MaplePrimes Questions

Consider the task of finding the eigenvalues and eigenvectors of a simple 2x2 matrix.

Usually I can insert the contents of a Maple worksheet here, but for some reason the following worksheet cannot be inserted: Eigenvectors.mw

In that worksheet I try to use LinearAlgebra:-Eigenvectors(A). The eigenvalues contain a complex term, even though they are real for the given matrix. It's not clear what criteria are used in selecting a specific eigenvector for each eigenvalue.

I then show a more manual calculation.

I was expecting to obtain a simpler solution to this problem using LinearAlgebra:-Eigenvectors(A). Is this expectation unjustified? I am asking primarily from the perspective of a user of the software. 

It would be interesting to know the answer from the perspective of someone who knows the ins and outs of the implementation of the software as well, but as a user my initial expectation is a more digestible result that doesn't rely on knowing such implementation details.

hi,

What command can I use to solve the attached equation and draw its graph?

ode := -(q2-q4)*(q2-q3)*(q1-q4)*(q1-q3)*y(w)^2+(q1+q2-q3-q4)*(2*q1*q2-q1*q3-q1*q4-q2*q3-q2*q4+2*q3*q4)*(diff(y(w), w))*y(w)+(-2*q1^2-2*q1*q2+3*q1*q3+3*q1*q4-2*q2^2+3*q2*q3+3*q2*q4-6*q3*q4)*(diff(y(w), w))^2+(q1-q2+q3-q4)*(q1-q2-q3+q4)*(diff(y(w), w, w))*y(w)+(3*q1+3*q2-3*q3-3*q4)*(diff(y(w), w, w))*(diff(y(w), w))-3*(diff(y(w), w, w))^2+(-q1-q2+q3+q4)*(diff(y(w), w, w, w))*y(w)+2*(diff(y(w), w, w, w))*(diff(y(w), w)) = 0

-(q2-q4)*(q2-q3)*(q1-q4)*(q1-q3)*y(w)^2+(q1+q2-q3-q4)*(2*q1*q2-q1*q3-q1*q4-q2*q3-q2*q4+2*q3*q4)*(diff(y(w), w))*y(w)+(-2*q1^2-2*q1*q2+3*q1*q3+3*q1*q4-2*q2^2+3*q2*q3+3*q2*q4-6*q3*q4)*(diff(y(w), w))^2+(q1-q2+q3-q4)*(q1-q2-q3+q4)*(diff(diff(y(w), w), w))*y(w)+(3*q1+3*q2-3*q3-3*q4)*(diff(diff(y(w), w), w))*(diff(y(w), w))-3*(diff(diff(y(w), w), w))^2+(-q1-q2+q3+q4)*(diff(diff(diff(y(w), w), w), w))*y(w)+2*(diff(diff(diff(y(w), w), w), w))*(diff(y(w), w)) = 0

(1)

ans := dsolve(ode, y(w))

``

Download Ode_equation.mw

 

ODE for electrical circuit (right click on Documentblock, unselect show command does not work. Command still visble)u(t) = T*(diff(`ϕ`(t), t))+L*(diff(i(t), t))+i(t)*R

u(t) = T*(diff(varphi(t), t))+L*(diff(i(t), t))+i(t)*R

(1)

 

ODE for motor (toggle Documentblock, unselect show command is only effective on equations  3 and 4)i(t)*T = J*(diff(`ϕ`(t), t, t))

i(t)*T = J*(diff(diff(varphi(t), t), t))

(2)

Isolate i(t) and taking the derivative

i(t) = J*(diff(diff(varphi(t), t), t))/T

(3)

``

diff(i(t), t) = J*(diff(diff(diff(varphi(t), t), t), t))/T

(4)

``

Download Document_Block_hide_command.mw

dear all

am trying to do a task that Find all the roots of the equation (or three roots if there are more than three roots in the equation) by Newton's method f(x) = e^x^2 sin(x-5) accuracy = 10^-5 maple

and i wrote this code on maple 

f := x -> exp(x^2)*sin(x - 5);
df := x -> evalf(diff(f(x), x));
x0 := -1.0;
tol := 0.00001;
for i to 3 do
    x := x0;
    n := 0;
    while tol < abs(f(x)) do
        x := x - f(x)/df(x);
        n := n + 1;
    end do;
    printf("Root %d: %.5f (found in %d iterations)\n", i, x, n);
    x0 := x + 1.0;
end do;
f := proc (x) options operator, arrow; exp(x^2)*sin(x-5) end proc

 df := proc (x) options operator, arrow; evalf(diff(f(x), x)) 

    end proc


                           x0 := -1.0

                         tol := 0.00001

                           x := -1.0

                             n := 0

 

am getting an error message

" Error, (in df) invalid input: diff received -1.0, which is not valid for its 2nd argument "

hope you can help me with this issue

in Maple 2023 one can do File->Open and select an .mpl file and that will automatically open in new window using code editor.  see Maple2023-CodingTools.pdf

One problem I saw right away on windows 10, is that the diagonstic window has funny character at the end of the messages. Here is screen shot

 

To see if you reproduce this, here is the code I used. Simply save this in foo.mpl file and then use Maple file->open to open it (must use 2023 only for this to work)

A_class :=module()
    option object;

    #my variable
    export c::integer;

    export a::integer;

end module;

 

That is not all. If I simply shift the code up so the starting line in the file is not empty as above, the funny characters change to something else

 

 

Yet, it is the same exact code.  Can any one confirm this problem, and how to fix it so one can read the variable name?

 

I think I will stick to using notepad++ for my .mpl files for now.

 

I have some c# function that i want to use in maple, and I doing all according to this arcticle : https://www.mapleprimes.com/posts/38019-Calling-Out-To-C-From-Maple
but i still get this: 
Any ideas what i should do?

Hi MaplePrimes,

I've updated to the 2023 version of Maple. After the update I chose to remove older version folders in Windows.

Since then I cant't use my tasks any longer. I've re created the tasks and the are also shown in the Task Palette, but clicking on a task results in nothing. I can though create a new Task and after the creation all my tasks can then be used again.

Its like Maple doesn't recognize the correct Help Database from the beginning. I've reinstalled Maple 2023 two or three times to try to reset the whole installation to something from scratch. Nothing that I do seems to produce the desired result. Does anybody out there have a solution or suggestion to a probable solution?

I don't know of any file that I could attach to exemplify my problem. It's not a math/maple problem relating directly to the maple code language. My tasks themselves work fine once inserted in a document. It's the insertion itself that's the problem.

Thanks.

Consider the worksheet below containing a function that I came across while studying Apostol's Calculus. 

At the origin, this function has a defined directional derivative in all directions. It is not, however, continuous at the origin. We can see this by consider all points on the parabola x=y^2 except for the origin. The function takes on the value 1/2 on all such points but has value 0 at the origin and is thus discontinuous there.

My question is about a 3d plot of this function.

The plot seems a bit inaccurate because the ridge at the top extends all the way to the origin. 

If I hadn't done the calculations to know this, this plot would not give me this information. 

Is there a way to avoid this problem? Ie, to get more accuracy at points such as the origin here?

f := (x,y) -> piecewise(x=0, 0, x <> 0, x*y^2/(x^2+y^4))

f := proc (x, y) options operator, arrow; piecewise(x = 0, 0, x <> 0, x*y^2/(x^2+y^4)) end proc

(1)

plot3d(f,-1..1,-1..1)

 

f(y^2,y)

piecewise(y^2 = 0, 0, y^2 <> 0, 1/2)

(2)

 

Download DiscontScalarField3d.mw

Not getting Mantissa or Exponentb See Bottom

    |\^/|     Maple 2022 (X86 64 LINUX)
._|\|   |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2022
 \  MAPLE  /  All rights reserved. Maple is a trademark of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
# eqno = 10
> it := solve({
> 83.0 =  (57.9467777777778) * C_prev  + (-1.001) * C_ksteps  + (-67.1782222222222) * C_fat  + (-91.8695555555555) * C_carb  + (-24.4021555555556) * C_prot  + (-11.5003777777778) * C_fiber  + (-3.21432222222223) * C_sugar  + (-14.1697111111111) * C_saturated  + (-1.61272222222222) * C_fasted  + (1.01),
> 153.0 =  (-11.1222222222222) * C_prev  + (-1.001) * C_ksteps  + (99.9887777777778) * C_fat  + (22.2444444444444) * C_carb  + (48.3705444444444) * C_prot  + (17.2283222222222) * C_fiber  + (-5.21632222222223) * C_sugar  + (9.15358888888888) * C_saturated  + (0.389277777777778) * C_fasted  + (1.01),
> 84.0 =  (-17.1282222222222) * C_prev  + (-1.001) * C_ksteps  + (49.9387777777778) * C_fat  + (17.2394444444444) * C_carb  + (7.72994444444445) * C_prot  + (5.01612222222222) * C_fiber  + (29.8186777777778) * C_sugar  + (10.6550888888889) * C_saturated  + (1.39027777777778) * C_fasted  + (1.01),
> 78.0 =  (-8.11922222222223) * C_prev  + (0.) * C_ksteps  + (-23.1342222222222) * C_fat  + (16.2384444444445) * C_carb  + (-26.1038555555556) * C_prot  + (-12.7015777777778) * C_fiber  + (31.8206777777778) * C_sugar  + (6.05048888888888) * C_saturated  + (-1.61272222222222) * C_fasted  + (1.01),
> 87.0 =  (-8.11922222222223) * C_prev  + (3.003) * C_ksteps  + (-19.1302222222222) * C_fat  + (28.2504444444444) * C_carb  + (-16.4942555555556) * C_prot  + (-5.09397777777778) * C_fiber  + (6.79567777777777) * C_sugar  + (14.7591888888889) * C_saturated  + (-0.111222222222222) * C_fasted  + (1.01),
> 87.0 =  (37.9267777777778) * C_prev  + (-4.004) * C_ksteps  + (-48.1592222222222) * C_fat  + (-83.8615555555555) * C_carb  + (-6.08385555555555) * C_prot  + (0.611722222222222) * C_fiber  + (-58.0691222222222) * C_sugar  + (-20.0756111111111) * C_saturated  + (-1.61272222222222) * C_fasted  + (1.01),
> 133.0 =  (-17.1282222222222) * C_prev  + (3.003) * C_ksteps  + (-56.1672222222222) * C_fat  + (15.2374444444444) * C_carb  + (13.4356444444444) * C_prot  + (3.01412222222222) * C_fiber  + (13.8026777777778) * C_sugar  + (-12.2678111111111) * C_saturated  + (-0.111222222222222) * C_fasted  + (1.01),
> 78.0 =  (-11.1222222222222) * C_prev  + (1.001) * C_ksteps  + (52.9417777777778) * C_fat  + (-2.78055555555555) * C_carb  + (5.82804444444444) * C_prot  + (-0.589477777777777) * C_fiber  + (-39.5506222222222) * C_sugar  + (-0.0556111111111198) * C_saturated  + (4.39327777777778) * C_fasted  + (1.01),
> 84.0 =  (-23.1342222222222) * C_prev  + (0.) * C_ksteps  + (10.8997777777778) * C_fat  + (79.3014444444444) * C_carb  + (-2.28005555555555) * C_prot  + (4.01512222222222) * C_fiber  + (23.8126777777778) * C_sugar  + (5.95038888888888) * C_saturated  + (-1.11222222222222) * C_fasted  + (1.01) },
> [C_prev, C_ksteps, C_fat, C_carb,
>  C_prot, C_fiber, C_sugar, C_saturated,
>  C_fasted]);
                                   16                              18
it := [[C_prev = -0.7676394482 x 10  , C_ksteps = 0.1095758760 x 10  ,

                             16                             16
    C_fat = 0.7856937061 x 10  , C_carb = -0.5792833066 x 10  ,

                               17                             17
    C_prot = -0.1954662069 x 10  , C_fiber = 0.3025217874 x 10  ,

                               15                                  17
    C_sugar = 0.7496058869 x 10  , C_saturated = -0.1779505040 x 10  ,

                                 18
    C_fasted = -0.1062355291 x 10  ]]

> C_prev_V := it[1][1];
                                                          16
                   C_prev_V := C_prev = -0.7676394482 x 10

> C_prev_M := SFloatMantissa(C_prev_V);
                                                          16
                   C_prev_M := C_prev = -0.7676394482 x 10

> C_prev_E := SFloatExponent(C_prev_V);
                                                          16
                   C_prev_E := C_prev = -0.7676394482 x 10

> quit;
memory used=2.3MB, alloc=8.3MB, time=0.03

I always run with the option "create a new engine for each document". which is a very nice feature in Maple.

The problem is that, when I have say 5 worksheets open and running, and one of them them hangs, I need to kill mserver.,exe from the task manager which is running this worksheet. 

most of the times I end up killing the wrong mserver.exe. I can sometimes guess by the CPU it is using. But if I have two running with high CPU it is not possible guess.

There is no ID or anything associated with the name. It will be nice if each process has in its name an ID which is also displayed in the worksheet bottom bar so one knows. This ID could be simply some random number. So the display will show  mserver-13847,exe ,   mserver-82739,exe and so on. And this name will be automtically displayed at the bottom bar of the worksheet where all time used, cpu used and memory used and so on is now displayed.  This will be a nice feature to add to Maple.  

If this is not possible, how about just displaying the PID (process ID)  of the mserver.exe connected to the worksheet in the bottom bar? This will also work, as task manager/details lists a processes with the PID there, so it will make it easy to find.

Meanwhile, while waiting for Maple 2033 to hopefully implement this feature, does anyone know of a method to help find which mserver.,exe is connected to which specific worksheet?

Windows 10.

Q1: In the above, why can I only convert radians to radians. Or: Why does the menu "Chose unit" not offer arcdeg?

Q2: In the above, why is nothing happening when I enter arcdeg in the field "Enter Unit"?

Q3: How to change the displayed symbol for arcdeg to ° (in the attachment are failed attempts)?

arcdeg.mw

Hi, 

How to determinate cartesian equation of Surface of revolution S ( obtained by rotation of curve around line 

) and how to illustrat it geometricly ?

Thanks
QuestionRev.mw

Do others see this problem? I do not understand what is going on. I am seeing this problem on many integrals

restart;
int(integrand)
   #Large output displayed
   #echo the input
int(...)
    #Large output displayed
    #echo the input 
int(...)
    #echo the input only. Large output gone
int(...)
   #echo the input only. Large output gone

restart;
int(...)
   #Large output displayed
   #echo the input 
int(...)
   #echo the input only. Large output gone
int(...)
   #echo the input only. Large output gone

In all the above, it is the same command used.

i.e. first time (sometimes needs two times), Maple displays large out. But looking at the end of this output, the very last line, we see the same integral/command is returned.

But second time and any attempt after that, it no longer gives that large output, but returns back/echos the command on the screen only.

Attached is worksheet showing this. This is new behaviour in Maple 2023 and I am baffled by it. Do others see it? Why does it happen. I will report it if others confirm it. I just wanted to make sure first it is not just me seeing this. 

Is it possible the large output is side effect and is being printed by error to the screen by internal Maple code? But why does it stop the second/third time?
 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x)

(a*d-b*c)*e*d*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

e*(a*d-b*c)^3*d^3*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

-g^2*((1/6)*(2*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2-6*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+4*A*B*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)-12*A*B*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+12*A*B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)+7*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*A^2*b^2*e^2-6*A^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*A^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*A*B*b^2*e^2+7*A*B*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*A*B*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*B^2*b^2*e^2-4*B^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+2*B^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2)*e*(a*d-b*c)^3/((e*b-e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b))^3*(A+B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))*d^3*e*(a*d-b*c)^3)/d^3

e*(a*d-b*c)*d*(a^2*d^2-2*a*b*c*d+b^2*c^2)*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

-((1/6)*(2*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2-6*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+4*A*B*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)-12*A*B*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+12*A*B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)+7*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*A^2*b^2*e^2-6*A^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*A^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*A*B*b^2*e^2+7*A*B*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*A*B*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*B^2*b^2*e^2-4*B^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+2*B^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2)*e*(a*d-b*c)^3/((e*b-e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b))^3*(A+B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))*d^3*e*(a*d-b*c)^3)/d^3

int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-(a*d-b*c)*e^3*b*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-(a*d-b*c)*e*_z/b+d*e/b))^3*b*((-(a*d-b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-(a*d-b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

(-a*d+b*c)^3*e^3*b*(-(1/6)*(2*B^2*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln((-a*d+b*c)*e*_z/b+d*e/b)*((-a*d+b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln((-a*d+b*c)*e*_z/b+d*e/b)*((-a*d+b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*((-a*d+b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*((-a*d+b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*((-a*d+b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*((-a*d+b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln((-a*d+b*c)*e*_z/b+d*e/b))^3*b*(((-a*d+b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln((-a*d+b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-g^2*((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-(a*d-b*c)*e^3*b*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-(a*d-b*c)*e*_z/b+d*e/b))^3*b*((-(a*d-b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-(a*d-b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

restart;

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-e^3*(a*d-b*c)*b*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-e*(a*d-b*c)*_z/b+d*e/b))^3*b*((-e*(a*d-b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-e*(a*d-b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

e^3*(-a*d+b*c)^3*b*(-(1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)*(e*(-a*d+b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(e*(-a*d+b*c)*_z/b+d*e/b)*(e*(-a*d+b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(e*(-a*d+b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(e*(-a*d+b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(e*(-a*d+b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(e*(-a*d+b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(e*(-a*d+b*c)*_z/b+d*e/b))^3*b*((e*(-a*d+b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d+b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-g^2*((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-e^3*(a*d-b*c)*b*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-e*(a*d-b*c)*_z/b+d*e/b))^3*b*((-e*(a*d-b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-e*(a*d-b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

 

 


 

Download int_stops_working_march_11_2023.mw

 

Update

Do you want to see something more bizzar? Try this command on same integral

restart;
res:=int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x,method=_RETURNVERBOSE)

It prints to the screen results with ~ all over. But this seems to be internal leaked output and not part of the actual output returned.

By issuing the command as follows instead

restart;
res:=int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x,method=_RETURNVERBOSE):

notice the at the end!  I still see the same output as above printed displayed.

This tells me this is a leaked printout from an internal integration function.

Could others confirm this?

How would I produce output from ShowSolution in Latex form?

For example, if I run the following command.

$ maple2022/bin/maple -q problem.mpl

where problem.mpl is the following:

with(Student[Calculus1]):
ShowSolution(Diff(ln(x),x));

I get the following output.

Differentiation Steps
    Diff(ln(x),x)
▫    1. Apply the natural logarithm rule
        ◦ Recall the definition of the natural logarithm rule
        Diff(ln(x),x) = x^(-1)
    This gives:
    x^(-1)

I want the solver to show the steps in Latex form. How can I achieve this?

First issue I see in Maple 2023 integrate

Example 1

restart;
int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

Example 2

restart;
int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

Example 3

restart;
int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

 

Worksheet below for 2023 and also for 2022.2 showing this did not have this problem in 2022.2. Internally for me, this cause other problem when post-processing this, that is why I found it. Any one knows what caused it?  Maple 2022.2 result is much longer, but it does have this "undefined" issue in the result.


 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*undefined*x*(3*c*e*x^3+4*c*d*x^2+6*a*e*x+12*a*d)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

(1+x)^(1/2)*(x^2-x+1)^(1/2)*undefined*x*(x^3+4)/(x^3+1)^(1/2)

restart;

int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

undefined*(c*x^2+2*b)*(c*x^4+b*x^2)^(3/2)/(x^(1/2)*(c*x^2+b)*(x*(c*x^2+b))^(1/2))

 


 

Download bug_3_maple_2023_int_march_10_2023.mw

 

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(2/1155)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(372*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6+245*x^6*c^4*d*e^6+300*x^5*a*c^3*e^7+145*x^5*c^4*d^2*e^5-x^4*c^4*d^3*e^4+255*x^3*a^2*c^2*e^7+2*x^3*c^4*d^4*e^3+8*x^2*c^4*d^5*e^2+60*x*a^3*c*e^7+360*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4-12*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2-16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*c^3*d^6*e-432*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6-336*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4+112*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2+766*x^4*a*c^3*d*e^6+16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^4*d^7+60*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^3*e^7+518*x^3*a*c^3*d^2*e^5+581*x^2*a^2*c^2*d*e^6+46*x^2*a*c^3*d^3*e^4+373*x*a^2*c^2*d^2*e^5+2*x*a*c^3*d^4*e^3+60*a^3*c*d*e^6+47*a^2*c^2*d^3*e^4+8*a*c^3*d^5*e^2+105*x^7*c^4*e^7-24*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^2*c*d^2*e^5-100*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a*c^2*d^4*e^3)/(c^2*e^5*(c*e*x^3+c*d*x^2+a*e*x+a*d))

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

-(1/55)*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(-10*x^7+(27*I)*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-81*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-38*x^4-28*x)/(x^3+1)

 


 

Download maple_2022_int_march_10_2023.mw

5 6 7 8 9 10 11 Last Page 7 of 2213