Wolff

25 Reputation

2 Badges

11 years, 148 days

MaplePrimes Activity


These are replies submitted by Wolff

@acer 

Yes, I should had used the Embedded Components, you are right.

The app helps. Thank you for your information Acer!

@tomleslie
Monty_Hall_Simulation_W.mw  

 

I had liked to see for each step the plot, but now you see the result after playing to games.

When you start the program the choices are a, b or c. 

@tomleslie 

Thank you Tom, it´s a quite good idea but my program is to complicated so it doesn´t work.

@Carl Love 

Thank you for your different idea, it is useful.

@Carl Love 

Yes, I was pleased with your code, but the molesting dialog box is the problem.

If there would be a posibility to move this box to the left or right side then I could use it.
Perhaps an array? On the left side the box and at the right side the picture.

Your plot window is a nice idea as well but the would be 10 of these windows and this is

not useful for my problem.

Thank you a lot for your help!

@acer 

Thank you all for this excelent solutions!

Anyway it´s a pitty that there is no simple posibility to have a break in a loop.

restart:

Typesetting:-Settings(functionassign=false):

f:=n->2*(1-n)/3:

...

....

V;

 


restart


Constants:

ep0 := 1/(4*3.14):

el := 8.54*10^(-2):

hbar := 1:

vf := 1/300:

kb := 1:

tem := 2.586*10^(-2):

ci := 1:

p := 1.458*10^16:

beta := 2:

ai := 7.1*10^(-4):

bi := ai/sqrt(3):

enph := .196:

d := enph/(kb*tem):

n0 := 1/(exp(enph/(kb*tem))-1):

gama := hbar*vf:

intensity := 500:

energy := 1.55:

w := 1.55:

impurity := 7.2*10^3:

NULL

NULL

Dependent Constants

g := hbar*beta/(bi^2*sqrt(2*p*enph)):

aa := g^2*(n0+1)/(2*Pi*hbar*gama^2):

bb := g^2*n0/(2*Pi*hbar*gama^2):

cc := 2/(Pi*gama^2):

u := el^2*intensity^2/(32*w*hbar^2):

NULL


We have two Equation eq1 und eq2 with two variables:  chemp und chemm

 

eq1 := (bb*tem*(-.5879999999999999*exp(1.1760000000000002/tem)*polylog(2, -exp(.196/tem)/chemm)*chemm+2*exp(1.372/tem)*tem*polylog(3, -exp(.196/tem)/chemm)-2*exp(1.372/tem)*tem*polylog(3, -chemp)+.5880000000000001*exp(.98/tem)*polylog(2, -chemp/exp(.196/tem))*chemm^2+.196*exp(.784/tem)*polylog(2, -chemp/exp(.196/tem))*chemm^3-2*exp(1.372/tem)*tem*polylog(3, -1/chemm)+.5880000000000001*exp(1.1760000000000002/tem)*polylog(2, -chemp/exp(.196/tem))*chemm-.19599999999999995*exp(.784/tem)*polylog(2, -exp(.196/tem)/chemm)*chemm^3-.5879999999999999*exp(.98/tem)*polylog(2, -exp(.196/tem)/chemm)*chemm^2+2*exp(1.372/tem)*tem*polylog(3, -chemp/exp(.196/tem))+6*exp(.98/tem)*tem*polylog(3, -chemp/exp(.196/tem))*chemm^2+6*exp(.98/tem)*tem*polylog(3, -exp(.196/tem)/chemm)*chemm^2+6*exp(1.1760000000000002/tem)*tem*polylog(3, -exp(.196/tem)/chemm)*chemm+2*exp(.784/tem)*tem*polylog(3, -chemp/exp(.196/tem))*chemm^3-2*exp(.784/tem)*tem*polylog(3, -chemp)*chemm^3-6*exp(.98/tem)*tem*polylog(3, -chemp)*chemm^2-6*exp(1.1760000000000002/tem)*tem*polylog(3, -chemp)*chemm+2*exp(.784/tem)*tem*polylog(3, -exp(.196/tem)/chemm)*chemm^3+6*exp(1.1760000000000002/tem)*tem*polylog(3, -chemp/exp(.196/tem))*chemm-2*exp(.784/tem)*tem*polylog(3, -1/chemm)*chemm^3-6*exp(.98/tem)*tem*polylog(3, -1/chemm)*chemm^2-6*exp(1.1760000000000002/tem)*tem*polylog(3, -1/chemm)*chemm+(.196*exp(.784/tem)*chemm^3+.5880000000000001*exp(.98/tem)*chemm^2+.5880000000000001*exp(1.1760000000000002/tem)*chemm+.196*exp(1.372/tem))*polylog(2, -chemp)+(-.196*exp(.784/tem)*chemm^3-.5880000000000001*exp(.98/tem)*chemm^2-.5880000000000001*exp(1.1760000000000002/tem)*chemm-.196*exp(1.372/tem))*polylog(2, -1/chemm)-.19599999999999995*exp(1.372/tem)*polylog(2, -exp(.196/tem)/chemm)+.196*exp(1.372/tem)*polylog(2, -chemp/exp(.196/tem)))/(exp(.39199999999999996/tem)*(chemm+exp(.196/tem))^3*(exp(.39199999999999996/tem)-chemm*chemp*exp(.196/tem)))-aa*chemm*chemp*((-0.38416000000000006e-1*exp(.784/tem)*ln(chemm+1)*chemp^3+0.38416000000000006e-1*exp(.784/tem)*ln(1+exp(.196/tem)/chemp)*chemp^3+.19600000000000004*exp(.784/tem)*tem*polylog(2, -exp(.196/tem)/chemp)*chemp^3+.19600000000000004*exp(.784/tem)*tem*polylog(2, -chemm/exp(.196/tem))*chemp^3-.11524800000000003*exp(.98/tem)*ln(chemm+1)*chemp^2+.11524800000000003*exp(.98/tem)*ln(1+exp(.196/tem)/chemp)*chemp^2+.5880000000000001*exp(.98/tem)*tem*polylog(2, -exp(.196/tem)/chemp)*chemp^2+.5880000000000001*exp(.98/tem)*tem*polylog(2, -chemm/exp(.196/tem))*chemp^2-.11524800000000003*exp(1.1760000000000002/tem)*ln(chemm+1)*chemp+.11524800000000003*exp(1.1760000000000002/tem)*ln(1+exp(.196/tem)/chemp)*chemp+.5880000000000001*exp(1.1760000000000002/tem)*tem*polylog(2, -exp(.196/tem)/chemp)*chemp+.5880000000000001*exp(1.1760000000000002/tem)*tem*polylog(2, -chemm/exp(.196/tem))*chemp-0.38416000000000006e-1*exp(1.372/tem)*ln(chemm+1)+0.38416000000000006e-1*exp(1.372/tem)*ln(1+exp(.196/tem)/chemp)+(-.19600000000000004*exp(.784/tem)*chemp^3-.5880000000000001*exp(.98/tem)*chemp^2-.5880000000000001*exp(1.1760000000000002/tem)*chemp-.19600000000000004*exp(1.372/tem))*tem*polylog(2, -chemm)+(-.19600000000000004*exp(.784/tem)*chemp^3-.5880000000000001*exp(.98/tem)*chemp^2-.5880000000000001*exp(1.1760000000000002/tem)*chemp-.19600000000000004*exp(1.372/tem))*tem*polylog(2, -1/chemp)+.19600000000000004*exp(1.372/tem)*tem*polylog(2, -exp(.196/tem)/chemp)+.19600000000000004*exp(1.372/tem)*tem*polylog(2, -chemm/exp(.196/tem)))/(exp(.784/tem)*(chemp+exp(.196/tem))^3)-tem^2*(0.38416000000000006e-1*ln(1+exp(.196/tem)/chemp)/tem^2+(.39199999999999996*(chemp^3+3*exp(.19599999999999995/tem)*chemp^2+3*exp(.3919999999999999/tem)*chemp+exp(.5880000000000001/tem)))*polylog(2, -exp(.196/tem)/chemp)/((chemp+exp(.196/tem))^3*tem)+2*polylog(3, -chemm)+2*polylog(3, -1/chemp)-2*polylog(3, -exp(.196/tem)/chemp)-2*polylog(3, -chemm/exp(.196/tem))-.39199999999999996*polylog(2, -chemm)/tem-0.38416000000000006e-1*ln(chemm+1)/tem^2))/(exp(.196/tem)-chemm*chemp))*tem+(-chemm/(chemm+exp((1/2)*energy/tem))-chemp/(chemp+exp((1/2)*energy/tem))+1)*u = 0;

0.9954230356e-10*(-0.2156309929e23*polylog(2, -1957.205577/chemm)+0.5690017832e22*polylog(3, -1957.205577/chemm)+0.2156309929e23*polylog(2, -0.5109325314e-3*chemp)+0.5690017832e22*polylog(3, -0.5109325314e-3*chemp)+(0.2876085892e13*chemm^3+0.1688727389e17*chemm^2+0.3305186667e20*chemm+0.2156309929e23)*polylog(2, -chemp)+(-0.2876085892e13*chemm^3-0.1688727389e17*chemm^2-0.3305186667e20*chemm-0.2156309929e23)*polylog(2, -1/chemm)-0.3305186667e20*polylog(2, -1957.205577/chemm)*chemm+0.1688727389e17*polylog(2, -0.5109325314e-3*chemp)*chemm^2+0.2876085892e13*polylog(2, -0.5109325314e-3*chemp)*chemm^3+0.3305186667e20*polylog(2, -0.5109325314e-3*chemp)*chemm-0.2876085892e13*polylog(2, -1957.205577/chemm)*chemm^3-0.1688727389e17*polylog(2, -1957.205577/chemm)*chemm^2+0.4456172477e16*polylog(3, -0.5109325314e-3*chemp)*chemm^2+0.4456172477e16*polylog(3, -1957.205577/chemm)*chemm^2+0.8721645636e19*polylog(3, -1957.205577/chemm)*chemm+0.7589345016e12*polylog(3, -0.5109325314e-3*chemp)*chemm^3-0.7589345016e12*polylog(3, -chemp)*chemm^3-0.4456172477e16*polylog(3, -chemp)*chemm^2-0.8721645636e19*polylog(3, -chemp)*chemm+0.7589345016e12*polylog(3, -1957.205577/chemm)*chemm^3+0.8721645636e19*polylog(3, -0.5109325314e-3*chemp)*chemm-0.7589345016e12*polylog(3, -1/chemm)*chemm^3-0.4456172477e16*polylog(3, -1/chemm)*chemm^2-0.8721645636e19*polylog(3, -1/chemm)*chemm-0.5690017832e22*polylog(3, -1/chemm)-0.5690017832e22*polylog(3, -chemp))/(Pi*(chemm+1957.205577)^3*(3830653.679-1957.205577*chemm*chemp))-28.85947994*chemm*chemp*(0.6814817338e-13*(-0.5637128347e12*ln(chemm+1)*chemp^3+0.5637128347e12*ln(1+1957.205577/chemp)*chemp^3+0.7437558116e11*polylog(2, -1957.205577/chemp)*chemp^3+0.7437558116e11*polylog(2, -0.5109325314e-3*chemm)*chemp^3-0.3309905682e16*ln(chemm+1)*chemp^2+0.3309905682e16*ln(1+1957.205577/chemp)*chemp^2+0.4367049027e15*polylog(2, -1957.205577/chemp)*chemp^2+0.4367049027e15*polylog(2, -0.5109325314e-3*chemm)*chemp^2-0.6478165868e19*ln(chemm+1)*chemp+0.6478165868e19*ln(1+1957.205577/chemp)*chemp+0.8547212723e18*polylog(2, -1957.205577/chemp)*chemp+0.8547212723e18*polylog(2, -0.5109325314e-3*chemm)*chemp-0.4226367461e22*ln(chemm+1)+0.4226367461e22*ln(1+1957.205577/chemp)+0.2586000000e-1*(-0.2876085892e13*chemp^3-0.1688727389e17*chemp^2-0.3305186667e20*chemp-0.2156309929e23)*polylog(2, -chemm)+0.2586000000e-1*(-0.2876085892e13*chemp^3-0.1688727389e17*chemp^2-0.3305186667e20*chemp-0.2156309929e23)*polylog(2, -1/chemp)+0.5576217475e21*polylog(2, -1957.205577/chemp)+0.5576217475e21*polylog(2, -0.5109325314e-3*chemm))/(chemp+1957.205577)^3-0.3841600001e-1*ln(1+1957.205577/chemp)-0.1013712000e-1*(chemp^3+5871.616731*chemp^2+11491961.04*chemp+7497376753.)*polylog(2, -1957.205577/chemp)/(chemp+1957.205577)^3-0.1337479200e-2*polylog(3, -chemm)-0.1337479200e-2*polylog(3, -1/chemp)+0.1337479200e-2*polylog(3, -1957.205577/chemp)+0.1337479200e-2*polylog(3, -0.5109325314e-3*chemm)+0.1013712000e-1*polylog(2, -chemm)+0.3841600001e-1*ln(chemm+1))/(Pi*(1957.205577-chemm*chemp))-36.75987903*chemm/(chemm+0.1036094112e14)-36.75987903*chemp/(chemp+0.1036094112e14)+36.75987903 = 0

(1)

 

 

eq2 := cc*tem^2*polylog(2, chemm)+impurity+cc*tem^2*polylog(2, -chemp) = 0;

120.3731280*polylog(2, chemm)/Pi+7200.0+120.3731280*polylog(2, -chemp)/Pi = 0

(2)

 

 

 

The logarithmic integral, Li(x), is defined as:  Li(x) = PV-(int(1/ln(t), t = 0 .. x)),x >= 0 
The polylogarithm of index a at the point z is defined by polylog(a, z) = sum(z^n/n^a, n = 1 .. infinity)

NULL

In the equations we have expressions of this type:

polylog(2, -exp(.196/tem)/chemm);

polylog(2, -1957.205577/chemm)

(3)

NULL

NULL

Plotting p1 and p2

p1 := plot3d(lhs(eq2), chemm = -200 .. -100, chemp = 100 .. 200, colour = red):

 

This equation contains complex expressions.

p2 := plot3d(Re(lhs(eq1)), chemm = -200 .. -100, chemp = 100 .. 200, colour = blue):

plot3d(Re(lhs(eq1)), chemm = -200 .. -100, chemp = 100 .. 200, colour = blue);

 

plots:-display3d(p1, p2)

 

Equation eq1 is complex!

simplify(evalc(subs(chemp = 100, chemm = -200, eq1)));

36.54314322-.2124376842*I = 0

(4)

simplify(evalc(subs(chemp = 100, chemm = -200, eq2)))

6130.418540 = 0

(5)

NULL

NULL


Download boltmohasebe_v2.mw

@Kitonum 
There ist no real solution.

 

Your answers helped a lot!

Page 1 of 1