Kitonum

21475 Reputation

26 Badges

17 years, 49 days

MaplePrimes Activity


These are answers submitted by Kitonum

To calculate the values of the derivative at individual points use  unapply  command or  D  operator:

KK := unapply(diff(x^2, x), x);
KK(2);  
# or
D(x-> x^2)(2);

  

 

We just write the variable  s  as an index:

sys :=
  diff(x[s](t),t) = y[s](t),
  diff(y[s](t),t) + x[s](t) = 0;

ic := x[s](0) = a(s),
      y[s](0) = b(s);
dsolve({sys, ic});

 

restart:    
with(IntegrationTools):
M:=Int(lambda(s)*diff(u(s),s,s,s), s);
for n from 1 to 3 do
Parts(M, `if`(n=1, lambda(s), diff(lambda(s), s$(n-1))));  M:=%;
od:
M;

 

If you specify parameter values, then it is easy to find all the solutions numerically.

Example:

restart;
eq1 := (1/1152)*(81*a1*P^4*b^4*C1^3+162*a1*P^4*b^4*C1*C2^2+648*a1*P^4*b^4*C1*C3^2+432*a1*P^4*b^4*C1*C4^2+864*a1*P^4*b^4*C2*C3*C4+18*a2*P^4*a^2*b^2*C1^3+90*a2*P^4*a^2*b^2*C1*C2^2+90*a2*P^4*a^2*b^2*C1*C3^2+288*a2*P^4*a^2*b^2*C1*C4^2+81*a3*P^4*a^4*C1^3+648*a3*P^4*a^4*C1*C2^2+162*a3*P^4*a^4*C1*C3^2+432*a3*P^4*a^4*C1*C4^2+864*a3*P^4*a^4*C2*C3*C4+288*d1*P^4*b^4*C1+576*d2*P^4*a^2*b^2*C1+288*d3*P^4*a^4*C1+1152*d4*P^4*a^2*b^2*C1+4096*Tc*a^3*b^3*C4)/(b^3*a^3) = 0:

eq2 := (1/1152)*(162*a1*P^4*b^4*C1^2*C2+864*a1*P^4*b^4*C1*C3*C4+81*a1*P^4*b^4*C2^3+432*a1*P^4*b^4*C2*C3^2+648*a1*P^4*b^4*C2*C4^2+90*a2*P^4*a^2*b^2*C1^2*C2+72*a2*P^4*a^2*b^2*C2^3+612*a2*P^4*a^2*b^2*C2*C3^2+360*a2*P^4*a^2*b^2*C2*C4^2+648*a3*P^4*a^4*C1^2*C2+864*a3*P^4*a^4*C1*C3*C4+1296*a3*P^4*a^4*C2^3+432*a3*P^4*a^4*C2*C3^2+2592*a3*P^4*a^4*C2*C4^2+288*d1*P^4*b^4*C2+2304*d2*P^4*a^2*b^2*C2+4608*d3*P^4*a^4*C2+4608*d4*P^4*a^2*b^2*C2-4096*Tc*a^3*b^3*C3)/(b^3*a^3) = 0:

eq3 := (1/1152)*(648*a1*P^4*b^4*C1^2*C3+864*a1*P^4*b^4*C1*C2*C4+432*a1*P^4*b^4*C2^2*C3+1296*a1*P^4*b^4*C3^3+2592*a1*P^4*b^4*C3*C4^2+90*a2*P^4*a^2*b^2*C1^2*C3+612*a2*P^4*a^2*b^2*C2^2*C3+72*a2*P^4*a^2*b^2*C3^3+360*a2*P^4*a^2*b^2*C3*C4^2+162*a3*P^4*a^4*C1^2*C3+864*a3*P^4*a^4*C1*C2*C4+432*a3*P^4*a^4*C2^2*C3+81*a3*P^4*a^4*C3^3+648*a3*P^4*a^4*C3*C4^2+4608*d1*P^4*b^4*C3+2304*d2*P^4*a^2*b^2*C3+288*d3*P^4*a^4*C3+4608*d4*P^4*a^2*b^2*C3-4096*Tc*a^3*b^3*C2)/(b^3*a^3) = 0:

eq4 := (1/144)*(54*a1*P^4*b^4*C1^2*C4+108*a1*P^4*b^4*C1*C2*C3+81*a1*P^4*b^4*C2^2*C4+324*a1*P^4*b^4*C3^2*C4+162*a1*P^4*b^4*C4^3+36*a2*P^4*a^2*b^2*C1^2*C4+45*a2*P^4*a^2*b^2*C2^2*C4+45*a2*P^4*a^2*b^2*C3^2*C4+36*a2*P^4*a^2*b^2*C4^3+54*a3*P^4*a^4*C1^2*C4+108*a3*P^4*a^4*C1*C2*C3+324*a3*P^4*a^4*C2^2*C4+81*a3*P^4*a^4*C3^2*C4+162*a3*P^4*a^4*C4^3+576*d1*P^4*b^4*C4+1152*d2*P^4*a^2*b^2*C4+576*d3*P^4*a^4*C4+2304*d4*P^4*a^2*b^2*C4+512*Tc*a^3*b^3*C1)/(b^3*a^3) = 0:

S:=indets([eq1,eq2,eq3,eq4]) minus {C1,C2,C3,C4};  # The list of the parameters

assign(S=~{$1..nops(S)});  # Assigning numeric values to parameters

S;  # Values of the parameters

evalf([solve({eq1, eq2, eq3, eq4}, {C1, C2, C3, C4})]);  # All the numerical solutions


 

eval~(5*x, x=~[1,4,10] );

                                    [5, 20, 50]

 

Of course this is inferior in its capabilities to acer's method, but it is simpler:


 

restart;
plots:-display(plot(1/(x^2+1), x=-3..3, 0..1.3, color=red),plots[textplot]([2, 1, typeset("The plot of  ", y=1/(x^2+1)), font = [TIMES, BOLD, 16]], color=blue), scaling=constrained, size=[900,300]);

 


 

Download textplot.mw

solve~(5*x=~[5, 20, 50] );

                               [1, 4, 10]

restart;
m1 := Matrix([[1, 2], [3, 4]]);
m2 := Matrix([[5, 6], [7, 8]]);
'm1'.'m2' = m1.m2;
#  or
'm1'*'m2' = m1.m2;
# or
InertForm:-Parse("m1*m2"):
InertForm:-Typeset(%)=m1.m2;

Edit.

See:

l := t -> 0.5*tanh(0.5*t):
deq := diff(f(t), t)*l(t)*(diff(f(t), t, t)*l(t)+9.8*sin(f(t)))+diff(l(t), t)*(diff(f(t), t)^2*l(t)-9.8*cos(f(t))+4*(l(t)-0.5)) = 0:
eval(deq, t=0);
eval(%, f(0)=0);

                             -0.500 - 2.450 cos(f(0)) = 0
                                         -2.950 = 0

 


 

This is a well-known method. I made a cut for better visibility and chose the same scale on the axes:

f:=r->exp(-(r-3)^2*cos(4*(r-3)));
plot3d([r*cos(phi), r*sin(phi), f(r)], r=1..5, phi=Pi/3..2*Pi, scaling=constrained, axes=normal);

 

Above is the rotation around y-axis (y-xis pointing upwards).

 

Addition. Rotation around x-axis (with a cut):

restart;
f:=r->exp(-(r-3)^2*cos(4*(r-3)));
plot3d([r,f(r)*cos(phi),f(r)*sin(phi)], r=1..5, phi=Pi/2..2*Pi, style=surface, scaling=constrained, axes=normal);

 

Animation the rotation around x-axis:

restart;
f:=r->exp(-(r-3)^2*cos(4*(r-3)));
plots:-animate(plot3d,[[r,f(r)*cos(phi),f(r)*sin(phi)], r=1..5,phi=0..a, scaling=constrained, axes=normal], a=0..2*Pi, frames=90);

rotations.mw

You use the same name  B  to create different objects. List B is not used at all in the code.

Corrected code:

restart;
interface(rtablesize=50);
E:=[E1,E2,E3]:
P:=[0,1,2]:
N:=3:
for b from 1 to 12 by 5 do
F:=(i,j)->
if i=b+P[a] and j=b+P[a] then E[a]
elif i=b+P[a] and j=b+N+2+P[a] then -E[a]
elif i=b+P[a]+N+2 and j=b+P[a] then -E[a]
elif i=b+P[a]+N+2 and j=b+P[a]+N+2 then E[a]
else 0:
end if:
B[b]:=add(i,i=[seq(Matrix(20,F), a=1..3)]);
end do;
H:=[seq(B[b],b=1..12,5)];

Use  seq  command for this:

v := Vector[row]([seq(4*n, n = 1 .. 6)]);

The code will be quite simple if you do not draw a vertical line. It is also easy to depict the curve and the region in different colors:

plots:-display(
   plot(1/ra, x= 0..0.5, 0..10, color=yellow, filled),
   plot(1/ra, x= 0..1, 0..10, color=blue, thickness=2));

 

I think it will be easier to immediately specify  F  as a function:

F:=(x,y)->f(x)+g(y);
F(x,x);

First 157 158 159 160 161 162 163 Last Page 159 of 290