Kitonum

21435 Reputation

26 Badges

17 years, 25 days

MaplePrimes Activity


These are answers submitted by Kitonum

Everything seems to be working properly (or you expect other answers):

restart;
L:= [1,2,3,4,5,6,7,8];
Statistics:-Quartile(L,1);
Statistics:-Quartile(L,2);
Statistics:-Quartile(L,3);

                                L := [1, 2, 3, 4, 5, 6, 7, 8]
                                2.4166666666666666666
                                4.4999999999999999999
                                6.5833333333333333333

B:=N->Matrix(N+1, {seq((i,i+1)=i, i=1..N)});

Example of use:
B(5);

restart:
x := 12:
y := 46:
s := 0;
'x' = x:
'y' = y:
'`résultat`' = s: k:=0:
while 0 < y do
if type(y, odd) then s := s + x:
y := y - 1:
else x := 2*x:
y := y/2:
end if;
k:=k+1; L[k] := [x, y, s];
end do;

op~(convert(L,list));

 

Example of use:

combinat:-partition(4);
           
 [[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]]


You may be interested in this post  https://www.mapleprimes.com/users/Kitonum/posts?page=6

If you add one more parameter (I added  m ), Maple will find a huge number of solutions. Below is found and built the plot for one solution:

 

restart;
Eq:=abs(a*x+b)+abs(c*x+d)+m*x^2+n*x+p = 0;
f:=x-> abs(a*x+b)+abs(c*x+d)+m*x^2+n*x+p;
Sol:=solve([f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0, f(5) = 0, f(6) = 0], [a, b, c, d, m, n, p]);
a,b,c,d:=-1,6,2,3;
m:=rhs(Sol[1,5]); n:=rhs(Sol[1,6]); p:=rhs(Sol[1,7]);
Eq;
plot(lhs(Eq), x=0..7);

abs(a*x+b)+abs(c*x+d)+m*x^2+n*x+p = 0

 

proc (x) options operator, arrow; abs(a*x+b)+abs(c*x+d)+m*x^2+n*x+p end proc

 

Warning, returning only the first 100 solutions, increase _MaxSols to see more solutions

 

[[a < 0, -6*a <= b, 0 <= c, -c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, -6*a <= b, c < 0, -6*c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, -a <= b, c < 0, -6*c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, -a <= b, 0 <= c, -c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, -6*a <= b, 0 <= c, d < -6*c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, -6*a <= b, c < 0, d < -c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, -a <= b, 0 <= c, d < -6*c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, -a <= b, c < 0, d < -c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, b < -6*a, 0 <= c, -c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, b < -6*a, c < 0, -6*c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, b < -a, c < 0, -6*c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, b < -a, 0 <= c, -c <= d, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, b < -6*a, 0 <= c, d < -6*c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [0 <= a, b < -6*a, c < 0, d < -c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, b < -a, 0 <= c, d < -6*c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a < 0, b < -a, c < 0, d < -c, m = -(1/2)*abs(a+b)-(1/2)*abs(c+d)+abs(2*a+b)+abs(2*c+d)-(1/2)*abs(3*a+b)-(1/2)*abs(3*c+d), n = -4*abs(2*a+b)-4*abs(2*c+d)+(5/2)*abs(a+b)+(5/2)*abs(c+d)+(3/2)*abs(3*a+b)+(3/2)*abs(3*c+d), p = -abs(3*a+b)-abs(3*c+d)-3*abs(a+b)-3*abs(c+d)+3*abs(2*a+b)+3*abs(2*c+d)], [a = a, b = -4*a, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -4*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -5*a, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -5*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [0 < a, b = -6*a, c < 0, -6*c <= d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -6*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [0 < a, b = -6*a, 0 <= c, -c <= d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -6*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [0 < a, b = -6*a, 0 <= c, d < -6*c, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -6*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [0 < a, b = -6*a, c < 0, d < -c, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -6*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = b, c = c, d = -4*c, m = -(1/2)*abs(a+b)+abs(2*a+b)-(1/2)*abs(3*a+b), n = -4*abs(2*a+b)+abs(c)+(5/2)*abs(a+b)+(3/2)*abs(3*a+b), p = -abs(3*a+b)-4*abs(c)-3*abs(a+b)+3*abs(2*a+b)], [a = a, b = b, c = c, d = -5*c, m = -(1/2)*abs(a+b)+abs(2*a+b)-(1/2)*abs(3*a+b), n = -4*abs(2*a+b)+abs(c)+(5/2)*abs(a+b)+(3/2)*abs(3*a+b), p = -abs(3*a+b)-5*abs(c)-3*abs(a+b)+3*abs(2*a+b)], [a < 0, -6*a <= b, 0 < c, d = -6*c, m = -(1/2)*abs(a+b)+abs(2*a+b)-(1/2)*abs(3*a+b), n = -4*abs(2*a+b)+abs(c)+(5/2)*abs(a+b)+(3/2)*abs(3*a+b), p = -abs(3*a+b)-6*abs(c)-3*abs(a+b)+3*abs(2*a+b)], [0 <= a, -a <= b, 0 < c, d = -6*c, m = -(1/2)*abs(a+b)+abs(2*a+b)-(1/2)*abs(3*a+b), n = -4*abs(2*a+b)+abs(c)+(5/2)*abs(a+b)+(3/2)*abs(3*a+b), p = -abs(3*a+b)-6*abs(c)-3*abs(a+b)+3*abs(2*a+b)], [0 <= a, b < -6*a, 0 < c, d = -6*c, m = -(1/2)*abs(a+b)+abs(2*a+b)-(1/2)*abs(3*a+b), n = -4*abs(2*a+b)+abs(c)+(5/2)*abs(a+b)+(3/2)*abs(3*a+b), p = -abs(3*a+b)-6*abs(c)-3*abs(a+b)+3*abs(2*a+b)], [a < 0, b < -a, 0 < c, d = -6*c, m = -(1/2)*abs(a+b)+abs(2*a+b)-(1/2)*abs(3*a+b), n = -4*abs(2*a+b)+abs(c)+(5/2)*abs(a+b)+(3/2)*abs(3*a+b), p = -abs(3*a+b)-6*abs(c)-3*abs(a+b)+3*abs(2*a+b)], [a = a, b = -6*a-6*c-d, c = c, d = d, m = -(1/2)*abs(5*a+6*c+d)-(1/2)*abs(c+d)+abs(4*a+6*c+d)+abs(2*c+d)-(1/2)*abs(3*a+6*c+d)-(1/2)*abs(3*c+d), n = -4*abs(4*a+6*c+d)-4*abs(2*c+d)+(5/2)*abs(5*a+6*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*a+6*c+d)+(3/2)*abs(3*c+d), p = -abs(3*a+6*c+d)-abs(3*c+d)-3*abs(5*a+6*c+d)-3*abs(c+d)+3*abs(4*a+6*c+d)+3*abs(2*c+d)], [a = a, b = -6*a+6*c+d, c = c, d = d, m = -(1/2)*abs(5*a-6*c-d)-(1/2)*abs(c+d)+abs(4*a-6*c-d)+abs(2*c+d)-(1/2)*abs(3*a-6*c-d)-(1/2)*abs(3*c+d), n = -4*abs(4*a-6*c-d)-4*abs(2*c+d)+(5/2)*abs(5*a-6*c-d)+(5/2)*abs(c+d)+(3/2)*abs(3*a-6*c-d)+(3/2)*abs(3*c+d), p = -abs(3*a-6*c-d)-abs(3*c+d)-3*abs(5*a-6*c-d)-3*abs(c+d)+3*abs(4*a-6*c-d)+3*abs(2*c+d)], [a = a, b = -5*a-5*c-d, c = c, d = d, m = -(1/2)*abs(4*a+5*c+d)-(1/2)*abs(c+d)+abs(3*a+5*c+d)+abs(2*c+d)-(1/2)*abs(2*a+5*c+d)-(1/2)*abs(3*c+d), n = -4*abs(3*a+5*c+d)-4*abs(2*c+d)+(5/2)*abs(4*a+5*c+d)+(5/2)*abs(c+d)+(3/2)*abs(2*a+5*c+d)+(3/2)*abs(3*c+d), p = -abs(2*a+5*c+d)-abs(3*c+d)-3*abs(4*a+5*c+d)-3*abs(c+d)+3*abs(3*a+5*c+d)+3*abs(2*c+d)], [a = a, b = -5*a+5*c+d, c = c, d = d, m = -(1/2)*abs(4*a-5*c-d)-(1/2)*abs(c+d)+abs(3*a-5*c-d)+abs(2*c+d)-(1/2)*abs(2*a-5*c-d)-(1/2)*abs(3*c+d), n = -4*abs(3*a-5*c-d)-4*abs(2*c+d)+(5/2)*abs(4*a-5*c-d)+(5/2)*abs(c+d)+(3/2)*abs(2*a-5*c-d)+(3/2)*abs(3*c+d), p = -abs(2*a-5*c-d)-abs(3*c+d)-3*abs(4*a-5*c-d)-3*abs(c+d)+3*abs(3*a-5*c-d)+3*abs(2*c+d)], [a = a, b = -4*a-4*c-d, c = c, d = d, m = -(1/2)*abs(3*a+4*c+d)-(1/2)*abs(c+d)+abs(2*a+4*c+d)+abs(2*c+d)-(1/2)*abs(a+4*c+d)-(1/2)*abs(3*c+d), n = -4*abs(2*a+4*c+d)-4*abs(2*c+d)+(5/2)*abs(3*a+4*c+d)+(5/2)*abs(c+d)+(3/2)*abs(a+4*c+d)+(3/2)*abs(3*c+d), p = -abs(a+4*c+d)-abs(3*c+d)-3*abs(3*a+4*c+d)-3*abs(c+d)+3*abs(2*a+4*c+d)+3*abs(2*c+d)], [a = a, b = -4*a+4*c+d, c = c, d = d, m = -(1/2)*abs(3*a-4*c-d)-(1/2)*abs(c+d)+abs(2*a-4*c-d)+abs(2*c+d)-(1/2)*abs(a-4*c-d)-(1/2)*abs(3*c+d), n = -4*abs(2*a-4*c-d)-4*abs(2*c+d)+(5/2)*abs(3*a-4*c-d)+(5/2)*abs(c+d)+(3/2)*abs(a-4*c-d)+(3/2)*abs(3*c+d), p = -abs(a-4*c-d)-abs(3*c+d)-3*abs(3*a-4*c-d)-3*abs(c+d)+3*abs(2*a-4*c-d)+3*abs(2*c+d)], [0 < a, b = -6*a, 0 < c, d = -6*c, m = 0, n = abs(a)+abs(c), p = -6*abs(a)-6*abs(c)], [a = a, b = -4*a, c = c, d = -5*c, m = 0, n = abs(a)+abs(c), p = -4*abs(a)-5*abs(c)], [a = a, b = -4*a, c = c, d = -6*c, m = 0, n = abs(a)+abs(c), p = -4*abs(a)-6*abs(c)], [a = 5*c+d, b = -20*c-4*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(5*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -4*abs(5*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -5*c-d, b = 20*c+4*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(5*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -4*abs(5*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -4*a, c = c, d = 2*a-6*c, m = -(1/2)*abs(2*a-5*c)+2*abs(a-2*c)-(1/2)*abs(2*a-3*c), n = abs(a)-8*abs(a-2*c)+(5/2)*abs(2*a-5*c)+(3/2)*abs(2*a-3*c), p = -4*abs(a)-abs(2*a-3*c)-3*abs(2*a-5*c)+6*abs(a-2*c)], [a = a, b = -4*a, c = c, d = -2*a-6*c, m = -(1/2)*abs(2*a+5*c)+2*abs(a+2*c)-(1/2)*abs(2*a+3*c), n = abs(a)-8*abs(a+2*c)+(5/2)*abs(2*a+5*c)+(3/2)*abs(2*a+3*c), p = -4*abs(a)-abs(2*a+3*c)-3*abs(2*a+5*c)+6*abs(a+2*c)], [a = a, b = -5*a, c = c, d = -4*c, m = 0, n = abs(a)+abs(c), p = -5*abs(a)-4*abs(c)], [a = a, b = -5*a, c = c, d = -6*c, m = 0, n = abs(a)+abs(c), p = -5*abs(a)-6*abs(c)], [a = -4*c-d, b = 20*c+5*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(4*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -5*abs(4*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = 4*c+d, b = -20*c-5*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(4*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -5*abs(4*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = 6*c+d, b = -30*c-5*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(6*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -5*abs(6*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -6*c-d, b = 30*c+5*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(6*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -5*abs(6*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -6*a, c = c, d = -4*c, m = 0, n = abs(a)+abs(c), p = -6*abs(a)-4*abs(c)], [a = a, b = -6*a, c = c, d = -5*c, m = 0, n = abs(a)+abs(c), p = -6*abs(a)-5*abs(c)], [a = a, b = -6*a, c = c, d = -2*a-4*c, m = -(1/2)*abs(2*a+3*c)+2*abs(a+c)-(1/2)*abs(2*a+c), n = abs(a)-8*abs(a+c)+(5/2)*abs(2*a+3*c)+(3/2)*abs(2*a+c), p = -6*abs(a)-abs(2*a+c)-3*abs(2*a+3*c)+6*abs(a+c)], [a = a, b = -6*a, c = c, d = 2*a-4*c, m = -(1/2)*abs(2*a-3*c)+2*abs(a-c)-(1/2)*abs(2*a-c), n = abs(a)-8*abs(a-c)+(5/2)*abs(2*a-3*c)+(3/2)*abs(2*a-c), p = -6*abs(a)-abs(2*a-c)-3*abs(2*a-3*c)+6*abs(a-c)], [a = -5*c-d, b = 30*c+6*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(5*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -6*abs(5*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = 5*c+d, b = -30*c-6*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(5*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -6*abs(5*c+d)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -6*a+2*c, c = c, d = -4*c, m = -(1/2)*abs(5*a-2*c)+2*abs(2*a-c)-(1/2)*abs(3*a-2*c), n = -8*abs(2*a-c)+abs(c)+(5/2)*abs(5*a-2*c)+(3/2)*abs(3*a-2*c), p = -abs(3*a-2*c)-4*abs(c)-3*abs(5*a-2*c)+6*abs(2*a-c)], [a = a, b = -5*a+c, c = c, d = -4*c, m = -(1/2)*abs(4*a-c)+abs(3*a-c)-(1/2)*abs(2*a-c), n = -4*abs(3*a-c)+abs(c)+(5/2)*abs(4*a-c)+(3/2)*abs(2*a-c), p = -abs(2*a-c)-4*abs(c)-3*abs(4*a-c)+3*abs(3*a-c)], [a = a, b = -5*a-c, c = c, d = -4*c, m = -(1/2)*abs(4*a+c)+abs(3*a+c)-(1/2)*abs(2*a+c), n = -4*abs(3*a+c)+abs(c)+(5/2)*abs(4*a+c)+(3/2)*abs(2*a+c), p = -abs(2*a+c)-4*abs(c)-3*abs(4*a+c)+3*abs(3*a+c)], [a = a, b = -6*a-2*c, c = c, d = -4*c, m = -(1/2)*abs(5*a+2*c)+2*abs(2*a+c)-(1/2)*abs(3*a+2*c), n = -8*abs(2*a+c)+abs(c)+(5/2)*abs(5*a+2*c)+(3/2)*abs(3*a+2*c), p = -abs(3*a+2*c)-4*abs(c)-3*abs(5*a+2*c)+6*abs(2*a+c)], [a = a, b = -6*a+c, c = c, d = -5*c, m = -(1/2)*abs(5*a-c)+abs(4*a-c)-(1/2)*abs(3*a-c), n = -4*abs(4*a-c)+abs(c)+(5/2)*abs(5*a-c)+(3/2)*abs(3*a-c), p = -abs(3*a-c)-5*abs(c)-3*abs(5*a-c)+3*abs(4*a-c)], [a = a, b = -4*a-c, c = c, d = -5*c, m = -(1/2)*abs(3*a+c)+abs(2*a+c)-(1/2)*abs(a+c), n = -4*abs(2*a+c)+abs(c)+(5/2)*abs(3*a+c)+(3/2)*abs(a+c), p = -abs(a+c)-5*abs(c)-3*abs(3*a+c)+3*abs(2*a+c)], [a = a, b = -4*a+c, c = c, d = -5*c, m = -(1/2)*abs(3*a-c)+abs(2*a-c)-(1/2)*abs(a-c), n = -4*abs(2*a-c)+abs(c)+(5/2)*abs(3*a-c)+(3/2)*abs(a-c), p = -abs(a-c)-5*abs(c)-3*abs(3*a-c)+3*abs(2*a-c)], [a = a, b = -6*a-c, c = c, d = -5*c, m = -(1/2)*abs(5*a+c)+abs(4*a+c)-(1/2)*abs(3*a+c), n = -4*abs(4*a+c)+abs(c)+(5/2)*abs(5*a+c)+(3/2)*abs(3*a+c), p = -abs(3*a+c)-5*abs(c)-3*abs(5*a+c)+3*abs(4*a+c)], [a = a, b = -5*a-c, c = c, d = -6*c, m = -(1/2)*abs(4*a+c)+abs(3*a+c)-(1/2)*abs(2*a+c), n = -4*abs(3*a+c)+abs(c)+(5/2)*abs(4*a+c)+(3/2)*abs(2*a+c), p = -abs(2*a+c)-6*abs(c)-3*abs(4*a+c)+3*abs(3*a+c)], [a = a, b = -4*a-2*c, c = c, d = -6*c, m = -(1/2)*abs(3*a+2*c)+2*abs(a+c)-(1/2)*abs(a+2*c), n = -8*abs(a+c)+abs(c)+(5/2)*abs(3*a+2*c)+(3/2)*abs(a+2*c), p = -abs(a+2*c)-6*abs(c)-3*abs(3*a+2*c)+6*abs(a+c)], [a = a, b = -4*a+2*c, c = c, d = -6*c, m = -(1/2)*abs(3*a-2*c)+2*abs(a-c)-(1/2)*abs(a-2*c), n = -8*abs(a-c)+abs(c)+(5/2)*abs(3*a-2*c)+(3/2)*abs(a-2*c), p = -abs(a-2*c)-6*abs(c)-3*abs(3*a-2*c)+6*abs(a-c)], [a = a, b = -5*a+c, c = c, d = -6*c, m = -(1/2)*abs(4*a-c)+abs(3*a-c)-(1/2)*abs(2*a-c), n = -4*abs(3*a-c)+abs(c)+(5/2)*abs(4*a-c)+(3/2)*abs(2*a-c), p = -abs(2*a-c)-6*abs(c)-3*abs(4*a-c)+3*abs(3*a-c)], [a = -c, b = -d, c = c, d = d, m = -abs(c+d)+2*abs(2*c+d)-abs(3*c+d), n = -8*abs(2*c+d)+5*abs(c+d)+3*abs(3*c+d), p = -2*abs(3*c+d)-6*abs(c+d)+6*abs(2*c+d)], [a = c, b = d, c = c, d = d, m = -abs(c+d)+2*abs(2*c+d)-abs(3*c+d), n = -8*abs(2*c+d)+5*abs(c+d)+3*abs(3*c+d), p = -2*abs(3*c+d)-6*abs(c+d)+6*abs(2*c+d)], [a = a, b = -3*a, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(a)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -abs(3*c+d)-3*abs(a)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -3*a, c = c, d = -4*c, m = 0, n = abs(a)+abs(c), p = -4*abs(c)-3*abs(a)], [a = 4*c+d, b = -12*c-3*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(4*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -abs(3*c+d)-3*abs(4*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -4*c-d, b = 12*c+3*d, c = c, d = d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = abs(4*c+d)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -abs(3*c+d)-3*abs(4*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -3*a, c = c, d = -5*c, m = 0, n = abs(a)+abs(c), p = -5*abs(c)-3*abs(a)], [a = a, b = -3*a, c = c, d = 2*a-5*c, m = -abs(a-2*c)+abs(2*a-3*c)-abs(a-c), n = abs(a)-4*abs(2*a-3*c)+5*abs(a-2*c)+3*abs(a-c), p = -2*abs(a-c)-3*abs(a)-6*abs(a-2*c)+3*abs(2*a-3*c)], [a = a, b = -3*a, c = c, d = -2*a-5*c, m = -abs(a+2*c)+abs(2*a+3*c)-abs(a+c), n = abs(a)-4*abs(2*a+3*c)+5*abs(a+2*c)+3*abs(a+c), p = -2*abs(a+c)-3*abs(a)-6*abs(a+2*c)+3*abs(2*a+3*c)], [a = a, b = -3*a, c = c, d = -6*c, m = 0, n = abs(a)+abs(c), p = -6*abs(c)-3*abs(a)], [a = a, b = -3*a, c = c, d = 3*a-6*c, m = -(1/2)*abs(3*a-5*c)+abs(3*a-4*c)-(3/2)*abs(a-c), n = abs(a)-4*abs(3*a-4*c)+(5/2)*abs(3*a-5*c)+(9/2)*abs(a-c), p = -3*abs(a-c)-3*abs(a)-3*abs(3*a-5*c)+3*abs(3*a-4*c)], [a = a, b = -3*a, c = c, d = -3*a-6*c, m = -(1/2)*abs(3*a+5*c)+abs(3*a+4*c)-(3/2)*abs(a+c), n = abs(a)-4*abs(3*a+4*c)+(5/2)*abs(3*a+5*c)+(9/2)*abs(a+c), p = -3*abs(a+c)-3*abs(a)-3*abs(3*a+5*c)+3*abs(3*a+4*c)], [a = -b, 0 < b, c < 0, -6*c <= d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = -abs(b)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = abs(b)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -b, 0 < b, 0 <= c, -c <= d, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = -abs(b)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = abs(b)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -b, 0 < b, 0 <= c, d < -6*c, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = -abs(b)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = abs(b)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -b, 0 < b, c < 0, d < -c, m = -(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = -abs(b)-4*abs(2*c+d)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = abs(b)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = -b, b = b, c = c, d = -3*b-4*c, m = -(3/2)*abs(b+c)+abs(2*c+3*b)-(1/2)*abs(3*b+c), n = -abs(b)-4*abs(2*c+3*b)+(15/2)*abs(b+c)+(3/2)*abs(3*b+c), p = abs(b)-abs(3*b+c)-9*abs(b+c)+3*abs(2*c+3*b)], [a = -b, b = b, c = c, d = 3*b-4*c, m = -(3/2)*abs(b-c)+abs(-2*c+3*b)-(1/2)*abs(-c+3*b), n = -abs(b)-4*abs(-2*c+3*b)+(15/2)*abs(b-c)+(3/2)*abs(-c+3*b), p = abs(b)-abs(-c+3*b)-9*abs(b-c)+3*abs(-2*c+3*b)], [a = -b, b = b, c = c, d = -4*c, m = 0, n = -abs(b)+abs(c), p = abs(b)-4*abs(c)], [a = -b, b = b, c = c, d = -5*c, m = 0, n = -abs(b)+abs(c), p = abs(b)-5*abs(c)], [a = -b, b = b, c = c, d = -4*b-5*c, m = -2*abs(b+c)+abs(3*c+4*b)-abs(c+2*b), n = -abs(b)-4*abs(3*c+4*b)+10*abs(b+c)+3*abs(c+2*b), p = abs(b)-2*abs(c+2*b)-12*abs(b+c)+3*abs(3*c+4*b)], [a = -b, b = b, c = c, d = 4*b-5*c, m = -2*abs(b-c)+abs(-3*c+4*b)-abs(-c+2*b), n = -abs(b)-4*abs(-3*c+4*b)+10*abs(b-c)+3*abs(-c+2*b), p = abs(b)-2*abs(-c+2*b)-12*abs(b-c)+3*abs(-3*c+4*b)], [a = a, b = b, c = c, d = d, m = m, n = n, p = p], [a = -b, b = b, c = c, d = -5*b-6*c, m = -(5/2)*abs(b+c)+abs(4*c+5*b)-(1/2)*abs(3*c+5*b), n = -abs(b)-4*abs(4*c+5*b)+(25/2)*abs(b+c)+(3/2)*abs(3*c+5*b), p = abs(b)-abs(3*c+5*b)-15*abs(b+c)+3*abs(4*c+5*b)], [a = -b, b = b, c = c, d = 5*b-6*c, m = -(5/2)*abs(b-c)+abs(-4*c+5*b)-(1/2)*abs(-3*c+5*b), n = -abs(b)-4*abs(-4*c+5*b)+(25/2)*abs(b-c)+(3/2)*abs(-3*c+5*b), p = abs(b)-abs(-3*c+5*b)-15*abs(b-c)+3*abs(-4*c+5*b)], [a = -b, 0 < b, 0 < c, d = -6*c, m = 0, n = -abs(b)+abs(c), p = abs(b)-6*abs(c)], [a = a, b = -2*a, c = c, d = d, m = -abs(a)-(1/2)*abs(c+d)+abs(2*c+d)-(1/2)*abs(3*c+d), n = -4*abs(2*c+d)+4*abs(a)+(5/2)*abs(c+d)+(3/2)*abs(3*c+d), p = -4*abs(a)-abs(3*c+d)-3*abs(c+d)+3*abs(2*c+d)], [a = a, b = -2*a, c = c, d = -6*c, m = -abs(a), n = abs(c)+4*abs(a), p = -4*abs(a)-6*abs(c)], [a = a, b = -2*a, c = c, d = 4*a-6*c, m = -abs(a)-(1/2)*abs(4*a-5*c)+4*abs(a-c)-(1/2)*abs(4*a-3*c), n = -16*abs(a-c)+4*abs(a)+(5/2)*abs(4*a-5*c)+(3/2)*abs(4*a-3*c), p = -4*abs(a)-abs(4*a-3*c)-3*abs(4*a-5*c)+12*abs(a-c)], [a = a, b = -2*a, c = c, d = -4*a-6*c, m = -abs(a)-(1/2)*abs(4*a+5*c)+4*abs(a+c)-(1/2)*abs(4*a+3*c), n = -16*abs(a+c)+4*abs(a)+(5/2)*abs(4*a+5*c)+(3/2)*abs(4*a+3*c), p = -4*abs(a)-abs(4*a+3*c)-3*abs(4*a+5*c)+12*abs(a+c)], [a = a, b = -2*a, c = c, d = -5*c, m = -abs(a), n = abs(c)+4*abs(a), p = -4*abs(a)-5*abs(c)], [a = a, b = -2*a, c = c, d = 3*a-5*c, m = -abs(a)-(1/2)*abs(3*a-4*c)+3*abs(a-c)-(1/2)*abs(3*a-2*c), n = -12*abs(a-c)+4*abs(a)+(5/2)*abs(3*a-4*c)+(3/2)*abs(3*a-2*c), p = -4*abs(a)-abs(3*a-2*c)-3*abs(3*a-4*c)+9*abs(a-c)], [a = a, b = -2*a, c = c, d = -3*a-5*c, m = -abs(a)-(1/2)*abs(3*a+4*c)+3*abs(a+c)-(1/2)*abs(3*a+2*c), n = -12*abs(a+c)+4*abs(a)+(5/2)*abs(3*a+4*c)+(3/2)*abs(3*a+2*c), p = -4*abs(a)-abs(3*a+2*c)-3*abs(3*a+4*c)+9*abs(a+c)], [a = a, b = -2*a, c = c, d = -4*c, m = -abs(a), n = abs(c)+4*abs(a), p = -4*abs(a)-4*abs(c)], [a = a, b = -2*a, c = c, d = 2*a-4*c, m = -abs(a)-(1/2)*abs(2*a-3*c)+2*abs(a-c)-(1/2)*abs(2*a-c), n = -8*abs(a-c)+4*abs(a)+(5/2)*abs(2*a-3*c)+(3/2)*abs(2*a-c), p = -4*abs(a)-abs(2*a-c)-3*abs(2*a-3*c)+6*abs(a-c)]]

 

-1, 6, 2, 3

 

0

 

-1

 

-9

 

abs(x-6)+abs(2*x+3)-9-x = 0

 

 

 


 

Download Equation.mw

Yes, I can confirm that the legend option does not work (I checked in Maple 2018.2). In a sense, this is natural, because legend option is associated with the image of curves, rather than regions. Use  caption  instead, as in the example below:

plots:-inequal(x^2+y^2<=1, x = -1.2..1.2,y=-1.2..1.2, caption = typeset("A region of  ", x^2+y^2<=1, "."), captionfont=[times,bold,16], scaling=constrained);

                            

You can put this text anywhere on the screen. See  ?plot,typesetting


If you need to put legends for curves, you can do as below:

A:=plots:-inequal(x^2+y^2<=1, x = -1.2..1.2,y=-1.2..1.2, color=pink, title = typeset("A region of  ", x^2+y^2<=1, "."), titlefont=[times,bold,18], scaling=constrained):
B:=plots:-implicitplot(x^2+y^2=1, x = -1.2..1.2,y=-1.2..1.2, color=red, thickness=3, legend = typeset("A curve of  ", x^2+y^2=1, "."), legendstyle=[font=[times,14]]):
plots:-display(A,B); 

                    

 

 

Do a double loop: in the internal one place what you want to suppress, and in the external one everything else and end with a semicolon as in the example:

restart;
for i from 1 to 3 do
for j from 1 to 1 do    
    A := x;
 end;  
B:=C;
end;

 

It is better to always end a loop with the colon, and if you need to see something in the body of the loop as it is executed, then use  print  as in the example:

for i from 1 to 3 do    
    A := x:
   B := C;
print(%);
end:

 

 eq:=s=1+2*((tau-t)/T0); 
EQ:=int(f1(t-tau)*(Sum(y[k]*F[k](tau), k = 0 .. M)), tau = t-T0 .. t);
IntegrationTools:-Change(EQ, eq, s);

 

I do not understand what you are trying to do. Why not just write the following 2 lines and it will be beautiful:

restart;
eq := piecewise(t < 1, sin(t), cos(t));
DocumentTools:-Tabulate(<eq, plot(eq, discont)>, width=50):

                

 


 

L__lsubs := (8*z22l^2*(z22p^2)*(z12p^2)*((((1/4)*(r^2*m__r)+I__wsl+I__zsl)*(L^2)+(1/4)*(r^2*I__r))*(z12l^2)+L^2*eta__l*(z11l^2)*(I__zpl+I__wpl+I__zpkl))*acc_l+2*z22l^2*(z12l^2)*(r*(L^2*m__r+I__r)*acc_p+2*L^2*m__r*(-phi_dot*sin(aphi)*v_y+cos(aphi)*acc_y-phi_dot*cos(aphi)*v_x-sin(aphi)*acc_x))*(z22p^2)*r*(z12p^2))*(1/(8*z12l^2*(z22l^2)*(z12p^2)*(z22p^2)*(L^2)))+F__x[1]*r__m[1]*sin(alpha__m[1])*omega__m-F__y[1]*r__m[1]*cos(alpha__m[1])*omega__m+F__x[2]*r__m[2]*sin(alpha__m[2])*omega__m-F__y[2]*r__m[2]*cos(alpha__m[2])*omega__m+F__x[3]*r__m[3]*sin(alpha__m[3])*omega__m-F__y[3]*r__m[3]*cos(alpha__m[3])*omega__m+F__x[4]*r__m[4]*sin(alpha__m[4])*omega__m-F__y[4]*r__m[4]*cos(alpha__m[4])*omega__m+F__x[5]*r__m[5]*sin(alpha__m[5])*omega__m-F__y[5]*r__m[5]*cos(alpha__m[5])*omega__m+F__x[6]*r__m[6]*sin(alpha__m[6])*omega__m-F__y[6]*r__m[6]*cos(alpha__m[6])*omega__m+F__x[7]*r__m[7]*sin(alpha__m[7])*omega__m-F__y[7]*r__m[7]*cos(alpha__m[7])*omega__m+F__x[8]*r__m[8]*sin(alpha__m[8])*omega__m-F__y[8]*r__m[8]*cos(alpha__m[8])*omega__m+F__x[9]*r__m[9]*sin(alpha__m[9])*omega__m-F__y[9]*r__m[9]*cos(alpha__m[9])*omega__m+F__x[10]*r__m[10]*sin(alpha__m[10])*omega__m-F__y[10]*r__m[10]*cos(alpha__m[10])*omega__m+.5000000000*F__x[21]*r__m[21]*sin(alpha__m[21])*omega__m-.5000000000*F__y[21]*r__m[21]*cos(alpha__m[21])*omega__m-(-D__l*v_l+M__sl)*(z12l^2)*(z22l^2)*s_l*(1/z11l^2)*(1/z21l^2):

solve(L__lsubs, v_l):
algsubs(z12l^2*L^2*z11l^2*z21l^2=K, %):
collect(%,K):
V__kl := subs(K=z12l^2*L^2*z11l^2*z21l^2, %);

-.2500000000*(-2.*m__r*phi_dot*r*v_x*cos(aphi)-2.*m__r*phi_dot*r*v_y*sin(aphi)+1.*acc_l*m__r*r^2+1.*acc_p*m__r*r^2-2.*acc_x*m__r*r*sin(aphi)+2.*acc_y*m__r*r*cos(aphi)+4.*omega__m*F__x[1]*r__m[1]*sin(alpha__m[1])+4.*omega__m*F__x[2]*r__m[2]*sin(alpha__m[2])+4.*omega__m*F__x[3]*r__m[3]*sin(alpha__m[3])+4.*omega__m*F__x[4]*r__m[4]*sin(alpha__m[4])+4.*omega__m*F__x[5]*r__m[5]*sin(alpha__m[5])+4.*omega__m*F__x[6]*r__m[6]*sin(alpha__m[6])+4.*omega__m*F__x[7]*r__m[7]*sin(alpha__m[7])+4.*omega__m*F__x[8]*r__m[8]*sin(alpha__m[8])+4.*omega__m*F__x[9]*r__m[9]*sin(alpha__m[9])+4.*omega__m*F__x[10]*r__m[10]*sin(alpha__m[10])+2.*omega__m*F__x[21]*r__m[21]*sin(alpha__m[21])-4.*omega__m*F__y[1]*r__m[1]*cos(alpha__m[1])-4.*omega__m*F__y[2]*r__m[2]*cos(alpha__m[2])-4.*omega__m*F__y[3]*r__m[3]*cos(alpha__m[3])-4.*omega__m*F__y[4]*r__m[4]*cos(alpha__m[4])-4.*omega__m*F__y[5]*r__m[5]*cos(alpha__m[5])-4.*omega__m*F__y[6]*r__m[6]*cos(alpha__m[6])-4.*omega__m*F__y[7]*r__m[7]*cos(alpha__m[7])-4.*omega__m*F__y[8]*r__m[8]*cos(alpha__m[8])-4.*omega__m*F__y[9]*r__m[9]*cos(alpha__m[9])-4.*omega__m*F__y[10]*r__m[10]*cos(alpha__m[10])-2.*omega__m*F__y[21]*r__m[21]*cos(alpha__m[21])+4.*I__wsl*acc_l+4.*I__zsl*acc_l)*z11l^2*z21l^2/(D__l*s_l*z12l^2*z22l^2)-.2500000000*(-4.*L^2*M__sl*s_l*z12l^4*z22l^2+(4.*I__wpl*acc_l*eta__l+4.*I__zpkl*acc_l*eta__l+4.*I__zpl*acc_l*eta__l)*L^2*z11l^4*z21l^2+(I__r*acc_l*r^2+I__r*acc_p*r^2)*z11l^2*z12l^2*z21l^2)/(D__l*L^2*s_l*z12l^4*z22l^2)

(1)

 


 

Download simpl.mw

Here is a procedure for this:

restart;
MatrixPoly:=proc(nu,M)
local k, Poly, POL; 
for k while k <= M do
Poly[k] := simplify(sum(x^i*GAMMA(nu+1)/(factorial(i)*GAMMA(2*nu)), i = 0 .. k-1));
end do:
POL := <seq(Poly[k], k = 1 .. M)>;
Matrix(M,M, (i,j)->Poly[i]((j-1)/(M-1)));
end proc:

# Examples
MatrixPoly(1,3);
MatrixPoly(1,4);

 

Edit. Regarding the second problem, it seems I am guessing that you want to create a vector consisting of the values of some function if the argument runs from   to   through equal steps (total  M  points). If so then

Vec:=(a,b,f,M) -> <seq(f(a+(b-a)*k/(M-1)),k=0..M-1)>:

# Example
Vec(1,2,sin,10)

 

We can put quotes around function names and omit the square brackets. This will work a little faster:

plot3d('R_ep'(epsilon, t-n, n, 'qN_ep'(epsilon, t-n, n)), n = 1 .. t, epsilon = 10^(-8) .. 10^(-1));

 

I do not see any bugs in these calculations. Note that  symbolic option works with symbolic expressions. When working with numeric expressions, it is simply ignored. Compare

simplify((p^3)^(1/3),symbolic);
simplify(((-1)^3)^(1/3),symbolic);

                               p
                     1/2+I*sqrt(3)*(1/2)


The second calculation is also correct, as the default Maple works in the complex domain, and returns the principal value of the root (of three values). If you work in the real domain, then use the  surd  function instead of raising to the power 1/3:

surd(-1, 3);

                                 -1

Maple does not simplify the value for (-1)^(1/7)  (in contrast to (-1)^(1/3)), because it is not expressed in radicals, but can be calculated numerically:

simplify((-1)^(1/7));
evalf(%);

                                  (-1)^(1/7)
                    0.9009688678+0.4338837392*I


Maple can also convert   (-1)^(1/7)  to trigonometric form:

convert((-1)^(1/7), trig);
# Or
evalc((-1)^(1/7));

                            cos((1/7)*Pi)+I*sin((1/7)*Pi)
                            cos((1/7)*Pi)+I*sin((1/7)*Pi)

I is protected in Maple (it is the imaginary unit). I replaced I with J :

matrix_inversion_new.mw
 

First 70 71 72 73 74 75 76 Last Page 72 of 289