salim-barzani

1555 Reputation

9 Badges

1 years, 14 days

MaplePrimes Activity


These are questions asked by salim-barzani

each time i use this i did not have any problem but this equation not seperate any one know what is problem?

restart

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(PDEtools)

P := U(xi)^3*mu*C[2]*h[9]+(2*I)*(diff(U(xi), xi))*a*k*mu+4*(diff(U(xi), xi))*k*mu^3*C[2]*h[7]-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*C[2]*h[7]-U(xi)^3*mu*C[2]*h[8]+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*C[2]*h[7]+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[9]-(6*I)*(diff(diff(U(xi), xi), xi))*k^2*mu^2*C[2]*h[7]+I*U(xi)*mu^4*C[2]*h[7]-I*(diff(U(xi), xi))*v-U(xi)*w+b*U(xi)^3-U(xi)*a*mu^2+(diff(diff(U(xi), xi), xi))*a*k^2+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[8]+C[1](-U(xi)^3*mu^2*h[2]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[4]-(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[5]+(diff(U(xi), xi))^2*U(xi)*k^2*h[2]-U(xi)^3*mu^2*h[5]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[5]-(4*(diff(U(xi), xi))*I)*k*mu^3*h[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*h[1]*I+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[2]+h[6]*U(xi)^5-U(xi)^3*mu^2*h[4]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[4]+U(xi)*mu^4*h[1]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*h[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*h[1]+h[3](k^2*(diff(U(xi), xi))^2+2*(0+I)*(diff(U(xi), xi))*k*mu*U(xi)-mu^2*U(xi)^2)*U(xi)) = 0

U(xi)^3*mu*C[2]*h[9]+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[8]+4*(diff(U(xi), xi))*k*mu^3*C[2]*h[7]-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*C[2]*h[7]-U(xi)^3*mu*C[2]*h[8]+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[9]-(6*I)*(diff(diff(U(xi), xi), xi))*k^2*mu^2*C[2]*h[7]+I*U(xi)*mu^4*C[2]*h[7]-I*(diff(U(xi), xi))*v+(2*I)*(diff(U(xi), xi))*a*k*mu-U(xi)*w+b*U(xi)^3-U(xi)*a*mu^2+(diff(diff(U(xi), xi), xi))*a*k^2+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*C[2]*h[7]+C[1](-U(xi)^3*mu^2*h[2]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[4]-(4*I)*(diff(U(xi), xi))*k*mu^3*h[1]+(diff(U(xi), xi))^2*U(xi)*k^2*h[2]-U(xi)^3*mu^2*h[5]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[5]+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*h[1]-(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[5]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[2]+h[6]*U(xi)^5-U(xi)^3*mu^2*h[4]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[4]+U(xi)*mu^4*h[1]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*h[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*h[1]+h[3](k^2*(diff(U(xi), xi))^2+(2*I)*(diff(U(xi), xi))*k*mu*U(xi)-mu^2*U(xi)^2)*U(xi)) = 0

(2)

Re(P)

Re(U(xi)^3*mu*C[2]*h[9]+4*(diff(U(xi), xi))*k*mu^3*C[2]*h[7]-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*C[2]*h[7]-U(xi)^3*mu*C[2]*h[8]-U(xi)*w+b*U(xi)^3-U(xi)*a*mu^2+(diff(diff(U(xi), xi), xi))*a*k^2+C[1](-U(xi)^3*mu^2*h[2]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[4]-(4*I)*(diff(U(xi), xi))*k*mu^3*h[1]+(diff(U(xi), xi))^2*U(xi)*k^2*h[2]-U(xi)^3*mu^2*h[5]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[5]+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*h[1]-(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[5]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[2]+h[6]*U(xi)^5-U(xi)^3*mu^2*h[4]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[4]+U(xi)*mu^4*h[1]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*h[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*h[1]+h[3](k^2*(diff(U(xi), xi))^2+(2*I)*(diff(U(xi), xi))*k*mu*U(xi)-mu^2*U(xi)^2)*U(xi)))-Im((diff(U(xi), xi))*U(xi)^2*k*C[2]*h[8]+(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[9]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*C[2]*h[7]+U(xi)*mu^4*C[2]*h[7]-(diff(U(xi), xi))*v+2*(diff(U(xi), xi))*a*k*mu+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*C[2]*h[7]) = 0

(3)
 

``

Download real_and_imaginary_.mw

I have  a big problem in transformation How we can do suh transformation in  type of  procure  without use any hand work for example in physic abs|-| remove the exponential term how the maple remove that term automatically and collect all term and do my transformation this example is really hard one which is must do a lot by hand and mixed them which maybe a week take my time to get results and how i reach the results without spending that time i have a result of this equation and i am try to get but i don't know the results of this person is correct or not but i will share in here,  i did some try i will share in here too if in DEchange add U(xi) it will work and give me the other step but i need something more effective, when q^* is conjugate of q =exp(-ipsi(x,t))U(xi)

NULL

restart

with(PDEtools)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

 

 

tr := {t = tau, x = xi/k+v*tau^alpha/(k*alpha)+theta, u(x, t) = U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)), u[1](x, t) = U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))}

{t = tau, x = xi/k+v*tau^alpha/(k*alpha)+theta, u(x, t) = U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)), u[1](x, t) = U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))}

(2)

pde := I*(I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)-mu*tau+theta))*w-exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))*v)+a*(diff(u(x, t), `$`(x, 2)))+b*U(xi)^2*u(x, t)+C[1](h[1]*(diff(u(x, t), `$`(x, 4)))+h[2]*(diff(u(x, t), x))^2*u[1](x, t)+h[3]*abs(diff(u(x, t), x))^2*u(x, t)+h[4]*U(xi)^2*(diff(u(x, t), `$`(x, 2)))+h[5]*u(x, t)^2*(diff(u[1](x, t), `$`(x, 2)))+h[6]*U(xi)^4*u(x, t))+I*C[2]*(h[7]*(diff(u(x, t), `$`(x, 4)))+h[8]*U(xi)^2*(diff(u(x, t), x))+h[9]*u(x, t)^2*(diff(u[1](x, t), x))) = 0

I*(I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)-mu*tau+theta))*w-exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))*v)+a*(diff(diff(u(x, t), x), x))+b*U(xi)^2*u(x, t)+C[1](h[1]*(diff(diff(diff(diff(u(x, t), x), x), x), x))+h[2]*(diff(u(x, t), x))^2*u[1](x, t)+h[3]*abs(diff(u(x, t), x))^2*u(x, t)+h[4]*U(xi)^2*(diff(diff(u(x, t), x), x))+h[5]*u(x, t)^2*(diff(diff(u[1](x, t), x), x))+h[6]*U(xi)^4*u(x, t))+I*C[2]*(h[7]*(diff(diff(diff(diff(u(x, t), x), x), x), x))+h[8]*U(xi)^2*(diff(u(x, t), x))+h[9]*u(x, t)^2*(diff(u[1](x, t), x))) = 0

(3)

``

PDEtools:-dchange(tr, pde, [xi, tau, U, U(xi)])

I*(I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)-mu*tau+theta))*w-exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))*v)+a*((2*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))-U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^2)*k^2+b*U(xi)^3*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))+C[1](h[1]*(-(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k^3-6*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))/k^2+(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(U(xi), xi), xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^4)*k^4+h[2]*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))+I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)^2*k^2*U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))+h[3]*abs((exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))+I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)*k)^2*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))+h[4]*U(xi)^2*((2*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))-U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^2)*k^2+h[5]*U(xi)^2*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)))^2*((diff(diff(U(xi), xi), xi))*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))-(2*I)*(diff(U(xi), xi))*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k-U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^2)*k^2+h[6]*U(xi)^5*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)))+I*C[2]*(h[7]*(-(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k^3-6*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))/k^2+(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(U(xi), xi), xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^4)*k^4+h[8]*U(xi)^2*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))+I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)*k+h[9]*U(xi)^2*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)))^2*((diff(U(xi), xi))*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))-I*U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)*k) = 0

(4)
 

NULL


Download find_ODE.mw

Hi

How merge or combine two or more 3D plot together ? and How many 3D plot exist for describe graph ? and how we can transfer this combine plot to another program like matlab?

Maple is  good for decribe plot  and very faster from other program but for visualization and some other stuff we need other language program, so how we can combine the plot and how we transfer this plot another program like matlab i know the matlab have special template for this kind plot but i didn't have the template if any one have it it will be  awesome?

Download combine_graph.mw

how fixed this for ode test

restart

with(PDEtools)

with(Physics)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

``

pde := -I*(diff(U(xi), xi))*gamma*k*mu+I*gamma*(diff(U(xi), xi))*sigma*w+(diff(diff(U(xi), xi), xi))*gamma*k*w+U(xi)*gamma*mu*sigma+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*w-U(xi)*sigma^2-U(xi)*mu

-I*gamma*(diff(U(xi), xi))*k*mu+I*gamma*(diff(U(xi), xi))*sigma*w+gamma*(diff(diff(U(xi), xi), xi))*k*w+gamma*U(xi)*mu*sigma+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*w-U(xi)*sigma^2-U(xi)*mu

(2)

case1 := [mu = -(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1), A[0] = 0, A[1] = -RootOf(_Z^2*alpha+gamma*k*w+k^2), B[1] = RootOf(_Z^2*alpha+gamma*k*w+k^2), w = (gamma*k*mu-2*k*sigma)/(gamma*sigma-1)]

[mu = -(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1), A[0] = 0, A[1] = -RootOf(_Z^2*alpha+gamma*k*w+k^2), B[1] = RootOf(_Z^2*alpha+gamma*k*w+k^2), w = (gamma*k*mu-2*k*sigma)/(gamma*sigma-1)]

(3)

G1 := U(xi) = 2*RootOf(_Z^2*alpha+gamma*k*w+k^2)/sinh(2*xi)

U(xi) = 2*RootOf(_Z^2*alpha+gamma*k*w+k^2)/sinh(2*xi)

(4)

pde1 := subs(case1, pde)

I*gamma*(diff(U(xi), xi))*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)+I*gamma*(diff(U(xi), xi))*sigma*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)+gamma*(diff(diff(U(xi), xi), xi))*k*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)-gamma*U(xi)*(4*gamma*k*w+4*k^2-sigma^2)*sigma/(gamma*sigma-1)+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)-U(xi)*sigma^2+U(xi)*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)

(5)

pde2 := subs(case1, pde1)

I*gamma*(diff(U(xi), xi))*k*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)/(gamma*sigma-1)+I*gamma*(diff(U(xi), xi))*sigma*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)+gamma*(diff(diff(U(xi), xi), xi))*k*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)-gamma*U(xi)*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)*sigma/(gamma*sigma-1)+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)-U(xi)*sigma^2+U(xi)*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)/(gamma*sigma-1)

(6)

odetest(G1, pde2)

 

NULL

Download test_sol_for_PDE1.mw

I don't know how make my graph be beter for real part and imaginary part and abs part which part how work with parameter can any one explain on this example?

G.mw

First 24 25 26 27 28 29 30 Page 26 of 32