MOD

10 Reputation

One Badge

10 years, 173 days

MaplePrimes Activity


These are replies submitted by MOD

@Kitonum 

I think that I didn't put it right.

In the attached code, I solve each equation and get two roots. Then, I select (i.e. the code doesn't do it) the first one {ss1[1],ss2[1],ss3[1],ss4[1]} . How can I make the code to give me the positive root only?

After this, the code plots the function shown there. How can I ouline with, say a black color, the intersection area and then, shade it too?

Also, I have a more general question, How can I select the minimum function in some range? For example, if I have the two function {sin(t), 0.5*sin(t)} in the interval [0,Pi], then clearly the minumum one is {0.5*sin(t)}. How can I tell MAPLE to give me that function?

``

restart: with(linalg):

eq1:=1.6*10^(-7)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)-1.6*10^(-14)*R^2*cos(t)^2+4.2*10^(-14)*R^2-1.3+2.1*10^(-9)*R*cos(t)=0:

eq2 :=8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.9*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t)=0:

eq3 :=8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.2*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t)=0:

eq4 :=2.1*10^(-9)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)+1.6*10^(-14)*R^2*cos(t)^2+2.6*10^(-14)*R^2-1.3+1.6*10^(-7)*R*cos(t)=0:

 

ss1:=[solve(eq1,R)]:

p1:=plot([ss1[1]*cos(t),ss1[1]*sin(t),t=0..2*Pi],legend="0 deg",color="blue"):

ss2:=[solve(eq2,R)]:

p2:=plot([ss2[1]*cos(t),ss2[1]*sin(t),t=0..2*Pi],legend="45 deg",color="magenta"):

ss3:=[solve(eq3,R)]:

p3:=plot([ss3[1]*cos(t),ss3[1]*sin(t),t=0..2*Pi],legend="-45 deg",color="Coral"):

ss4:=[solve(eq4,R)]:

p4:=plot([ss4[1]*cos(t),ss4[1]*sin(t),t=0..2*Pi],legend="90 deg",color="green"):

plots[display]([p1,p2,p3,p4]);

 

 

``

 

Download clari.mw

Page 1 of 1