MaplePrimes Questions

 Hi,

How can I replace all the expressions diff(G(xi), xi)/G(xi) with the new variable w(xi) in the next step? (Even the ones that have powers)

NULL

eq2 := c*a0*(-lambda*diff(G(xi), xi) - mu*G(xi))/G(xi) - c*a0*diff(G(xi), xi)^2/G(xi)^2 - alpha*a0*diff(G(xi), xi)/((1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - alpha*a0*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*diff(G(xi), xi)/((1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + alpha*a0*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu)));

c*a0*(-lambda*(diff(G(xi), xi))-mu*G(xi))/G(xi)-c*a0*(diff(G(xi), xi))^2/G(xi)^2-alpha*a0*(diff(G(xi), xi))/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))-alpha*a0*lambda/(2-4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2-4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(diff(G(xi), xi))/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+alpha*a0*lambda/(2+4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2+4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))-beta*a0^2*(diff(G(xi), xi))^2/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))-(1/2)*beta*a0^2*(diff(G(xi), xi))*lambda/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+(1/2)*beta*a0^2*(diff(G(xi), xi))*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+beta*a0^2*(diff(G(xi), xi))^2/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*beta*a0^2*(diff(G(xi), xi))*lambda/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+(1/2)*beta*a0^2*(diff(G(xi), xi))*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))-gamma*a0^3*(diff(G(xi), xi))^3/(G(xi)^3*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))-(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*lambda/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+gamma*a0^3*(diff(G(xi), xi))^3/(G(xi)^3*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*lambda/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))

(1)

NULL

Download 123.mw

How to solve these pde equations in maple to get the similar type graphs.

Ode equations we can solve directly but these equations are pde .

in the article they have solved the governing equations by series solution? 

can we solve these equations in maple also by series solution or any other method is there to solve these equations

I have used plot3d in Maple to generate a 3D plot, but I’m not sure how to export it in high resolution. I tried right-clicking to export the image directly, but the SVG output appeared garbled, and the JPEG version was too low in quality. I also attempted to export the plot using commands, but the resulting image still lacked sufficient resolution. I would like to ask how I can properly export a high-quality 3D figure from Maple.

Commands I have tried:

plotsetup(jpeg, plotoutput = "C:/Users/gfy/Desktop/data5151.jpg", plotoptions = `dpi=1200`);
print(ddd);
plotsetup(default);

How to replace the symbols “true” with t and “false” with f in the output of the following code:

with(Logic);

TruthTable(a &xor b)

I tried the following but it didn't work.
subs([true = t, false = f], TruthTable(a &xor b));

This solution by dsolve is correct. I get same solution. The problem is odetest does not give zero.

All my simplification attempts failed and adding assumptions to call to odetest does not change anything for what I tried. i.e. could not make Maple show that the result of odetest is zero.

Any one can come up with smart way to verify this solution is correct? 

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

restart;

ode:=diff(y(x),x)*(x-ln(diff(y(x),x))) = 1;
maple_sol:=dsolve(ode);

(diff(y(x), x))*(x-ln(diff(y(x), x))) = 1

y(x) = -(1+LambertW(-exp(-x))*x+LambertW(-exp(-x))^2)/LambertW(-exp(-x))+c__1

the_residue:=odetest(maple_sol,ode);

(-x+ln(-1/LambertW(-1/exp(x)))-LambertW(-1/exp(x)))/LambertW(-1/exp(x))

Digits:=100;
plot(the_residue,x=0..10)

100

 

 

Download odetest_challange_may_15_2025.mw

Note that coulditbe(the_residue=0) gives true, but this is not reliable way to check, so this method does not coumt.

I created the next code:

f := M+2*e*sin(M)+(5/4)*e^2*sin(2*M)+(13/12)*e^3*sin(3*M)-(1/4)*e^3*sin(M)+e^4*((103/96)*sin(4*M)-(11/24)*sin(2*M))

fb := Mb+2*eb*sin(Mb)+(5/4)*eb^2*sin(2*Mb)+(13/12)*eb^3*sin(3*Mb)-(1/4)*eb^3*sin(Mb)+eb^4*((103/96)*sin(4*Mb)-(11/24)*sin(2*Mb))

x := cos(wb-w+fb-f)

rho1 := ab*(1-eb^2)/(1+eb*cos(fb))

rho2 := a*(1-e^2)/(1+e*cos(f))

P3 = (5/2)*x^3-(3/2)*x

R3 = GM3*(rho1/rho2)^3*P3/rho2

When I do 

R3exp := mtaylor(R3, [e, eb], 5);

it returns 

R3exp := R3

When I do 

> R3temp := series(R3, e = 0, 5);
> R3exp := series(R3temp, eb = 0, 5);
> convert(R3exp, polynom);

it returns

R3

Could you tell me how I can expand in Taylor R3 around e=0 and eb=0 ?

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

Hi! how to find posint solution of this equation?

Is factorial move fast so that cannot solve?

any advice is appreciated.

restart

NULL

eq := `assuming`([factorial(x)+1 = y^2], [x::posint, y::posint])

factorial(x)+1 = y^2

(1)

`assuming`([solve(eq, {x, y})], [x <= 100, y <= 100])

{x = RootOf(factorial(_Z)-y^2+1), y = y}

(2)
 

NULL

Download find_posint_.mw

The last few mornings there's been a high rate of spam.  I just deleted 5 or 6 posts.  How are they getting through and why haven't they stopped?

... to solve familiar problems using Maple. The attached exercises "test" and "test1" don't produce the familiar result. What am I doing wrong?

test.mw

test1.mw

The following Array does not convert to a column vector as described in ?convert,Vector

A := Array([1, 2, 3]);
convert(A, Vector);# the default orientation should be column;
whattype(%);
convert(convert(A, list), Vector);# here the default orientation is column
                         A := [1, 2, 3]

                           [1, 2, 3]

                          Vector[row]

                              [1]
                              [ ]
                              [2]
                              [ ]
                              [3]

Is there something special with the data structure Array that convert(A, Vector[column]) has to be used to convert to a column vector?

Dear All,

I am facing some problems. This kind of error has been shown ""Error, (in plot/iplot2d/expression) bad range arguments 0.3e-1 = .1 .. .5, 0.3e-1 = .1 .. .5"

Error.mw

Hello,

With the new version 2025, double-clicking a file opens a second instance of Maple.

How can I make this open a new tab in the active instance, as it did with version 2024?

Thank you.

Bests regards.

I wanted to try this simplification in Maple 2025, only to find timelimit hangs.

Waited 3 hrs when timelimit was 30 second. It seems simplify got locked up and timelimit does not work.

Not only that, Maple itself hangs and clicking on retsrat kernel or red small bottom at lower level corner in Maple 2025 has no effect at all.  

Only way is to kill all of Maple from command line.

Make sure to save all your work before trying.

There are two bugs here: First is that timelimit still hangs (even though Maplesoft claimed it is fixed almost 5 years ago)

https://www.mapleprimes.com/maplesoftblog/213986-Introducing-Maple-Learn-officially

You will also be pleased to know that Maple 2021 addresses the timelimit() issue that you mentioned.

The second issue is that one can not close the kernel from frontend. (well, this is because kernel hanged)

Note that closing Maple works using File->EXIT but this leaves the Maple kernel/mserver  running  in background!

So had to go kill that process from command line manually also.

So make sure to do this, else you will end up with many mserver processes running in background after maple is closed if you try this more than one time.

Any one knows why this happens for this example? Should not timelimit have finally been fixed in Maple 2025?

I have been complaining about timelimit not always working for ages. Have no idea why Maplesoft can't figure solution to this problem for good. 

timelimit is the most important command for me, as without it, my program will never work and will just keep hanging.

I spend 50% of my time finding worarounds around Maple bugs instead of what I should be doing which is write more code.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1869. The version installed in this computer is 1866 created 2025, May 6, 10:52 hours Pacific Time, found in the directory /home/me/maple/toolbox/2025/Physics Updates/lib/`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

e:= -a*(-1/2*((1/2*x)^a)^4*(2^a)^4*_C8^4*a*x+1/2*((1/2*x)^a)^3*(2^a)^3*(((2^a)^2*((
1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8^3*x+1/4
*((1/2*x)^a)^2*(2^a)^2*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1
/2*x)^a)^2/_C8^2)^(1/2)*4^(1/2)*(x^2*(((1/2*x)^a)^4*(2^a)^4*_C8^4*a^2+(2^a)^4*(
(1/2*x)^a)^4*_C8^4+2*((1/2*x)^a)^2*(2^a)^2*_C8^2*a^4*b^2-2*((1/2*x)^a)^3*(2^a)^
3*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/
2)*_C8^3*a-4*a^2*b^2*(2^a)^2*((1/2*x)^a)^2*_C8^2+a^6*b^4-2*(1/2*x)^a*2^a*(((2^a
)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a
^3*b^2+2*b^2*(2^a)^2*((1/2*x)^a)^2*_C8^2-a^4*b^4+2*(1/2*x)^a*2^a*(((2^a)^2*((1/
2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a*b^2-a^2
*b^4+b^4)/(a-1)^2/(1+a)^2/_C8^2/((1/2*x)^a)^2/(2^a)^2)^(1/2)*_C8^2*a^2+1/2*a^5*
b^4*x-1/2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((
1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a^2*b^2*x-1/4*((1/2*x)^a)^2*(2^a)^2*(((2^a)^2*((1/
2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*4^(1/2)*(x^2*
(((1/2*x)^a)^4*(2^a)^4*_C8^4*a^2+(2^a)^4*((1/2*x)^a)^4*_C8^4+2*((1/2*x)^a)^2*(2
^a)^2*_C8^2*a^4*b^2-2*((1/2*x)^a)^3*(2^a)^3*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b
^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8^3*a-4*a^2*b^2*(2^a)^2*((1/2*x)
^a)^2*_C8^2+a^6*b^4-2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^
2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a^3*b^2+2*b^2*(2^a)^2*((1/2*x)^a)^2*
_C8^2-a^4*b^4+2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a
)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a*b^2-a^2*b^4+b^4)/(a-1)^2/(1+a)^2/_C8^2/((1
/2*x)^a)^2/(2^a)^2)^(1/2)*_C8^2-a^3*b^4*x+1/2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^
a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*b^2*x+1/2*a*b^
4*x)/(a-1)/(1+a)/_C8^2/(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1
/2*x)^a)^2/_C8^2)^(1/2)/((1/2*x)^a)^2/(2^a)^2:

try
  timelimit(30, (simplify(e) assuming real)):
catch:
   print("cought timelimit");
end try:

 

 

Download timelimit_hang_in_maple_2025.mw

Hello,
Can you tell me how to decompose a rational fraction into simple elements in Fp?

Thank you.

1 2 3 4 5 6 7 Last Page 2 of 2415