MaplePrimes Questions

Search Questions:

I would like to explore all possible solution cases for a given ordinary differential equation (ODE). My goal is to find every valid solution, regardless of the method used—any approach is acceptable as long as it yields a correct solution of the ODE.

Could you please advise on how to systematically find all such solutions or suggest alternative methods that might reveal additional ones?

od.mw

cases.mw

In the attached file, I'm trying to calculate a limit. After a long calculation, I've given up. I'm asking for advice on how to perform the calculation effectively in Maple. I know the solution using the pen and paper method (pi/4+1/2*ln(2)).

test.mw

This below shows strange side effect of calling latex(sol,'output'='string'):

Code reads 2 strings which  represents 2 maple command.

The commands are parsed and evaluated giving solutions OK.

Now, if the first solution is converted to Latex, then the parsing of the second command fails. 

If Latex is not called, then no problem happen parsing the second command.

Any idea why this happens and what to prevent calling latex from causing error in the second call?

i.e.   run_it(p1); run_it(p2);  WORKS

But   run_it(p1); latex(sol,output=string);  run_it(p2);  FAIL
Clearly there is some global/buffering issue somewhere.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1871 and is the same as the version installed in this computer, created 2025, May 15, 11:28 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

p1:="interface(showassumed=0);
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+(exp(-c*t)*sin(2*Pi*x/L));
ic  :=  u(x,0)=f(x);
bc  :=  D[1](u)(0,t)=0, D[1](u)(L,t)=0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde,ic,bc],u(x,t)) assuming L>0,t>0,k>0),output='realtime'));":

p2:="interface(showassumed=0);
pde := diff(u(x,t),t)=k*diff(u(x,t),x$2)-beta*u(x,t);
bc:= D[1](u)(0,t)=0,D[1](u)(Pi,t)=0;
ic  := u(x,0)=x;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,t)) assuming beta>0),output='realtime'));":

#this function parses the command and run it
run_it:=proc(STR::string)
local item,bc,ic,STRING;

    STRING:=StringTools:-Split(STR,";");
    STRING:=remove(X->length(X)=0,STRING);
 
    for item in STRING do
        try
            item:=parse(item);
            item:=eval(item);
        catch:
            print(StringTools:-FormatMessage( lastexception[2..-1]));
            error "detected error";
        end try;
    od:    
end proc:

 

Example 1, no latex is called, both pde's solved OK

 

run_it(p1);
sol

memory used=1.52GiB, alloc change=184.22MiB, cpu time=9.35s, real time=8.67s, gc time=1.40s

8.673

u(x, t) = (Int(f(x), x = 0 .. L))/L+Sum(2*cos(n*Pi*x/L)*exp(-k*Pi^2*n^2*t/L^2)*(Int(f(x)*cos(n*Pi*x/L), x = 0 .. L))/L, n = 1 .. infinity)-(8/3)*((3/2)*(Sum(cos(n*Pi*x/L)*((-1)^n-1)*(L^2*c-Pi^2*k)*(-exp(-k*Pi^2*n^2*t/L^2)+exp(-c*t))/((n^2-4)*(-Pi^2*k*n^2+L^2*c)), n = 3 .. infinity))+cos(Pi*x/L)*(exp(-c*t)-exp(-k*Pi^2*t/L^2)))*L^2/(Pi*(L^2*c-Pi^2*k))

run_it(p2);
sol;

memory used=78.08MiB, alloc change=-3.39MiB, cpu time=639.00ms, real time=499.00ms, gc time=219.02ms

.499

u(x, t) = (1/2)*Pi*exp(-beta*t)+2*(Sum(((-1)^n-1)*cos(n*x)*exp(-t*(k*n^2+beta))/n^2, n = 1 .. infinity))/Pi

 

 

Example 2. Latex is called on first solution, now second call fail

 

run_it(p1);
sol;

memory used=1.47GiB, alloc change=111.75MiB, cpu time=10.28s, real time=9.11s, gc time=1.88s

9.112

u(x, t) = (Int(f(x), x = 0 .. L))/L+Sum(2*cos(n*Pi*x/L)*exp(-k*Pi^2*n^2*t/L^2)*(Int(f(x)*cos(n*Pi*x/L), x = 0 .. L))/L, n = 1 .. infinity)-(8/3)*((3/2)*(Sum(cos(n*Pi*x/L)*((-1)^n-1)*(L^2*c-Pi^2*k)*(-exp(-k*Pi^2*n^2*t/L^2)+exp(-c*t))/((n^2-4)*(-Pi^2*k*n^2+L^2*c)), n = 3 .. infinity))+cos(Pi*x/L)*(exp(-c*t)-exp(-k*Pi^2*t/L^2)))*L^2/(Pi*(L^2*c-Pi^2*k))

latex(sol,'output'='string'): #THIS CAUSE ERROR in next command

 

run_it(p2);

"when calling 'unknown'. Received: 'invalid input: diff received Pi, which is not valid for its 2nd argument'"

Error, (in run_it) detected error

 


 

Download strange_latex_effect.mw

 

This simple expression (from a recent post) crashes Maple:

simplify(tan(Pi/5) + sin(Pi/15) - sqrt(15));

In Maple 2025, in a new worksheet, this command crashes Maple; it is not possible to interrupt the computation (with the "Stop" button) and the worksheet must be closed.
In Maple 2024, the computation can be interrupted, but after repeating (maybe twice) the command, the interruption becomes impossible.

Question: is there a simpler command which crashes Maple?
 

Hey guys, 

I am solving big systems of equations and doing some other stuff with the results. So now I got two diffrent ways and it turns out, that the give back the same result but they present it in diffrent ways. So my quesion now is, how can I simplify a symbolic number to its shortest form. In my example you can see, that the diffrence of y_1 and y_2 is 0, so they describe the same number. However y_2 is a way more complicated expression. So here I know the easier expression, but what if I dont. What is the right command to force maple to find a simplier expression for y_2? I read about evala but its doent do the job as you can see in the attached file. I also tryd things like simplify, normal, expand but it didint worked out too. simplify_symbolic_numbers.mw

restart; y_1 := RootOf(_Z^5-2*_Z^4+9*_Z^3-14*_Z^2+9*_Z-2, .4687 .. .4727); y_2 := 2*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^4-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^3+14*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^2-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)+2; evala(Normal(y_1-y_2)); evala(y_2)

0

 

2*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^4-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^3+14*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^2-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)+2

(1)
 

NULL

Download simplify_symbolic_numbers.mw

Thank you for your help. 

Regards

Felix

Some menu fonts have become smaller under Windows 10 for some reason.
There where no changes of the system settings nor system updates. A system restart did not restore to normal font size. This also on Maple 2024 and lower.

Any ideas what could have caused this and how to restore to normal?

That's from annother Windows 10 system.

 

I recently solved the following Diophantine equations:
tan(3*pi/x)+4*sin(2*pi/x)-sqrt(x)=0
and
tan(13*pi/x)+4*sin(19*pi/x)-sqrt(x)=0
Unlike my old "pencil and paper" solution, I used Maple to practice with some sub-calculations to get some guesses for the solution. To confirm my guesses, I inserted them into the equations and used "simplify." The result was "zero." Is this "zero" the mathematically exact zero, or does Maple display a very small real number as "zero" after applying "simplify"?

I am working on obtaining the complete set of solutions for a given ordinary differential equation (ODE). While testing various cases from the auxiliary ODE method, I derived a solution of the form U(ξ). However, I am currently unable to determine which specific case or class from the established solution set this result corresponds to.

I would appreciate any guidance or method to correctly classify each obtained solution U(ξ) according to its respective case within the set of auxiliary ODE cases.

ode.mw

 Hi,

How can I replace all the expressions diff(G(xi), xi)/G(xi) with the new variable w(xi) in the next step? (Even the ones that have powers)

NULL

eq2 := c*a0*(-lambda*diff(G(xi), xi) - mu*G(xi))/G(xi) - c*a0*diff(G(xi), xi)^2/G(xi)^2 - alpha*a0*diff(G(xi), xi)/((1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - alpha*a0*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*diff(G(xi), xi)/((1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + alpha*a0*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu)));

c*a0*(-lambda*(diff(G(xi), xi))-mu*G(xi))/G(xi)-c*a0*(diff(G(xi), xi))^2/G(xi)^2-alpha*a0*(diff(G(xi), xi))/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))-alpha*a0*lambda/(2-4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2-4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(diff(G(xi), xi))/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+alpha*a0*lambda/(2+4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2+4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))-beta*a0^2*(diff(G(xi), xi))^2/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))-(1/2)*beta*a0^2*(diff(G(xi), xi))*lambda/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+(1/2)*beta*a0^2*(diff(G(xi), xi))*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+beta*a0^2*(diff(G(xi), xi))^2/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*beta*a0^2*(diff(G(xi), xi))*lambda/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+(1/2)*beta*a0^2*(diff(G(xi), xi))*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))-gamma*a0^3*(diff(G(xi), xi))^3/(G(xi)^3*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))-(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*lambda/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+gamma*a0^3*(diff(G(xi), xi))^3/(G(xi)^3*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*lambda/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))

(1)

NULL

Download 123.mw

How to solve these pde equations in maple to get the similar type graphs.

Ode equations we can solve directly but these equations are pde .

in the article they have solved the governing equations by series solution? 

can we solve these equations in maple also by series solution or any other method is there to solve these equations

I have used plot3d in Maple to generate a 3D plot, but I’m not sure how to export it in high resolution. I tried right-clicking to export the image directly, but the SVG output appeared garbled, and the JPEG version was too low in quality. I also attempted to export the plot using commands, but the resulting image still lacked sufficient resolution. I would like to ask how I can properly export a high-quality 3D figure from Maple.

Commands I have tried:

plotsetup(jpeg, plotoutput = "C:/Users/gfy/Desktop/data5151.jpg", plotoptions = `dpi=1200`);
print(ddd);
plotsetup(default);

How to replace the symbols “true” with t and “false” with f in the output of the following code:

with(Logic);

TruthTable(a &xor b)

I tried the following but it didn't work.
subs([true = t, false = f], TruthTable(a &xor b));

This solution by dsolve is correct. I get same solution. The problem is odetest does not give zero.

All my simplification attempts failed and adding assumptions to call to odetest does not change anything for what I tried. i.e. could not make Maple show that the result of odetest is zero.

Any one can come up with smart way to verify this solution is correct? 

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

restart;

ode:=diff(y(x),x)*(x-ln(diff(y(x),x))) = 1;
maple_sol:=dsolve(ode);

(diff(y(x), x))*(x-ln(diff(y(x), x))) = 1

y(x) = -(1+LambertW(-exp(-x))*x+LambertW(-exp(-x))^2)/LambertW(-exp(-x))+c__1

the_residue:=odetest(maple_sol,ode);

(-x+ln(-1/LambertW(-1/exp(x)))-LambertW(-1/exp(x)))/LambertW(-1/exp(x))

Digits:=100;
plot(the_residue,x=0..10)

100

 

 

Download odetest_challange_may_15_2025.mw

Note that coulditbe(the_residue=0) gives true, but this is not reliable way to check, so this method does not coumt.

I created the next code:

f := M+2*e*sin(M)+(5/4)*e^2*sin(2*M)+(13/12)*e^3*sin(3*M)-(1/4)*e^3*sin(M)+e^4*((103/96)*sin(4*M)-(11/24)*sin(2*M))

fb := Mb+2*eb*sin(Mb)+(5/4)*eb^2*sin(2*Mb)+(13/12)*eb^3*sin(3*Mb)-(1/4)*eb^3*sin(Mb)+eb^4*((103/96)*sin(4*Mb)-(11/24)*sin(2*Mb))

x := cos(wb-w+fb-f)

rho1 := ab*(1-eb^2)/(1+eb*cos(fb))

rho2 := a*(1-e^2)/(1+e*cos(f))

P3 = (5/2)*x^3-(3/2)*x

R3 = GM3*(rho1/rho2)^3*P3/rho2

When I do 

R3exp := mtaylor(R3, [e, eb], 5);

it returns 

R3exp := R3

When I do 

> R3temp := series(R3, e = 0, 5);
> R3exp := series(R3temp, eb = 0, 5);
> convert(R3exp, polynom);

it returns

R3

Could you tell me how I can expand in Taylor R3 around e=0 and eb=0 ?

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

1 2 3 4 5 6 7 Last Page 1 of 2415