Kitonum

21670 Reputation

26 Badges

17 years, 184 days

MaplePrimes Activity


These are answers submitted by Kitonum

Unfortunately, Maple doesn't think to simplify the sum of the first and third terms after the simplification, but we can tell him to do so:

restart;
Expr:=G1*P3 + G1*P5 + G1*P6 + G2*P3 + G2*P6 + G3*P2 + G3*P5 + G4*P2 + G4*P3 + G4*P5 + G4*P6 + G5*P2 + G5*P3 + G5*P5 + G5*P6 + G6*P3 + G6*P6 + G7*P2 + G7*P5 + G8*P2 + G8*P3 + G8*P5 + G8*P6;
Expr1:=simplify(Expr);
L:=[op(Expr1)]:
t:=op(1,L)+op(3,L):
factor(t)+simplify(Expr-t); # The final result

G1*P3+G1*P5+G1*P6+G2*P3+G2*P6+G3*P2+G3*P5+G4*P2+G4*P3+G4*P5+G4*P6+G5*P2+G5*P3+G5*P5+G5*P6+G6*P3+G6*P6+G7*P2+G7*P5+G8*P2+G8*P3+G8*P5+G8*P6

 

(G1+G2+G4+G5+G6+G8)*P3+(G1+G3+G4+G5+G7+G8)*P5+(G1+G2+G4+G5+G6+G8)*P6+P2*(G3+G4+G5+G7+G8)

 

(G1+G2+G4+G5+G6+G8)*(P3+P6)+(G1+G3+G4+G5+G7+G8)*P5+P2*(G3+G4+G5+G7+G8)

(1)

 

Download simplification.mw

If we want the number  n  to match the number of petals, then

restart;
Rose:= (n::integer)-> plots:-polarplot(`if`(n::even,sin(n/2*t),sin(n*t)), filled, color= `if`(n::odd, pink, aquamarine)):

Rose(4);  Rose(3); # Examples

 

@mylikes  You didn't specify your version of Maple. It's probably a pretty old version if your code doesn't work. Try the two options below. The first option is the standard way to calculate the double integral. If it doesn't work, then try the second option, which reduces the double integral to a repeated one:
 

restart;
r:=-36*u^3*v*(-1 + u + v)*(3*u^2 + u*v - 5*u - 2*v + 2)/(-1 + u)^2;
int(r, [u=0..1-v, v=0..1]); # The first option
int(int(r, u=0..1-v), v=0..1);  # The second option

 

Examples:

ilog10(10110)+1;
ilog10(111010110)+1;

                                                        5
                                                        9

restart;
de := plot3d(y*sin(x), x = 0 .. 2*Pi, y = -2 .. 2):
plottools:-getdata(de);

 

restart;
ell:=(9/4)*X^2+9*Y^2=1;
a:=sqrt(1/coeff(lhs(ell),X^2));
b:=sqrt(1/coeff(lhs(ell),Y^2));
max(2*a,2*b); # Major axis
min(2*a,2*b); # Minor axis

                       

 

 

 

restart;
z1:=2+3*I:
z2:=I:
op(z1);
op(z2);

                                                                         2, 3
                                                                          1

A reliable way to iterate over the sum of multiple terms is to simply make those terms elements of a list.

restart:
with(plottools): with(plots):
u:=[2,2]: v:=[2,-1]:
G1:=seq(line(-5*u+t*v,5*u+t*v,linestyle=2), t=-5..5):
G2:=seq(line(s*u-5*v,s*u+5*v,linestyle=2), s=-5..5):
U:=arrow(u, color=red, width=0.2):
V:=arrow(v, color=red, width=0.2):
plots:-display(U,V,G1,G2, size=[700,700], scaling=constrained, axes=none);
    

We have to use the  parametric  option:

restart;
solve({-x1+2*x2+(2-p)*x3=0,(2-p)*x2+x3=2, (1-p)*x1+2*x2+2*x3=p+3}, {x1,x2,x3}, parametric=true):
value(%);

   

Your syntax is correct and works successfully, but the following small improvements can be made:

1. The inequality  y>-1  can be omitted, since your region is itself above the line  y=-1 .
2. The  optionsexcluded = (color = white)  option can also be omitted, as it is done by default.
3. I equalized the ranges along the axes and shortened them a bit. With equal ranges, all shapes are unchanged and the  scaling=constrained  option is not required.

restart: with(plots):
inequal({y >= x^2+1, (x-1)^2+(y-1)^2 <= 16}, x = -3.5 .. 5.5, y = -3.5 .. 5.5, optionsfeasible = (color = grey));

       

Use the  factor  command for this:

factor(f);

                    A*sin(x)*theta(x)*(-m*omega^2+k)

By default, Maple calculates with 10 significant digits. Therefore, for a sufficiently large   of float type, we get ln(x+1) - ln(x) = 0. . If we increase the accuracy of the calculations, then the error disappears:

restart;
f := x->4*x*(ln(x+1)-ln(x)):
Digits := 50: 
evalf[10]~([seq(f(10.^n), n = 1 .. 10)]);

  [3.812407192, 3.980132341, 3.998001332, 3.999800013, 3.999980000, 3.999998000, 3.999999800, 3.999999980, 3.999999998, 4.000000000]

We can simply calculate this determinant and, equating it to  , we get a 4th degree equation for  w  with 2 parameters  d  and  k . Giving some values to these parameters, we find all values of  w . In the example below we find the real  d=2, k=1, w=sqrt(3)/3  for which  the determinant  is  0 :


 

restart;

with(LinearAlgebra):

A := Matrix([[k*w-1/sqrt(3), 0, 4*sqrt(2/3)+3*sqrt(2)*w*d, 4*sqrt(2/3)-3*sqrt(2)*w*d], [0, k*w-1/sqrt(3), 4*sqrt(2/3)+3*sqrt(2)*w*d, 4*sqrt(2/3)-3*sqrt(2)*w*d], [(1/2)*w*d+sqrt(2/3), 0, k*w+k*d/sqrt(3)-w*d-I*w*d-1/sqrt(3), I*w*d-1/sqrt(3)], [0, -(1/2)*w*d+sqrt(2/3), -I*w*d-1/sqrt(3), k*w-k*d/sqrt(3)+w*d+I*w*d-1/sqrt(3)]]);

Matrix(4, 4, {(1, 1) = k*w-(1/3)*sqrt(3), (1, 2) = 0, (1, 3) = (4/3)*sqrt(6)+3*sqrt(2)*w*d, (1, 4) = (4/3)*sqrt(6)-3*sqrt(2)*w*d, (2, 1) = 0, (2, 2) = k*w-(1/3)*sqrt(3), (2, 3) = (4/3)*sqrt(6)+3*sqrt(2)*w*d, (2, 4) = (4/3)*sqrt(6)-3*sqrt(2)*w*d, (3, 1) = (1/2)*w*d+(1/3)*sqrt(6), (3, 2) = 0, (3, 3) = k*w+(1/3)*k*d*sqrt(3)-w*d-I*w*d-(1/3)*sqrt(3), (3, 4) = I*w*d-(1/3)*sqrt(3), (4, 1) = 0, (4, 2) = -(1/2)*w*d+(1/3)*sqrt(6), (4, 3) = -I*w*d-(1/3)*sqrt(3), (4, 4) = k*w-(1/3)*k*d*sqrt(3)+w*d+I*w*d-(1/3)*sqrt(3)})

(1)

B:=Determinant(A);
Eq:=eval(B,[d=2,k=1]);
solve(Eq);
eval(B,[d=2,k=1,w=sqrt(3)/3]); # Check

(2/3)*k^2*w^2*6^(1/2)*2^(1/2)*d^2*3^(1/2)-((4/3)*I)*k^2*w^2*d^2-3*k^2*w^4*d^2*2^(1/2)+(2/3)*k^3*w^3*d^2*3^(1/2)+(2/9)*k^3*w*d^2*3^(1/2)-(4/3)*k*w^3*d^2*6^(1/2)+(2/3)*k*w^3*3^(1/2)*d^2+(4/9)*3^(1/2)*w^2*d^2*6^(1/2)+(2/9)*k*d^2*3^(1/2)*w-(4/9)*w*d^2*6^(1/2)*k-(2*I)*k^2*w^4*d^2+k^4*w^4-(1/9)*k^2*d^2-(11/3)*k^2*w^2-(1/3)*w^2*d^2-(2/3)*6^(1/2)*2^(1/2)*w*d^2*k-2*k*w^3*6^(1/2)*2^(1/2)*d^2+3*k*w^3*d^2*2^(1/2)*3^(1/2)+(4/9)*k^2*w^2*d^2*6^(1/2)*3^(1/2)+(2/3)*3^(1/2)*6^(1/2)*2^(1/2)*w^2*d^2+((2/9)*I)*k*d^2*3^(1/2)*w+((4/3)*I)*k*w^3*3^(1/2)*d^2-((8/3)*I)*k*w^3*d^2*6^(1/2)+((2/3)*I)*k^3*w^3*d^2*3^(1/2)+((8/9)*I)*3^(1/2)*w^2*d^2*6^(1/2)+(14/9)*3^(1/2)*k*w-(4/3)*k^3*w^3*3^(1/2)-((2/3)*I)*w^2*d^2-2*2^(1/2)*w^2*d^2-(4/3)*k^2*w^2*d^2-(1/3)*k^4*w^2*d^2-k^2*w^4*d^2

 

-4/9+(32/9)*3^(1/2)*w^2*6^(1/2)-(8*I)*w^4+(8*I)*w^3*3^(1/2)-((32/3)*I)*w^3*6^(1/2)+((32/9)*I)*3^(1/2)*w^2*6^(1/2)-8*w^3*6^(1/2)*2^(1/2)-12*w^4*2^(1/2)+4*w^3*3^(1/2)+(10/3)*w*3^(1/2)-(16/3)*w^3*6^(1/2)-(16/9)*w*6^(1/2)+12*w^3*2^(1/2)*3^(1/2)-(8/3)*6^(1/2)*2^(1/2)*w-(8*I)*w^2+((8/9)*I)*3^(1/2)*w-8*2^(1/2)*w^2-3*w^4+(16/3)*3^(1/2)*6^(1/2)*2^(1/2)*w^2-(35/3)*w^2

 

(1/15533733556225593)*(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)-15533733556225593*((-180775148479/388495499643+(111022067624/388495499643)*I)+(50106305920/388495499643)*2^(1/2)-((71540531744/388495499643)*I)*2^(1/2))/(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+((40928/1079577)*I)*3^(1/2)*2^(1/2)+(174083/1079577)*3^(1/2)-(267316/1079577)*3^(1/2)*2^(1/2)-((50632/359859)*I)*3^(1/2), -(1/31067467112451186)*(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+(15533733556225593/2)*((-180775148479/388495499643+(111022067624/388495499643)*I)+(50106305920/388495499643)*2^(1/2)-((71540531744/388495499643)*I)*2^(1/2))/(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+((40928/1079577)*I)*3^(1/2)*2^(1/2)+(174083/1079577)*3^(1/2)-(267316/1079577)*3^(1/2)*2^(1/2)-((50632/359859)*I)*3^(1/2)+((1/2)*I)*3^(1/2)*((1/15533733556225593)*(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+15533733556225593*((-180775148479/388495499643+(111022067624/388495499643)*I)+(50106305920/388495499643)*2^(1/2)-((71540531744/388495499643)*I)*2^(1/2))/(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)), -(1/31067467112451186)*(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+(15533733556225593/2)*((-180775148479/388495499643+(111022067624/388495499643)*I)+(50106305920/388495499643)*2^(1/2)-((71540531744/388495499643)*I)*2^(1/2))/(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+((40928/1079577)*I)*3^(1/2)*2^(1/2)+(174083/1079577)*3^(1/2)-(267316/1079577)*3^(1/2)*2^(1/2)-((50632/359859)*I)*3^(1/2)-((1/2)*I)*3^(1/2)*((1/15533733556225593)*(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)+15533733556225593*((-180775148479/388495499643+(111022067624/388495499643)*I)+(50106305920/388495499643)*2^(1/2)-((71540531744/388495499643)*I)*2^(1/2))/(265611425454935876316467597144620549893660289104*3^(1/2)-(782587540494658069900310508971611944375274105332*I)*3^(1/2)-373958946518800334108935688358258767448051176244*3^(1/2)*2^(1/2)+(498726741960108955283603614246046968199121550272*I)*3^(1/2)*2^(1/2)+9648094810073959321974105771237467499*(-(262494030946006112448*I)*2^(1/2)+(-2910182786878860486173+2598854356561503484904*I)+1142251446558238597120*2^(1/2))^(1/2))^(1/3)), (1/3)*3^(1/2)

 

0

(2)

``

``


 

Download det_new.mw

restart;
with(Student[Calculus1]):
soln := Roots(y-0.4646295e-3*tanh(y)+0.1839145082e-2*tanh(y)/(0.6000000000e-3*y^2-0.1840000000e-2), y);
map(t->t*I, soln);
First 18 19 20 21 22 23 24 Last Page 20 of 291