MrMarc

3163 Reputation

18 Badges

17 years, 137 days

MaplePrimes Activity


These are replies submitted by MrMarc

Insert a slider called slider0 and a plot window called Plot0. Both are embedded components and are located
in the meny to the left. Right click on the slider and select "component properties" and click on
"Action When Values Changes" then past the following in there:

with(DocumentTools):
X := proc (c) plot(sin(c*x), x = 0 .. 10) end proc:
Do(%Plot0 = X(%Slider0)):

click ok and before you click ok the second time adjust the "Value at Lowest position",
"Value at Highest position", "Show Axis Labels", "Snap to Axis Tick Marks" etc etc . You are all done :-)
 

all right thanx PatrickT :-)

all right thanx PatrickT :-)

ok, thanks for explaining that ....humm that is interesting. Why does it have a form :   y = y0 + m*(x - x0).

ok, thanks for explaining that ....humm that is interesting. Why does it have a form :   y = y0 + m*(x - x0).

thanx Robert :-) That worked great ! 

thanx Robert :-) That worked great ! 


seq(printf("%20a  %10a  %10a  %10a  %10a  %10a  \n", i, i^2, i^3, i^4, i^5, rt[i]), i = 1 .. 10);

                   1           1           1           1           1       rt[1]  
                   2           4           8          16          32       rt[2]  
                   3           9          27          81         243       rt[3]  
                   4          16          64         256        1024       rt[4]  
                   5          25         125         625        3125       rt[5]  
                   6          36         216        1296        7776       rt[6]  
                   7          49         343        2401       16807       rt[7]  
                   8          64         512        4096       32768       rt[8]  
                   9          81         729        6561       59049       rt[9]  
                   10        100        1000       10000      100000      rt[10]  


seq(printf("%20a  %10a  %10a  %10a  %10a  %10a  \n", i, i^2, i^3, i^4, i^5, rt[i]), i = 1 .. 10);

                   1           1           1           1           1       rt[1]  
                   2           4           8          16          32       rt[2]  
                   3           9          27          81         243       rt[3]  
                   4          16          64         256        1024       rt[4]  
                   5          25         125         625        3125       rt[5]  
                   6          36         216        1296        7776       rt[6]  
                   7          49         343        2401       16807       rt[7]  
                   8          64         512        4096       32768       rt[8]  
                   9          81         729        6561       59049       rt[9]  
                   10        100        1000       10000      100000      rt[10]  

Good news I think managed to solve it :-)  

We know that the equilibrium is happening (as seen in the first chart above) when

((w-mw)/mw)^lambda = w*(diff(e, w));
 

where w is the wage rate, mw is the minimum wage and lambda some parameter. I use a little bit different notation here

but it should be comparatively easy to follow along.  Now the corresponding profit function is given by


TR := (2*(-mw/(lambda-1)))*w-w^2+w*L;

TC := w*L:

profit := TR-TC;

                                       2 mw w      2
                         profit := - ---------- - w
                                     lambda - 1    


Such profit function maps the relationship between max profit ( ie the chart looks more or less like the second chart above)

and the first chart. This relationhip also holds for different values of lambda and minimum wage.

One drawback is that TR striktly speaking should be a function of the effort function ((w-mw)/mw)^lambda

however I dont have the energy to find such a function ie F [ ((w-mw)/mw)^lambda ] =  (2*(-mw/(lambda-1)))*w-w^2+w*L  

where F [ ] is a unknown function. The mechanics works with the above TR function so I am happy with that :-)

 

Good news I think managed to solve it :-)  

We know that the equilibrium is happening (as seen in the first chart above) when

((w-mw)/mw)^lambda = w*(diff(e, w));
 

where w is the wage rate, mw is the minimum wage and lambda some parameter. I use a little bit different notation here

but it should be comparatively easy to follow along.  Now the corresponding profit function is given by


TR := (2*(-mw/(lambda-1)))*w-w^2+w*L;

TC := w*L:

profit := TR-TC;

                                       2 mw w      2
                         profit := - ---------- - w
                                     lambda - 1    


Such profit function maps the relationship between max profit ( ie the chart looks more or less like the second chart above)

and the first chart. This relationhip also holds for different values of lambda and minimum wage.

One drawback is that TR striktly speaking should be a function of the effort function ((w-mw)/mw)^lambda

however I dont have the energy to find such a function ie F [ ((w-mw)/mw)^lambda ] =  (2*(-mw/(lambda-1)))*w-w^2+w*L  

where F [ ] is a unknown function. The mechanics works with the above TR function so I am happy with that :-)

 

In economics everything is usable ie you can show what ever you want. Draw some lines and charts and let the bullshit begin. Thats why economics in many ways is a psudoscience. Economics is all about mathematical techniques such as constrained optimization, optimal control, dynamic programming etc. Remove the mathematics and you have an empty shell left. It is more or less the only science that has a inductive approach which in many ways are not very scientific.

In economics everything is usable ie you can show what ever you want. Draw some lines and charts and let the bullshit begin. Thats why economics in many ways is a psudoscience. Economics is all about mathematical techniques such as constrained optimization, optimal control, dynamic programming etc. Remove the mathematics and you have an empty shell left. It is more or less the only science that has a inductive approach which in many ways are not very scientific.

First 24 25 26 27 28 29 30 Page 26 of 33