Kitonum

21475 Reputation

26 Badges

17 years, 49 days

MaplePrimes Activity


These are answers submitted by Kitonum

In 2d math mode that you use, the easiest way to calculate the determinant is to use two vertical bars, which you can enter from the keyboard:

restart;
u:=u0(x,y)+z*u1(x,y):
v:=v0(x,y)+z*v1(x,y):
A:=<a,b; c,d>;
B:=<diff(u,x), diff(v,y)>;
C:=A.B;

General approach in applying to your example:

restart; 
F := ((1/2)*a[2]-a[1]+(1/2)*a[0])*n^2+(-(1/2)*a[2]+2*a[1]-(3/2)*a[0])*n+a[0]; 
N := 3; 
var := [seq(a[n-1], n = 1 .. N)]; 
factor~([seq(op(k, foldl(collect, F, var[]))/var[N-k+1], k = 1 .. N)]);

This is a simple arithmetic:

480*1/(5+1+1/4);
                                      384/5

So the answer is $76.8

 

A:=<0,1,1,1,0,1; 1,0,0,0,1,1; 1,0,0,0,1,1; 1,0,0,0,1,1;0,1,1,1,0,1; 1,1,1,1,1,0>:
evalc(LinearAlgebra:-Eigenvalues(A));  
# Symbolic (exact) result
evalf(%);  # Approximate result
                             


 

L:=[[TC,DB], [], [TD,JK], [IW,CM], [], [KJ,DJ]];
remove(s->s=[], L);
 # or
remove(`=`, L, []);

The first equation is set incorrectly. See the corrected file  SimEquations_new.mw

First we inserted the row  R  into the matrix  A, and then inserted  the column  C  into the matrix  A1:

A:=LinearAlgebra:-RandomMatrix(6, generator=0..9);
R:=LinearAlgebra:-RandomVector[row](6, generator=0..9);
C:=LinearAlgebra:-RandomVector(7, generator=0..9);
A1:=<<A[..3], R>, A[4..]>;
A2:=<A1[..,..3] | C | A1 [..,4..]>;

 

Edit.

To plot space curves, I usually use  plots:-spacecurve  command, because it gives the best quality, and instead of transparency I select the appropriate  orientation:

restart;
PP:=0.8707945038*exp(-50.00000000*(m-.842e-1)^2+2.745342070*(m-.842e-1)*(a-2.3722)-.1046792095*(a-2.3722)^2):
A:=plots:-spacecurve([a, -0.2, eval(PP,m=-0.2)+0.005], a = -5 .. 8, color=red, thickness=4):
B:=plot3d(PP, a = -5 .. 8, m = -0.7 .. 0.7, style=surface, color=khaki, numpoints=5000):
C:=plot3d([a, -0.2, z], a = -5 .. 8, z = 0 .. 0.9, style=surface, color="LightBlue"):
plots:-display(A,B,C, orientation=[-30,70]);

             

Edit.

In this line  k = 10; Matrix([[time, harmonic], seq([t, evalf(S2)], t = 0 .. 1, 0.001)]);

of your code, the matrix is not calculated, because should be   k:=10  instead of  k=10

In further lines, if  k  will take different values, you must first execute  k:='k'

Under the summation sign write  'k'=any value

X:=<3,4,2,5>:  Y:=<5,3,0,1>:  Z:=<1,2,3,4>:
plots:-display(plot(Z,X, color=red), plot(Z,Y, color=blue));  
# or
plot(convert~([`[]`~(Z,X),`[]`~(Z,Y)],list));  # or 
plot(map(convert,[zip(`[]`,Z,X),zip(`[]`,Z,Y)],list));  # for older versions of Maple
 

restart:    
# a piecewise function    
p1:=piecewise(a(t)^2=0,<cos(a(t))^2+sin(a(t))^2,0>,<1,1/a(t)>):
evalindets(p1, Vector, p->diff~(p,t));

           

 

 

P:=[`TC,DB`, `PC,JL`, `TD,JK`, `IW,CM`, `CC,PG`, `KJ,DJ`];
map(`[]`, P);

You wrote  " v := x->% " equivalent to "v:=unapply(%,x)" . It is false. The main difference between these two ways of specifying a function is that when you write  f:=t->A  in the input line, Maple does nothing, by this simply a procedure is specified, which calculates something only when it is called.  f:=unapply(A, t)  also sets a procedure, but at the same time, at the time of its assignment, Maple calculates what is written in  A .

Compare:
t^2;
f:=t->%;
5;
f(2);

and

t^2;
g:=unapply(%, t);
5;
g(2);

 

First 147 148 149 150 151 152 153 Last Page 149 of 290