490647156327127, (113, 1) = 1.268157190507467, (113, 2) = 1.30973918997132, (114, 0) = 1.30973918997132, (114, 1) = 1.3726328919306845, (114, 2) = 1.3086127877188232, (115, 0) = 1.3086127877188232, (115, 1) = 1.3152227306209938, (115, 2) = 1.3974133955781936, (116, 0) = 1.3974133955781936, (116, 1) = 1.3516360366440323, (116, 2) = 1.3201010369922082, (117, 0) = 1.3201010369922082, (117, 1) = 1.4205489730985115, (117, 2) = 1.3922739726443956, (118, 0) = 1.3922739726443956, (118, 1) = 1.3249793433634223, (118, 2) = 1.4447799990496992, (119, 0) = 1.4447799990496992, (119, 1) = 1.4353441189270095, (119, 2) = 1.3298576497346364, (120, 0) = 1.3298576497346364, (120, 1) = 1.470176442862134, (120, 2) = 1.4810712040338034, (121, 0) = 1.4810712040338034, (121, 1) = 1.3347359561058507, (121, 2) = 1.4968116457132556, (122, 0) = 1.4968116457132556, (122, 1) = 1.5297087115420096, (122, 2) = 1.3390087536600683, (123, 0) = 1.3390087536600683, (123, 1) = 1.5212185071613165, (123, 2) = 1.5749234422987386, (124, 0) = 1.5749234422987386, (124, 1) = 1.343281551214286, (124, 2) = 1.5466872308641533, (125, 0) = 1.5466872308641533, (125, 1) = 1.6228009319125865, (125, 2) = 1.3475543487685038, (126, 0) = 1.3475543487685038, (126, 1) = 1.5732710808080232, (126, 2) = 1.6735795096773611, (127, 0) = 1.6735795096773611, (127, 1) = 1.3518271463227214, (127, 2) = 1.6010227828881327, (128, 0) = 1.6010227828881327, (128, 1) = 1.7275271791589393, (128, 2) = 1.3555152249133333, (129, 0) = 1.3555152249133333, (129, 1) = 1.625955272879416, (129, 2) = 1.7768697191783056, (130, 0) = 1.7768697191783056, (130, 1) = 1.359203303503945, (130, 2) = 1.651827657700982, (131, 0) = 1.651827657700982, (131, 1) = 1.829009119022675, (131, 2) = 1.3628913820945567, (132, 0) = 1.3628913820945567, (132, 1) = 1.6786680142410337, (132, 2) = 1.884183456954789, (133, 0) = 1.884183456954789, (133, 1) = 1.3665794606851687, (133, 2) = 1.706499864588409, (134, 0) = 1.706499864588409, (134, 1) = 1.942659416064663, (134, 2) = 1.369770407535615, (135, 0) = 1.369770407535615, (135, 1) = 1.7313941309527643, (135, 2) = 1.9961453939493259, (136, 0) = 1.9961453939493259, (136, 1) = 1.3729613543860613, (136, 2) = 1.7570511633010613, (137, 0) = 1.7570511633010613, (137, 1) = 2.0525365369172164, (137, 2) = 1.3761523012365076, (138, 0) = 1.3761523012365076, (138, 1) = 1.7834716232234709, (138, 2) = 2.112068847863717, (139, 0) = 2.112068847863717, (139, 1) = 1.3793432480869539, (139, 2) = 1.8106485919388413, (140, 0) = 1.8106485919388413, (140, 1) = 2.175006074280386, (140, 2) = 1.3821315596318597, (141, 0) = 1.3821315596318597, (141, 1) = 1.8350037361377336, (141, 2) = 2.233018652882814, (142, 0) = 2.233018652882814, (142, 1) = 1.3849198711767656, (142, 2) = 1.8599076090433937, (143, 0) = 1.8599076090433937, (143, 1) = 2.2940694137664392, (143, 2) = 1.3877081827216715, (144, 0) = 1.3877081827216715, (144, 1) = 1.8853348906354803, (144, 2) = 2.3583978533172614, (145, 0) = 2.3583978533172614, (145, 1) = 1.3904964942665774, (145, 2) = 1.911251141277892, (146, 0) = 1.911251141277892, (146, 1) = 2.4262715492633364, (146, 2) = 1.3929741967120512, (147, 0) = 1.3929741967120512, (147, 1) = 1.9346550858772764, (147, 2) = 2.4897988562212294, (148, 0) = 2.4897988562212294, (148, 1) = 1.3954518991575249, (148, 2) = 1.958371071830559, (149, 0) = 1.958371071830559, (149, 1) = 2.5565896831549138, (149, 2) = 1.3979296016029985, (150, 0) = 1.3979296016029985, (150, 1) = 1.9823514534720674, (150, 2) = 2.6269005275943575, (151, 0) = 2.6269005275943575, (151, 1) = 1.4004073040484724, (151, 2) = 2.006539613630482, (152, 0) = 2.006539613630482, (152, 1) = 2.701018316840971, (152, 2) = 1.4026616341119609, (153, 0) = 1.4026616341119609, (153, 1) = 2.0286722721715598, (153, 2) = 2.7720303662244685, (154, 0) = 2.7720303662244685, (154, 1) = 1.4049159641754496, (154, 2) = 2.0508647754646785, (155, 0) = 2.0508647754646785, (155, 1) = 2.846724015196591, (155, 2) = 1.4071702942389384, (156, 0) = 1.4071702942389384, (156, 1) = 2.073052408700954, (156, 2) = 2.925397403650153, (157, 0) = 2.925397403650153, (157, 1) = 1.4094246243024269, (157, 2) = 2.095163771702282, (158, 0) = 2.095163771702282, (158, 1) = 3.0083845649578485, (158, 2) = 1.4115484343981517, (159, 0) = 1.4115484343981517, (159, 1) = 2.115855579190151, (159, 2) = 3.0908471293428796, (160, 0) = 3.0908471293428796, (160, 1) = 1.4136722444938767, (160, 2) = 2.136339836220654, (161, 0) = 2.136339836220654, (161, 1) = 3.1778158548962683, (161, 2) = 1.4157960545896016, (162, 0) = 1.4157960545896016, (162, 1) = 2.1565432342240882, (162, 2) = 3.269681083629059, (163, 0) = 3.269681083629059, (163, 1) = 1.4179198646853264, (163, 2) = 2.176392060543028, (164, 0) = 2.176392060543028, (164, 1) = 3.366880444740632, (164, 2) = 1.4200402303533552, (165, 0) = 1.4200402303533552, (165, 1) = 2.1957831496695395, (165, 2) = 3.469730299226035, (166, 0) = 3.469730299226035, (166, 1) = 1.4221605960213841, (166, 2) = 2.214678596413761, (167, 0) = 2.214678596413761, (167, 1) = 3.578931172465894, (167, 2) = 1.4242809616894132, (168, 0) = 1.4242809616894132, (168, 1) = 2.2330206753830764, (168, 2) = 3.695100759131496, (169, 0) = 3.695100759131496, (169, 1) = 1.426401327357442, (169, 2) = 2.250770315357265, (170, 0) = 2.250770315357265, (170, 1) = 3.8189301078567253, (170, 2) = 1.4281590995247258, (171, 0) = 1.4281590995247258, (171, 1) = 2.2650231135605607, (171, 2) = 3.9279389590091065, (172, 0) = 3.9279389590091065, (172, 1) = 1.4299168716920092, (172, 2) = 2.2788635316631263, (173, 0) = 2.2788635316631263, (173, 1) = 4.043232437281865, (173, 2) = 1.4316746438592927, (174, 0) = 1.4316746438592927, (174, 1) = 2.2923216137994924, (174, 2) = 4.165349384345164, (175, 0) = 4.165349384345164, (175, 1) = 1.4334324160265763, (175, 2) = 2.3054559571448836, (176, 0) = 2.3054559571448836, (176, 1) = 4.294873239766385, (176, 2) = 1.434978292328851, (177, 0) = 1.434978292328851, (177, 1) = 2.3168102054416213, (177, 2) = 4.415403924269766, (178, 0) = 4.415403924269766, (178, 1) = 1.4365241686311254, (178, 2) = 2.328069290039692, (179, 0) = 2.328069290039692, (179, 1) = 4.54262036020854, (179, 2) = 1.4380700449333998, (180, 0) = 1.4380700449333998, (180, 1) = 2.339348463413476, (180, 2) = 4.677019334006501, (181, 0) = 4.677019334006501, (181, 1) = 1.4396159212356745, (181, 2) = 2.3507954721103848, (182, 0) = 2.3507954721103848, (182, 1) = 4.819119772634947, (182, 2) = 1.4408981385325599, (183, 0) = 1.4408981385325599, (183, 1) = 2.360546200401707, (183, 2) = 4.943214826822984, (184, 0) = 4.943214826822984, (184, 1) = 1.4421803558294455, (184, 2) = 2.3706602347595194, (185, 0) = 2.3706602347595194, (185, 1) = 5.073306866283936, (185, 2) = 1.4434625731263309, (186, 0) = 1.4434625731263309, (186, 1) = 2.381279567689083, (186, 2) = 5.209725074002269, (187, 0) = 5.209725074002269, (187, 1) = 1.4447447904232162, (187, 2) = 2.3925644524703005, (188, 0) = 2.3925644524703005, (188, 1) = 5.352798437708783, (188, 2) = 1.4458869553096585, (189, 0) = 1.4458869553096585, (189, 1) = 2.4033208011219744, (189, 2) = 5.486115559637611, (190, 0) = 5.486115559637611, (190, 1) = 1.4470291201961007, (190, 2) = 2.4148827797040955, (191, 0) = 2.4148827797040955, (191, 1) = 5.625205221402181, (191, 2) = 1.448171285082543, (192, 0) = 1.448171285082543, (192, 1) = 2.427393663036093, (192, 2) = 5.77028959389705, (193, 0) = 5.77028959389705, (193, 1) = 1.4493134499689853, (193, 2) = 2.4410004889336503, (194, 0) = 2.4410004889336503, (194, 1) = 5.92157974123467, (194, 2) = 1.4504278095806065, (195, 0) = 1.4504278095806065, (195, 1) = 2.4554735804953034, (195, 2) = 6.075359131467725, (196, 0) = 6.075359131467725, (196, 1) = 1.4515421691922277, (196, 2) = 2.4712660735363685, (197, 0) = 2.4712660735363685, (197, 1) = 6.235404894336614, (197, 2) = 1.452656528803849, (198, 0) = 1.452656528803849, (198, 1) = 2.4884999814429065, (198, 2) = 6.401869562795312, (199, 0) = 6.401869562795312, (199, 1) = 1.4537708884154703, (199, 2) = 2.507277785589802, (200, 0) = 2.507277785589802, (200, 1) = 6.574892391602408, (200, 2) = 1.4547203798371957, (201, 0) = 1.4547203798371957, (201, 1) = 2.524555390276003, (201, 2) = 6.727586844394138, (202, 0) = 6.727586844394138, (202, 1) = 1.4556698712589209, (202, 2) = 2.5430408821164843, (203, 0) = 2.5430408821164843, (203, 1) = 6.8851999789362885, (203, 2) = 1.4566193626806463, (204, 0) = 1.4566193626806463, (204, 1) = 2.5627386530580356, (204, 2) = 7.047798513926993, (205, 0) = 7.047798513926993, (205, 1) = 1.4575688541023717, (205, 2) = 2.583624253920385, (206, 0) = 2.583624253920385, (206, 1) = 7.215458686643599, (206, 2) = 1.458443888176319, (207, 0) = 1.458443888176319, (207, 1) = 2.6038767966574583, (207, 2) = 7.374529246557797, (208, 0) = 7.374529246557797, (208, 1) = 1.4593189222502665, (208, 2) = 2.62502086194283, (209, 0) = 2.62502086194283, (209, 1) = 7.53804896831136, (209, 2) = 1.4601939563242137, (210, 0) = 1.4601939563242137, (210, 1) = 2.646957078661766, (210, 2) = 7.7061233323326555, (211, 0) = 7.7061233323326555, (211, 1) = 1.461068990398161, (211, 2) = 2.669556799864318, (212, 0) = 2.669556799864318, (212, 1) = 7.878900200145396, (212, 2) = 1.4618286946260262, (213, 0) = 1.4618286946260262, (213, 1) = 2.6895946299705793, (213, 2) = 8.032867279121856, (214, 0) = 8.032867279121856, (214, 1) = 1.4625883988538912, (214, 2) = 2.7098923675300792, (215, 0) = 2.7098923675300792, (215, 1) = 8.190681379003289, (215, 2) = 1.4633481030817563, (216, 0) = 1.4633481030817563, (216, 1) = 2.730314382924301, (216, 2) = 8.352547737784821, (217, 0) = 8.352547737784821, (217, 1) = 1.4641078073096214, (217, 2) = 2.750713667719583, (218, 0) = 2.750713667719583, (218, 1) = 8.51872690873017, (218, 2) = 1.4648653751464495, (219, 0) = 1.4648653751464495, (219, 1) = 2.7708779019094245, (219, 2) = 8.689050321781375, (220, 0) = 8.689050321781375, (220, 1) = 1.4656229429832774, (220, 2) = 2.79070174947154, (221, 0) = 2.79070174947154, (221, 1) = 8.864362036063252, (221, 2) = 1.4663805108201053, (222, 0) = 1.4663805108201053, (222, 1) = 2.81002674020893, (222, 2) = 9.045126273435615, (223, 0) = 9.045126273435615, (223, 1) = 1.4671380786569335, (223, 2) = 2.8287052835594766, (224, 0) = 2.8287052835594766, (224, 1) = 9.231892902392815, (224, 2) = 1.4677934513565625, (225, 0) = 1.4677934513565625, (225, 1) = 2.8442402750850224, (225, 2) = 9.398796201614308, (226, 0) = 9.398796201614308, (226, 1) = 1.4684488240561913, (226, 2) = 2.8591208675100037, (227, 0) = 2.8591208675100037, (227, 1) = 9.571146126397426, (227, 2) = 1.4691041967558203, (228, 0) = 1.4691041967558203, (228, 1) = 2.8732997955346105, (228, 2) = 9.749475157705849, (229, 0) = 9.749475157705849, (229, 1) = 1.4697595694554493, (229, 2) = 2.8867595445865417, (230, 0) = 2.8867595445865417, (230, 1) = 9.934364001906845, (230, 2) = 1.4703706541888757, (231, 0) = 1.4703706541888757, (231, 1) = 2.8986750512629404, (231, 2) = 10.113219597963537, (232, 0) = 10.113219597963537, (232, 1) = 1.470981738922302, (232, 2) = 2.9100236000058866, (233, 0) = 2.9100236000058866, (233, 1) = 10.298877942048215, (233, 2) = 1.4715928236557287, (234, 0) = 1.4715928236557287, (234, 1) = 2.9208887960800185, (234, 2) = 10.49190890198157, (235, 0) = 10.49190890198157, (235, 1) = 1.4722039083891552, (235, 2) = 2.931396122696702, (236, 0) = 2.931396122696702, (236, 1) = 10.692880477251602, (236, 2) = 1.4727327112537503, (237, 0) = 1.4727327112537503, (237, 1) = 2.940327948990757, (237, 2) = 10.87363306567636, (238, 0) = 10.87363306567636, (238, 1) = 1.4732615141183452, (238, 2) = 2.94925475688594, (239, 0) = 2.94925475688594, (239, 1) = 11.06110783136507, (239, 2) = 1.4737903169829403, (240, 0) = 1.4737903169829403, (240, 1) = 2.958337359335365, (240, 2) = 11.255622088745493, (241, 0) = 11.255622088745493, (241, 1) = 1.4743191198475354, (241, 2) = 2.9677565643248305, (242, 0) = 2.9677565643248305, (242, 1) = 11.457441735480504, (242, 2) = 1.4748174238284186, (243, 0) = 1.4748174238284186, (243, 1) = 2.9771170072943405, (243, 2) = 11.654497179559947, (244, 0) = 11.654497179559947, (244, 1) = 1.4753157278093019, (244, 2) = 2.9871264147736465, (245, 0) = 2.9871264147736465, (245, 1) = 11.858343962439339, (245, 2) = 1.4758140317901849, (246, 0) = 1.4758140317901849, (246, 1) = 2.9979546641070116, (246, 2) = 12.069027597450145, (247, 0) = 12.069027597450145, (247, 1) = 1.4763123357710681, (247, 2) = 3.0097577893125758, (248, 0) = 3.0097577893125758, (248, 1) = 12.286521130743738, (248, 2) = 1.4767400634368766, (249, 0) = 1.4767400634368766, (249, 1) = 3.0207712789221457, (249, 2) = 12.47856994406439, (250, 0) = 12.47856994406439, (250, 1) = 1.4771677911026853, (250, 2) = 3.032671144196911, (251, 0) = 3.032671144196911, (251, 1) = 12.6754539723538, (251, 2) = 1.477595518768494, (252, 0) = 1.477595518768494, (252, 1) = 3.0454974995703434, (252, 2) = 12.87703413806166, (253, 0) = 12.87703413806166, (253, 1) = 1.4780232464343024, (253, 2) = 3.059259203340144, (254, 0) = 3.059259203340144, (254, 1) = 13.08315597987962, (254, 2) = 1.4784489833198562, (255, 0) = 1.4784489833198562, (255, 1) = 3.073862080032403, (255, 2) = 13.292666777771698, (256, 0) = 13.292666777771698, (256, 1) = 1.4788747202054098, (256, 2) = 3.0893054058068494, (257, 0) = 3.0893054058068494, (257, 1) = 13.5063459893505, (257, 2) = 1.4793004570909636, (258, 0) = 1.4793004570909636, (258, 1) = 3.1054887370662545, (258, 2) = 13.724060047401911, (259, 0) = 13.724060047401911, (259, 1) = 1.4797261939765174, (259, 2) = 3.122275068875982, (260, 0) = 3.122275068875982, (260, 1) = 13.945732944396704, (260, 2) = 1.480110083247922, (261, 0) = 1.480110083247922, (261, 1) = 3.1377873277488506, (261, 2) = 14.148998467788708, (262, 0) = 14.148998467788708, (262, 1) = 1.4804939725193265, (262, 2) = 3.153503116889654, (263, 0) = 3.153503116889654, (263, 1) = 14.355517510670097, (263, 2) = 1.4808778617907312, (264, 0) = 1.4808778617907312, (264, 1) = 3.1692629356201967, (264, 2) = 14.565413451036079, (265, 0) = 14.565413451036079, (265, 1) = 1.4812617510621358, (265, 2) = 3.184901510157682, (266, 0) = 3.184901510157682, (266, 1) = 14.778894651787697, (266, 2) = 1.4816149897375124, (267, 0) = 1.4816149897375124, (267, 1) = 3.1990406464299967, (267, 2) = 14.978749624650094, (268, 0) = 14.978749624650094, (268, 1) = 1.4819682284128888, (268, 2) = 3.212808803102759, (269, 0) = 3.212808803102759, (269, 1) = 15.182192526156882, (269, 2) = 1.4823214670882654, (270, 0) = 1.4823214670882654, (270, 1) = 3.226093559062359, (270, 2) = 15.389597484367792, (271, 0) = 15.389597484367792, (271, 1) = 1.482674705763642, (271, 2) = 3.2388024928423635, (272, 0) = 3.2388024928423635, (272, 1) = 15.601404156914489, (272, 2) = 1.4830079109783316, (273, 0) = 1.4830079109783316, (273, 1) = 3.2502004264130715, (273, 2) = 15.805683424491397, (274, 0) = 15.805683424491397, (274, 1) = 1.4833411161930212, (274, 2) = 3.260991238288166, (275, 0) = 3.260991238288166, (275, 1) = 16.01480648337558, (275, 2) = 1.4836743214077108, (276, 0) = 1.4836743214077108, (276, 1) = 3.271174016153092, (276, 2) = 16.229284855082213, (277, 0) = 16.229284855082213, (277, 1) = 1.4840075266224004, (277, 2) = 3.2807836596580247}, datatype = float[8], order = C_order)), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = theta(t)]`; YP[1] := Y[1]^2*(Y[1]+sin(Y[2])); YP[2] := Y[1]^3*(Y[1]+cos(Y[2])+Y[2]); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] )), ( 4 ) = (3)  ] ); _y0 := Array(0..2, {(1) = 0., (2) = .5}); _vmap := array( 1 .. 2, [( 1 ) = (1), ( 2 ) = (2)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, r(t), theta(t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(1)

plots:-odeplot(Sol,[r(t)*cos(theta(t)),r(t)*sin(theta(t))], t=0..1.4, scaling=constrained, refine=2, labels=[x,y]);
# t increased by only 0.1
plots:-odeplot(Sol,[r(t)*cos(theta(t)),r(t)*sin(theta(t))], t=0..1.5, scaling=constrained, refine=2, labels=[x,y]);
# Animation
plots:-odeplot(Sol,[r(t)*cos(theta(t)),r(t)*sin(theta(t))], t=0..1.5, frames=60, scaling=constrained, labels=[x,y], numpoints=20000);

 

 

 

 

 

All plottings are made in Cartesian coordinates, as plots:-odeplot command does not support  coords=polar  option.

 

Download dsolve.mw


 

 

 

 

I think you are simply misinterpreting the Gauss-Bonnet formula in your examples. What are you writing about "...area of upper cone's spherical cap plus length of dual cone's intersection with unit sphere..."  will be true only if the vertices of both cones coincide with the center of the sphere and the proof for this case is trivial (without Gauss-Bonnet formula)  2*Pi*(1-h)+2*Pi*h=2*Pi  .  Consider the extreme case: the radius of the base of the upper cone tends to  0 , and its height to  2 . Then the radius of the base of the lower dual cone will be tending to  , and your whole sum will be tending to  0 .

 

I could not express analytically the relationship between the variables  x, y, z , but it is easy to do numerically. By changing  u  and  v  with a certain step (for example, in a double loop), you easily get the corresponding triples  [x, y, z] . All these triples lie on an interesting surface:

restart;
alpha:=1:
eq1 := x(u,v) = (sqrt(2)*cos(v)^2*cos(2*u) + cos(u)*sin(2*v))/(2 - alpha*sqrt(2)*sin(3*u)*sin(2*v));
eq2 := y(u,v) = (sqrt(2)*cos(v)^2*sin(2*u) - sin(u)*sin(2*v))/(2 - alpha*sqrt(2)*sin(3*u)*sin(2*v));
eq3 := z(u,v) = 3*cos(v)^2/(2 - alpha*sqrt(2)*sin(3*u)*sin(2*v));
plot3d(rhs~([eq1,eq2,eq3]), u=-Pi/2..Pi/2, v=0..Pi, axes=normal, labels=[x,y,z], grid=[200,200], orientation=[-10,70]);

                           

 

 

plot(2, phi=0..Pi/2, color="LightGreen", coords=polar, filled);

                     

If you want to highlight the border with the desired color, then do this:

A:=plot(2, phi=0..Pi/2, color="LightGreen", coords=polar, filled);
B:=plot([[t,0,t=0..2],[2*cos(t),2*sin(t),t=0..Pi/2],[0,t,t=0..2]], color="Green", thickness=3):
plots:-display(A,B);

                      


Edit.

You can re-use the  series  command to an already existing series to obtain the desired simplification.

An example:

A:=series(ln(1+x), x);
series(A/x, x);

                 


If you need to programmatically extract the exponent of   in the term  O(x^n) , then do so:

A:=series(ln(1+x), x):
op(-1,A);

                                             6


Here's an example of another way:

applyrule(O(x^n::posint)/x=O(x^(n-1)), O(x^11)/x);

                                          

Use  combinat:-choose  command for this. An example:

combinat:-choose({$1..10}, 3);

  {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 2, 8}, {1, 2, 9}, {1, 2, 10}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {1, 3, 10}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {1, 4, 9}, {1, 4, 10}, {1, 5, 6}, {1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {1, 5, 10}, {1, 6, 7}, {1, 6, 8}, {1, 6, 9}, {1, 6, 10}, {1, 7, 8}, {1, 7, 9}, {1, 7, 10}, {1, 8, 9}, {1, 8, 10}, {1, 9, 10}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 3, 8}, {2, 3, 9}, {2, 3, 10}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7}, {2, 4, 8}, {2, 4, 9}, {2, 4, 10}, {2, 5, 6}, {2, 5, 7}, {2, 5, 8}, {2, 5, 9}, {2, 5, 10}, {2, 6, 7}, {2, 6, 8}, {2, 6, 9}, {2, 6, 10}, {2, 7, 8}, {2, 7, 9}, {2, 7, 10}, {2, 8, 9}, {2, 8, 10}, {2, 9, 10}, {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 4, 8}, {3, 4, 9}, {3, 4, 10}, {3, 5, 6}, {3, 5, 7}, {3, 5, 8}, {3, 5, 9}, {3, 5, 10}, {3, 6, 7}, {3, 6, 8}, {3, 6, 9}, {3, 6, 10}, {3, 7, 8}, {3, 7, 9}, {3, 7, 10}, {3, 8, 9}, {3, 8, 10}, {3, 9, 10}, {4, 5, 6}, {4, 5, 7}, {4, 5, 8}, {4, 5, 9}, {4, 5, 10}, {4, 6, 7}, {4, 6, 8}, {4, 6, 9}, {4, 6, 10}, {4, 7, 8}, {4, 7, 9}, {4, 7, 10}, {4, 8, 9}, {4, 8, 10}, {4, 9, 10}, {5, 6, 7}, {5, 6, 8}, {5, 6, 9}, {5, 6, 10}, {5, 7, 8}, {5, 7, 9}, {5, 7, 10}, {5, 8, 9}, {5, 8, 10}, {5, 9, 10}, {6, 7, 8}, {6, 7, 9}, {6, 7, 10}, {6, 8, 9}, {6, 8, 10}, {6, 9, 10}, {7, 8, 9}, {7, 8, 10}, {7, 9, 10}, {8, 9, 10}}

I think that all your questions can be answered only numerically with the specified parameter values. Here is an example:

restart;
A:=x->mue+(mun/gama)+(u0^2)-mud*x-mue*exp(x)-(mun/gama)*exp(gama*x)-(u0^2)*(1-2*x/u0^2)^(1/2):

mue:=1/(1+alpha+beta):
mun:=alpha/(1+alpha+beta):
mud:=beta/(1+alpha+beta):
u0:=(mue+mun*gama)^(-1/2):

A1:=eval(A(x),[alpha=0.2,beta=0.3,gama=17]);
r:=solve(op([1,1],indets(A1,sqrt))>=0); # The domain of A1
plot(A1, x=-0.4..op(2,r), size=[800,400]);
fsolve(A1,x=-0.1..0.1); # The first root
fsolve(A1,x=0.1..op(2,r));  # The second root
fsolve(diff(A1,x),x=0.1..op(2,r));  # The root of first derivative

   

 

To investigate the dependence of the results on the parameters, see the  Explore command in the help.

restart;
int(tanh(x)/sqrt(x^2+1), x=1..100, numeric);

                                 4.344661055

First 59 60 61 62 63 64 65 Last Page 61 of 289