Umbra

5 Reputation

One Badge

8 years, 112 days

MaplePrimes Activity


These are replies submitted by Umbra

@John Fredsted Works like a champ! Thank you sir, I'm extremely grateful.

@John Fredsted Physics package is really helpful for a four-dimensional metric. But I'd like to work on a five-dimensional metric. I tried to setup a 5D coordinate system.

But it didn't work.

"Error, (in Physics:-Setup) expected a list with 4 names, where 4 is the spacetime dimension, or one of the keywords cartesian, spherical, cylindrical; received: [t, r, theta, phi, y]"

So I'm using the  GRTensor II package.

 

@gkokovidis Thank you Georgios for your reply. I'm using GRTensor II package to calculate the scalar quantity R^{MNQL}R_{MNQL}. I'm attaching the worksheet if it might help. simplify(%) just gives me the same quantity.Shwarzchild_mteric.mw
 

libname := libname, "d:\\MapleStuff\\grtensor\\lib";

"D:\Program Files\Maple 18\lib", ".", "d:\MapleStuff\grtensor\lib"

 

"GRTensor III v2.0.1 Feb 10, 2017"

 

"Copyright 2017, Peter Musgrave, Denis Pollney, Kayll Lake"

 

"Latest version is at http://github.com/grtensor/grtensor"

 

"For help ?grtensor"

 

[Asym, KillingCoords, PetrovReport, Sym, autoAlias, difftool, grDalias, gralter, grapply, grarray, grcalc, grcalc1, grcalcalter, grcalcd, grclear, grcomponent, grconstraint, grdata, grdebug, grdef, grdisplay, grdump, greqn2set, grinit, grload, grmap, grmetric, grnewmetric, grnormalize, groptions, grsaveg, grtestinput, grtransform, grundef, hypersurf, join, kdelta, makeg, nprotate, nptetrad, qload]

 

"d:\MapleStuff\grtensor\metrics"

 

"d:\MapleStuff\grtensor\metrics"

(1)

qload(Scwarzchild)

Calculated ds for Scwarzchild (0.000000 sec.)

 

`Default spacetime` = Scwarzchild

 

`For the Scwarzchild spacetime:`

 

Coordinates

 

"x[Typesetting:-mi("up",italic = "true",mathvariant = "italic")]"

 

`x `^a = (array( 1 .. 4, [( 1 ) = (t), ( 2 ) = (r), ( 3 ) = (theta), ( 4 ) = (phi)  ] ))

 

`Line element`

 

` ds`^2 = (-1+2*G*M/r)*` d`*t^`2 `+` d`*r^`2 `/(1-2*G*M/r)+r^2*` d`*theta^`2 `+r^2*sin(theta)^2*` d`*phi^`2 `

(2)

grcalc(R(dn, dn, dn, dn), R(up, up, up, up), Ricciscalar);

Created definition for R(up,up,up,up)

Calculated g(dn,dn,pdn) for Scwarzchild (0.000000 sec.)
Calculated Chr(dn,dn,dn) for Scwarzchild (0.000000 sec.)
Calculated detg for Scwarzchild (0.000000 sec.)
Calculated g(up,up) for Scwarzchild (0.016000 sec.)
Calculated R(dn,dn,dn,dn) for Scwarzchild (0.016000 sec.)
Calculated R(up,up,dn,dn) for Scwarzchild (0.000000 sec.)
Calculated R(up,up,up,up) for Scwarzchild (0.078000 sec.)
Calculated Chr(dn,dn,up) for Scwarzchild (0.015000 sec.)
Calculated R(dn,dn) for Scwarzchild (0.000000 sec.)
Calculated Ricciscalar for Scwarzchild (0.000000 sec.)

 

`CPU Time ` = .234

(3)

grdisplay(_);

`For the Scwarzchild spacetime:`

 

`Covariant Riemann`

 

`R `[t]*``[r]*` `[t]*`  `[r] = -2*G*M/r^3

 

`R `[t]*``[theta]*` `[t]*`  `[theta] = -(2*G*M-r)*G*M/r^2

 

`R `[t]*``[phi]*` `[t]*`  `[phi] = -(2*G*M-r)*G*M*sin(theta)^2/r^2

 

`R `[r]*``[theta]*` `[r]*`  `[theta] = G*M/(2*G*M-r)

 

`R `[r]*``[phi]*` `[r]*`  `[phi] = G*M*sin(theta)^2/(2*G*M-r)

 

`R `[theta]*``[phi]*` `[theta]*`  `[phi] = 2*G*M*sin(theta)^2*r

 

`R(up,up,up,up)`

 

`R `^r*``^t*` `^r*`  `^t = -2*G*M/r^3

 

`R `^t*``^r*` `^r*`  `^t = 2*G*M/r^3

 

`R `^theta*``^t*` `^theta*`  `^t = -G*M/(r^4*(2*G*M-r))

 

`R `^t*``^theta*` `^theta*`  `^t = G*M/(r^4*(2*G*M-r))

 

`R `^phi*``^t*` `^phi*`  `^t = -G*M/(r^4*sin(theta)^2*(2*G*M-r))

 

`R `^t*``^phi*` `^phi*`  `^t = G*M/(r^4*sin(theta)^2*(2*G*M-r))

 

`R `^r*``^t*` `^t*`  `^r = 2*G*M/r^3

 

`R `^t*``^r*` `^t*`  `^r = -2*G*M/r^3

 

`R `^theta*``^r*` `^theta*`  `^r = (2*G*M-r)*G*M/r^6

 

`R `^r*``^theta*` `^theta*`  `^r = -(2*G*M-r)*G*M/r^6

 

`R `^phi*``^r*` `^phi*`  `^r = (2*G*M-r)*G*M/(r^6*sin(theta)^2)

 

`R `^r*``^phi*` `^phi*`  `^r = -(2*G*M-r)*G*M/(r^6*sin(theta)^2)

 

`R `^theta*``^t*` `^t*`  `^theta = G*M/(r^4*(2*G*M-r))

 

`R `^t*``^theta*` `^t*`  `^theta = -G*M/(r^4*(2*G*M-r))

 

`R `^theta*``^r*` `^r*`  `^theta = -(2*G*M-r)*G*M/r^6

 

`R `^r*``^theta*` `^r*`  `^theta = (2*G*M-r)*G*M/r^6

 

`R `^phi*``^theta*` `^phi*`  `^theta = 2*G*M/(r^7*sin(theta)^2)

 

`R `^theta*``^phi*` `^phi*`  `^theta = -2*G*M/(r^7*sin(theta)^2)

 

`R `^phi*``^t*` `^t*`  `^phi = G*M/(r^4*sin(theta)^2*(2*G*M-r))

 

`R `^t*``^phi*` `^t*`  `^phi = -G*M/(r^4*sin(theta)^2*(2*G*M-r))

 

`R `^phi*``^r*` `^r*`  `^phi = -(2*G*M-r)*G*M/(r^6*sin(theta)^2)

 

`R `^r*``^phi*` `^r*`  `^phi = (2*G*M-r)*G*M/(r^6*sin(theta)^2)

 

`R `^phi*``^theta*` `^theta*`  `^phi = -2*G*M/(r^7*sin(theta)^2)

 

`R `^theta*``^phi*` `^theta*`  `^phi = 2*G*M/(r^7*sin(theta)^2)

 

`Ricci scalar`

 

`R ` = 0

(4)

RiemDn := grarray(R(dn, dn, dn, dn)):

RiemUp := grarray(R(up, up, up, up)):

RiemSc := `~`[`.`](RiemDn, RiemUp):

rsquare := sum(sum(sum(sum(RiemSc[i, j, k, l], i = 1 .. 4), j = 1 .. 4), k = 1 .. 4), l = 1 .. 4)

4*((2*G*M-r)*G*M/r^2.(G*M/(r^4*(2*G*M-r))))+4*((2*G*M-r)*G*M*sin(theta)^2/r^2.(G*M/(r^4*sin(theta)^2*(2*G*M-r))))+16*(G*M/r^3.(G*M/r^3))+4*(G*M/(2*G*M-r).((2*G*M-r)*G*M/r^6))+4*(G*M*sin(theta)^2/(2*G*M-r).((2*G*M-r)*G*M/(r^6*sin(theta)^2)))+16*(G*M*sin(theta)^2*r.(G*M/(r^7*sin(theta)^2)))

(5)

simplify(%);

4*((2*G*M-r)*G*M/r^2.(G*M/(r^4*(2*G*M-r))))+4*((2*G*M-r)*G*M*sin(theta)^2/r^2.(G*M/(r^4*sin(theta)^2*(2*G*M-r))))+16*(G*M/r^3.(G*M/r^3))+4*(G*M/(2*G*M-r).((2*G*M-r)*G*M/r^6))+4*(G*M*sin(theta)^2/(2*G*M-r).((2*G*M-r)*G*M/(r^6*sin(theta)^2)))+16*(G*M*sin(theta)^2*r.(G*M/(r^7*sin(theta)^2)))

(6)

``


 

Download Shwarzchild_mteric.mw

 

Page 1 of 1