Marvin Ray Burns

 I've been using Maple since 1997 or so.

MaplePrimes Activity


These are Posts that have been published by Marvin Ray Burns

 

with(numtheory):

f := proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = x .. infinity) end proc

proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = x .. infinity) end proc

(1)

What are the quotients  ot the  continued fration of the sum of f(1)+f(2)+f(3)+f(4)+...

Here are the  quotients  of some partial sums.

``

cfrac(evalf(sum(f(x), x = 1 .. 2)), 'quotients')

[0, 2, 1, 1, 1, 21, 10, 4, 1, 4, 8, `...`]

(2)

cfrac(evalf(sum(f(x), x = 1 .. 3)), 'quotients')

[0, 6, 1, 2, 3, 1, 1, 2, 3, 3, 24, `...`]

(3)

cfrac(evalf(sum(f(x), x = 1 .. 4)), 'quotients')

[0, 2, 1, 2, 1, 4, 2, 1, 3, 1, 1, `...`]

(4)

cfrac(evalf(sum(f(x), x = 1 .. 5)), 'quotients')

[0, 5, 1, 99, 1, 1, 1, 6, 1, 3, 1, `...`]

(5)

cfrac(evalf(sum(f(x), x = 1 .. 6)), 'quotients')

[0, 2, 1, 6, 1, 2, 1, 2, 2, 1, 1, `...`]

(6)

cfrac(evalf(sum(f(x), x = 1 .. 7)), 'quotients')

[0, 5, 1, 1, 142, 1, 1, 1, 1, 19, 1, `...`]

(7)

cfrac(evalf(sum(f(x), x = 1 .. 8)), 'quotients')

[0, 2, 1, 47, 1, 1, 1, 1, 27, 4, 1, `...`]

(8)

cfrac(evalf(sum(f(x), x = 1 .. 9)), 'quotients')

[0, 5, 5, 3, 1, 7, 1, 1, 1, 2, 1, `...`]

(9)

cfrac(evalf(sum(f(x), x = 1 .. 100)), 'quotients')

[0, 3, 1, 1, 1, 11, 2, 2, 1, 1, 4, `...`]

(10)

cfrac(evalf(sum(f(x), x = 1 .. 200)), 'quotients')

[0, 3, 1, 2, 1, 1, 1, 11, 3, 4, 6, `...`]

(11)

cfrac(evalf(sum(f(x), x = 1 .. 400)), 'quotients')

[0, 3, 1, 3, 3, 3, 1, 18, 1, 2, 1, `...`]

(12)

cfrac(evalf(sum(f(x), x = 1 .. 800)), 'quotients')

[0, 3, 1, 3, 1, 4, 16, 14, 3, 23, 2, `...`]

(13)

cfrac(evalf(sum(f(x), x = 1 .. 1600)), 'quotients')

[0, 3, 1, 4, 7, 4, 436, 1, 1, 1, 2, `...`]

(14)

``

Here are the quotients of the  continued fration  of the sum. 

cfrac(evalf(sum(f(x), x = 1 .. infinity)), 'quotients')

[0, 3, 1, 4, 1, 1, 1, 1, 1, 9, 1, `...`]

(15)

With the exception of the leading 0, that is close to the integer squence of pi.

``evalf((65241/65251)*Pi)

3.141111191

(16)

The exponents of 2 that sum the numerator and denominator, in the following way, of that multiple of pi give rise to the integer sequences {0,1,2,3,8,16},numbers such that floor[a(n)^2 / 7] is a square, and {0,2,3,4,8,16},{0,3} union powers of 2.

evalf((2^16-2^8-2^5-2^2-2-2^0)*Pi/(2^16-2^8-2^4-2^3-2^2-2^0))

3.141111191

(17)

We can do the same thing for the first 20 quotients giving rise to the integer sequences {0,1,2,5,6,8,10,13,17,19,22,23,24,28,31} and {0,4,6,9,12, 14,15,16,18,22, 23,24,28,31}. What can be said of these sequences?

cfrac(evalf(sum(f(x), x = 1 .. infinity), 20), 20, 'quotients')``

[0, 3, 1, 4, 1, 1, 1, 1, 1, 9, 1, 3, 1, 2, 1, 1, 1, 5, 1, 3, 11, `...`]

(18)

evalf((1849023129/1849306543)*Pi, 20)

3.1411111913121115131

(19)

````

evalf((2^31-2^28-2^24-2^23-2^22-2^19-2^17-2^13-2^10-2^8-2^6-2^5-2^2-2-2^0)*Pi/(2^31-2^28-2^24-2^23-2^22-2^18-2^16-2^15-2^14-2^12-2^9-2^6-2^4-2^0), 20)

3.1411111913121115131

(20)

``


 

The*MRB*constant = sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity) and sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity) = sum((-1)^n*(n^(1/n)-1), n = 2 .. infinity)

But what can we say about

 (∏)(-1)^(n)*(n^(1/(n))-1)?

``

``

Maple does not evaluate it:

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. infinity))

product: Cannot show that (-1)^n*(n^(1/n)-1) has no zeros on [2,infinity] product((-1)^n*(n^(1/n)-1), n = 2 .. infinity)

(1)

And perhaps it should not because of the alternating sign;

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. 10^2))

-0.3908773173e-101

(2)

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. 10^3))

-0.7676360791e-1799

(3)

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. 10^3+1))

0.5316437097e-1801

(4)

``

 

Download 3232012.mw

If you use all the convergents of the simple continued fraction of the MRB constant as the terms of a generalized continued fraction, then likewise use the new convergents in another generalized continued fraction, and so on... you arrive at 0.5557531....  For more on this process see https://oeis.org/wiki/Convergents_constant .


Let c=MRB constant -1/2

 

 

 

``

restart; Digits := 64

``

 

````Define s as the following function involving a divergent series.

s := proc (x) options operator, arrow; sum((-1)^n*n^(1/n), n = 1 .. x) end proc

proc (x) options operator, arrow; sum((-1)^n*n^(1/n), n = 1 .. x) end proc

(1)

``

``

 

 

``The upper limit point of the partial sums, of s is very slowly convergent.

evalf(s(100))

.211329543346941069485035868216520490712148674852018130412747187

(2)

evalf(s(1000))

.191323989712141370638688981469071803275457219110707245455878532

(3)

evalf(s(10000))

.188320351076950504638897789942367214051161086517598649780487746

(4)

 

``

Let mrb be tthe upper limit point of s as x goes to infinity.

``

mrb := evalf(sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity))

.1878596424620671202485179340542732300559030949001387861720046841

(5)

``

``

``

 

Define f as the following function involving the divergnet series sum((-1)^n*(n^(a/n)-a), n = 1 .. infinity).NULL

``

``

f := proc (a) options operator, arrow; sum((-1)^n*(n^(a/n)-a), n = 1 .. infinity) end proc

proc (a) options operator, arrow; sum((-1)^n*(n^(a/n)-a), n = 1 .. infinity) end proc

(6)

``

``

 

 

``Let c be the value for a in the neighborhood of 26 such that f(a)=mrb.

c := fsolve(eval(f(x)) = mrb, x = 26)

25.71864739101744668471488151161460875040712539231550975094037406

(7)

``

``

 

``The average of the upper and lower limit points of the partil sums of f converges much faster than the  upper limit point of the partial sums of s.

evalf((sum((-1)^n*(n^(c/n)-c), n = 1 .. 100)+sum((-1)^n*(n^(c/n)-c), n = 1 .. 101))*(1/2))

.195238896203546569611605945649919224928195587923897718988014700

(8)

evalf((sum((-1)^n*(n^(c/n)-c), n = 1 .. 1000)+sum((-1)^n*(n^(c/n)-c), n = 1 .. 1001))*(1/2))

.187904922391719396683391551158554482265830937732923110694243700

(9)

evalf((sum((-1)^n*(n^(c/n)-c), n = 1 .. 10000)+sum((-1)^n*(n^(c/n)-c), n = 1 .. 10001))*(1/2))

.187860182910509428926222275077446745338505139578191116998518780

(10)

 

Download Jan72012.mw

3 4 5 6 7 8 9 Last Page 5 of 14