I have two linear algebra texts [1, 2]  with examples of the process of constructing the transition matrix Q that brings a matrix A to its Jordan form J. In each, the authors make what seems to be arbitrary selections of basis vectors via processes that do not seem algorithmic. So recently, while looking at some other calculations in linear algebra, I decided to revisit these calculations in as orderly a way as possible.

 

First, I needed a matrix A with a prescribed Jordan form. Actually, I started with a Jordan form, and then constructed A via a similarity transform on J. To avoid introducing fractions, I sought transition matrices P with determinant 1.

 

Let's begin with J, obtained with Maple's JordanBlockMatrix command.

 

• 

Tools_Load Package: Linear Algebra

Loading LinearAlgebra

J := JordanBlockMatrix([[2, 3], [2, 2], [2, 1]])

Matrix([[2, 1, 0, 0, 0, 0], [0, 2, 1, 0, 0, 0], [0, 0, 2, 0, 0, 0], [0, 0, 0, 2, 1, 0], [0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 2]])

 

``

The eigenvalue lambda = 2 has algebraic multiplicity 6. There are sub-blocks of size 3×3, 2×2, and 1×1. Consequently, there will be three eigenvectors, supporting chains of generalized eigenvectors having total lengths 3, 2, and 1. Before delving further into structural theory, we next find a transition matrix P with which to fabricate A = P*J*(1/P).

 

The following code generates random 6×6 matrices of determinant 1, and with integer entries in the interval [-2, 2]. For each, the matrix A = P*J*(1/P) is computed. From these candidates, one A is then chosen.

 

L := NULL:

 

 

After several such trials, the matrix A was chosen as

 

A := Matrix(6, 6, {(1, 1) = -8, (1, 2) = -8, (1, 3) = 4, (1, 4) = -8, (1, 5) = -1, (1, 6) = 5, (2, 1) = -1, (2, 2) = 3, (2, 3) = 1, (2, 4) = -2, (2, 5) = 2, (2, 6) = -1, (3, 1) = -13, (3, 2) = -9, (3, 3) = 8, (3, 4) = -11, (3, 5) = 1, (3, 6) = 5, (4, 1) = 3, (4, 2) = 3, (4, 3) = -1, (4, 4) = 4, (4, 5) = 1, (4, 6) = -2, (5, 1) = 7, (5, 2) = 5, (5, 3) = -3, (5, 4) = 6, (5, 5) = 2, (5, 6) = -3, (6, 1) = -6, (6, 2) = -2, (6, 3) = 3, (6, 4) = -7, (6, 5) = 2, (6, 6) = 3})

 

 

for which the characteristic and minimal polynomials are

 

factor(CharacteristicPolynomial(A, lambda))

(lambda-2)^6

factor(MinimalPolynomial(A, lambda))

(lambda-2)^3

 

 

So, if we had started with just A, we'd now know that the algebraic multiplicity of its one eigenvalue lambda = 2 is 6, and there is at least one 3×3 sub-block in the Jordan form. We would not know if the other sub-blocks were all 1×1, or a 1×1 and a 2×2, or another 3×3. Here is where some additional theory must be invoked.

``

The null spaces M[k] of the matrices (A-2*I)^k are nested: `⊂`(`⊂`(M[1], M[2]), M[3]) .. (), as depicted in Figure 1, where the vectors a[k], k = 1, () .. (), 6, are basis vectors.

 

Figure 1   The nesting of the null spaces M[k] 

 

 

The vectors a[1], a[2], a[3] are eigenvectors, and form a basis for the eigenspace M[1]. The vectors a[k], k = 1, () .. (), 5, form a basis for the subspace M[2], and the vectors a[k], k = 1, () .. (), 6, for a basis for the space M[3], but the vectors a[4], a[5], a[6] are not yet the generalized eigenvectors. The vector a[6] must be replaced with a vector b[6] that lies in M[3] but is not in M[2]. Once such a vector is found, then a[4] can be replaced with the generalized eigenvector `≡`(b[4], (A-2*I)^2)*b[6], and a[1] can be replaced with `≡`(b[1], A-2*I)*b[4]. The vectors b[1], b[4], b[6] are then said to form a chain, with b[1] being the eigenvector, and b[4] and b[6] being the generalized eigenvectors.

 

If we could carry out these steps, we'd be in the state depicted in Figure 2.

 

Figure 2   The null spaces M[k] with the longest chain determined

 

 

Next, basis vector a[5] is to be replaced with b[5], a vector in M[2] but not in M[1], and linearly independent of b[4]. If such a b[5] is found, then a[2] is replaced with the generalized eigenvector `≡`(b[2], A-2*I)*b[5]. The vectors b[2] and b[5] would form a second chain, with b[2] as the eigenvector, and b[5] as the generalized eigenvector.

``

Define the matrix C = A-2*I by the Maple calculation

 

C := A-2

Matrix([[-10, -8, 4, -8, -1, 5], [-1, 1, 1, -2, 2, -1], [-13, -9, 6, -11, 1, 5], [3, 3, -1, 2, 1, -2], [7, 5, -3, 6, 0, -3], [-6, -2, 3, -7, 2, 1]])

 

``

and note

 

N := convert(NullSpace(C), list)

[Vector(6, {(1) = 1/2, (2) = 1/2, (3) = 1, (4) = 0, (5) = 0, (6) = 1}), Vector(6, {(1) = -1/2, (2) = -1/2, (3) = -2, (4) = 0, (5) = 1, (6) = 0}), Vector(6, {(1) = -2, (2) = 1, (3) = -1, (4) = 1, (5) = 0, (6) = 0})]

NN := convert(LinearAlgebra:-NullSpace(C^2), list)

[Vector(6, {(1) = 2/5, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 1}), Vector(6, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 1, (6) = 0}), Vector(6, {(1) = -1, (2) = 0, (3) = 0, (4) = 1, (5) = 0, (6) = 0}), Vector(6, {(1) = 2/5, (2) = 0, (3) = 1, (4) = 0, (5) = 0, (6) = 0}), Vector(6, {(1) = -3/5, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0})]

 

``

The dimension of M[1] is 3, and of M[2], 5. However, the basis vectors Maple has chosen for M[2] do not include the exact basis vectors chosen for M[1].

 

We now come to the crucial step, finding b[6], a vector in M[3] that is not in M[2] (and consequently, not in M[1] either). The examples in [1, 2] are simple enough that the authors can "guess" at the vector to be taken as b[6]. What we will do is take an arbitrary vector in M[3] and project it onto the 5-dimensional subspace M[2], and take the orthogonal complement as b[6].

``

A general vector in M[3] is

 

Z := `<,>`(u || (1 .. 6))

Vector[column]([[u1], [u2], [u3], [u4], [u5], [u6]])

 

``

A matrix that projects onto M[2] is

 

P := ProjectionMatrix(NN)

Matrix([[42/67, -15/67, 10/67, -25/67, 0, 10/67], [-15/67, 58/67, 6/67, -15/67, 0, 6/67], [10/67, 6/67, 63/67, 10/67, 0, -4/67], [-25/67, -15/67, 10/67, 42/67, 0, 10/67], [0, 0, 0, 0, 1, 0], [10/67, 6/67, -4/67, 10/67, 0, 63/67]])

 

``

The orthogonal complement of the projection of Z onto M[2] is then -P*Z+Z. This vector can be simplified by choosing the parameters in Z appropriately. The result is taken as b[6].

 

b[6] := 67*(eval(Z-Typesetting:-delayDotProduct(P, Z), Equate(Z, UnitVector(1, 6))))*(1/5)

Vector[column]([[5], [3], [-2], [5], [0], [-2]])

NULL

 

``

The other two members of this chain are then

 

b[4] := Typesetting:-delayDotProduct(C, b[6])

Vector[column]([[-132], [-12], [-169], [40], [92], [-79]])

b[1] := Typesetting:-delayDotProduct(C, b[4])

Vector[column]([[-67], [134], [67], [67], [0], [134]])

 

``

A general vector in M[2] is a linear combination of the five vectors that span the null space of C^2, namely, the vectors in the list NN. We obtain this vector as

 

ZZ := add(u || k*NN[k], k = 1 .. 5)

Vector[column]([[(2/5)*u1-u3+(2/5)*u4-(3/5)*u5], [u5], [u4], [u3], [u2], [u1]])

 

``

A vector in M[2] that is not in M[1] is the orthogonal complement of the projection of ZZ onto the space spanned by the eigenvectors spanning M[1] and the vector b[4]. This projection matrix is

 

PP := LinearAlgebra:-ProjectionMatrix(convert(`union`(LinearAlgebra:-NullSpace(C), {b[4]}), list))

Matrix([[69/112, -33/112, 19/112, -17/56, 0, 19/112], [-33/112, 45/112, 25/112, 13/56, 0, 25/112], [19/112, 25/112, 101/112, 1/56, 0, -11/112], [-17/56, 13/56, 1/56, 5/28, 0, 1/56], [0, 0, 0, 0, 1, 0], [19/112, 25/112, -11/112, 1/56, 0, 101/112]])

 

``

The orthogonal complement of ZZ, taken as b[5], is then

 

b[5] := 560*(eval(ZZ-Typesetting:-delayDotProduct(PP, ZZ), Equate(`<,>`(u || (1 .. 5)), LinearAlgebra:-UnitVector(4, 5))))

Vector[column]([[-9], [-59], [17], [58], [0], [17]])

 

``

Replace the vector a[2] with b[2], obtained as

 

b[2] := Typesetting:-delayDotProduct(C, b[5])

Vector[column]([[251], [-166], [197], [-139], [-112], [-166]])

 

 

The columns of the transition matrix Q can be taken as the vectors b[1], b[4], b[6], b[2], b[5], and the eigenvector a[3]. Hence, Q is the matrix

 

Q := `<|>`(b[1], b[4], b[6], b[2], b[5], N[3])

Matrix([[-67, -132, 5, 251, -9, -2], [134, -12, 3, -166, -59, 1], [67, -169, -2, 197, 17, -1], [67, 40, 5, -139, 58, 1], [0, 92, 0, -112, 0, 0], [134, -79, -2, -166, 17, 0]])

 

``

Proof that this matrix Q indeed sends A to its Jordan form consists in the calculation

 

1/Q.A.Q = Matrix([[2, 1, 0, 0, 0, 0], [0, 2, 1, 0, 0, 0], [0, 0, 2, 0, 0, 0], [0, 0, 0, 2, 1, 0], [0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 2]])``

 

NULL

The bases for M[k], k = 1, 2, 3, are not unique. The columns of the matrix Q provide one set of basis vectors, but the columns of the transition matrix generated by Maple, shown below, provide another.

 

JordanForm(A, output = 'Q')

Matrix([[-5, -43/5, -9/5, 7/5, -14/5, -3/5], [10, -4/5, -6/25, 1/5, -6/25, -3/25], [5, -52/5, -78/25, 13/5, -78/25, -39/25], [5, 13/5, 38/25, -2/5, 38/25, 4/25], [0, 6, 42/25, -1, 42/25, 21/25], [10, -29/5, -11/25, 1/5, -11/25, 7/25]])

 

``

I've therefore added to my to-do list the investigation into Maple's algorithm for determining an appropriate set of basis vectors that will support the Jordan form of a matrix.

 

References

 

NULL

[1] Linear Algebra and Matrix Theory, Evar Nering, John Wiley and Sons, Inc., 1963

[2] Matrix Methods: An Introduction, Richard Bronson, Academic Press, 1969

 

NULL

``

Download JordanForm_blog.mw

Please Wait...