MaplePrimes Questions

I have maplesim installed and I get the error "Error, `MapleSim` does not evaluate to a module" when I run A:=MapleSim:-LinkModel(); in a Maple worksheet.

Does anyone know how to solve this error?

how can i get this pde solved ( numeric or analytical)
 

restart

pde__1 := diff(z(x, t), `$`(t, 2))-(diff(z(x, t), `$`(x, 2)))+z(x, t)^2 = 6*x*t*(-t^2+x^2)+x^6*t^6

diff(diff(z(x, t), t), t)-(diff(diff(z(x, t), x), x))+z(x, t)^2 = 6*x*t*(-t^2+x^2)+x^6*t^6

(1)

conds__1 := z(x, 0) = 0, z(0, t) = 0, z(1, t) = t^3

pdsolve([pde__1, conds__1])

``

NULL


 

Download pde.mw

Hi guys,

I know how to plot inequality system through using with(plots) and inequal term. however, I couldn't plot following system of inqulity equations:

alpha <= 0.0002500000000*(-18000.*m^2 + 47271.*m + 39514. + sqrt(3.24000000*10^8*m^4 - 1.701756000*10^9*m^3 - 4.266980559*10^9*m^2 - 3.036299412*10^9*m - 6.95987804*10^8))/(9.*m^2 + 12.*m + 4.), 0.00005000000000*(-90000.*m^2 + 237237.*m + 198158. + sqrt(8.100000000*10^9*m^4 - 4.270266000*10^10*m^3 - 1.069976858*10^11*m^2 - 7.612670111*10^10*m - 1.744924704*10^10))/(9.*m^2 + 12.*m + 4.) <= alpha, -0.6666666667 < m, m < -0.6665522013

please let me know how we can plot it.

with best

u(x,t)=sin(x)cos(t) exact solution 

approxmation solution u(x,t) =sin(x)sin(t)

 

Using t=0 .. 3*Pi the plot is truncated. Changing the 3*Pi to a number, then the full plot shows.

Also keeping 3*Pi but changing y=-1..1 to y=-1.01 .. 1.01 now the full plot shows again.

Is the above normal behaviour or it it a bug?


 

interface(version);

`Standard Worksheet Interface, Maple 2022.1, Windows 10, May 26 2022 Build ID 1619613`

restart;
ode := diff(y(t), t$2) + y(t)=0;
DEtools:-DEplot(ode, y(t), t=0 .. 3*Pi, y=-1 .. 1,[[y(0)=1,D(y)(0)=0]],linecolor=blue);

diff(diff(y(t), t), t)+y(t) = 0

#replacing 3*Pi by a number, then it shows the full plot
restart;
ode := diff(y(t), t$2) + y(t)=0;
DEtools:-DEplot(ode, y(t), t=0 .. 10, y=-1 .. 1,[[y(0)=1,D(y)(0)=0]],linecolor=blue);

diff(diff(y(t), t), t)+y(t) = 0

#keeping 3*Pi but changing the y range, it now also show the full plot
restart;
ode := diff(y(t), t$2) + y(t)=0;
DEtools:-DEplot(ode, y(t), t=0 .. 3*Pi, y=-1.01 .. 1.01,[[y(0)=1,D(y)(0)=0]],linecolor=blue);

diff(diff(y(t), t), t)+y(t) = 0

 


 

Download strange_result_of_DEplot.mw

 

hallo every body 

please can you help me 

how do i solve this differential linear system with respect lambda is positive number  

i use maple 18

Let the differential system with $\lambda>0$

\begin{equation}
\begin{array}{ccc}
\dot{x}=y(t)\\
\dot{y}=z(t)\\
\dot{z}=-\lambda y(t)-h(t)
\end{array}
\end{equation}

prob.pdf

Is there any chance to sort the array in maple and add the non-zero values? PFA the screenshot. I actually intend to add the non-zero values (leaving behind the dumX entries). How can I add the numerical values only?

I installed just today the 15-day trial version of Maple Flow. 

I could get simple 2D plots of functions but did not succeeded in using fieldplot.

Does fieldplot() work in Maple Flow?

.Hello everybody

.In the attached code how I can compute \lambda2(t,s) and Vbar(s) symbolically

 when I run them, some parts can't be computed. how should I solve this problem?

2.mw

Question 1: Given: c^3 = 1000
How can I have MapleFlow 2022 solve for c?

I can do this manually, of course... by entering...
c=1000^1/3 =
But I haven't been able to figgure out how to have MapleFlow solve for "c" automatically.

Question 2: How to find the log to the base 10?
As it  seems the default is base e.

Question 3: What is antilog function for a given base?

Thanks for any help.

 

Why maple give empty solutions? See ref. (12) in the attached wokrsheet. Is there anything missing when deriving Sols?

sols_tw.mw

hi im currently doing my thesis and can somebody help me to develope the code? pls im stuck..

restart;
_local(I);
Digits := 15;
de1 := (1 - p)*(diff(S(t), t) + mu*S(t)) + p*(diff(S(t), t) + mu*S(t) + beta*S(t)*I(t) - rho*R(t) - varepsilon);
de2 := (1 - p)*(diff(E(t), t) + (alpha1 + mu)*E(t)) + p*(diff(E(t), t) + (alpha1 + mu)*E(t) - beta*S(t)*I(t));
de3 := (1 - p)*(diff(I(t), t) + (alpha2 + delta + mu)*I(t)) + p*(diff(I(t), t) + (alpha2 + delta + mu)*I(t) - alpha1*E(t));
de4 := (1 - p)*(diff(R(t), t) + (mu + rho)*R(t)) + p*(diff(R(t), t) + (mu + rho)*R(t) - alpha2*I(t));
ibvc := S(0) = 2304219, E(0) = 84929, I(0) = 299, R(0) = 71411;
sys1 := eval([de1, de2, de3, de4], p = 1);
dsolve(sys1);
sys0 := eval~(sys1, [{I = 0, R = 0}, {I = 0, S = 0}, {E = 0}, {I = 0}]);
sys_p := `*`~(1 - p, sys0) +~ `*`~(p, sys1);
ode1, ode2, ode3, ode4 := seq(sys_p[j], j = 1 .. 4);
ode1;
de1;
collect(expand(ode1 - de1), S(t), factor);
ode2 - de2;
ode3 - de3;
ode4 - de4;
mu := 0.133*10^(-5);
varepsilon := 0.99879;
delta := 0.004554;
beta := 0.1009*10^(-6);
alpha1 := 0.0008999;
alpha2 := 0.1997;
rho := 0.00090021;
res := dsolve({ibvc, ode1, ode2, ode3, ode4}, numeric, parameters = [p], abserr = 0.1*10^(-14), relerr = 0.1*10^(-12));
res(parameters = [0.5]);
res(50);
plots:-odeplot(res, [t, S(t)], 0 .. 100);
res(parameters = [1]);
plots:-odeplot(res, [t, S(t)], 0 .. 100);
Q := proc(p, {scene::list := [t, S(t)], range::range := 0 .. 100}) if not p::realcons then return 'procname(_passed)'; end if; res(parameters = [p]); plots:-odeplot(res, scene, range, _rest); end proc;
Q(0.5, color = blue);
plots:-animate(Q, [p, range = 0 .. 50], p = 0 .. 1, trace = 24);
n := 4;
s := unapply(add(g[k](t)*p^k, k = 0 .. n), t);
e := unapply(add(h[k](t)*p^k, k = 0 .. n), t);
i := unapply(add(i[k](t)*p^k, k = 0 .. n), t);
r := unapply(add(j[k](t)*p^k, k = 0 .. n), t);
Error, (in i[0]) too many levels of recursion
DE1 := series(eval(ode1, {E = e, I = i, R = r, S = s}), p = 0, n + 1);
DE2 := series(eval(ode2, {E = e, I = i, R = r, S = s}), p = 0, n + 1);
DE3 := series(eval(ode3, {E = e, I = i, R = r, S = s}), p = 0, n + 1);
DE4 := series(eval(ode4, {E = e, I = i, R = r, S = s}), p = 0, n + 1);
Error, (in i[0]) too many levels of recursion
Error, (in i[0]) too many levels of recursion
Error, (in i[0]) too many levels of recursion
Error, (in i[0]) too many levels of recursion
M := eval([ibvc], {E(0) = e(0), I(0) = i(0), R(0) = r(0), S(0) = s(0)});
Error, (in i[0]) too many levels of recursion

I have say  I am taking for example purpose only i need in general

v:="1:1":
k:=4

printf("%s]  is %g, v, k) 

Now i want the %s] part in some other color say green or red some dark color.

the %s is inside which need to replaced by the v which will keep coming

I want it for a general say for some part of the printf in some color

At present atleast i want

let F be a function say F(v,k) and it prints out 

printf("%s]  is %g, v, k)  where it prints out the %s] part in dark color

I want to collect up the equation terms by the numerical value of the terms coefficient? Have tried sort collect combine...
So far the best I have come up with is nops(indets(on each term). And put them in seperate lists. This still doesn't quiet do the trick.
I am looking to achieve. Would to happy to have then as seperate lists or equations.

(a_1^5+a_2^5...)+5(a_1^4a_2+a_1^4a_3....)+10(a_1^3a_2^2 ....)+20(  ....   )+......+60(a_1^2a_2a_3a_4+ a_1a_2^2a_3a_4....)


 

restart

pn := (a[1]+a[2]+a[3]+a[4])^5

(a[1]+a[2]+a[3]+a[4])^5

pn1 := expand(pn)

a[1]^5+5*a[1]^4*a[2]+5*a[1]^4*a[3]+5*a[1]^4*a[4]+10*a[1]^3*a[2]^2+20*a[1]^3*a[2]*a[3]+20*a[1]^3*a[2]*a[4]+10*a[1]^3*a[3]^2+20*a[1]^3*a[3]*a[4]+10*a[1]^3*a[4]^2+10*a[1]^2*a[2]^3+30*a[1]^2*a[2]^2*a[3]+30*a[1]^2*a[2]^2*a[4]+30*a[1]^2*a[2]*a[3]^2+60*a[1]^2*a[2]*a[3]*a[4]+30*a[1]^2*a[2]*a[4]^2+10*a[1]^2*a[3]^3+30*a[1]^2*a[3]^2*a[4]+30*a[1]^2*a[3]*a[4]^2+10*a[1]^2*a[4]^3+5*a[1]*a[2]^4+20*a[1]*a[2]^3*a[3]+20*a[1]*a[2]^3*a[4]+30*a[1]*a[2]^2*a[3]^2+60*a[1]*a[2]^2*a[3]*a[4]+30*a[1]*a[2]^2*a[4]^2+20*a[1]*a[2]*a[3]^3+60*a[1]*a[2]*a[3]^2*a[4]+60*a[1]*a[2]*a[3]*a[4]^2+20*a[1]*a[2]*a[4]^3+5*a[1]*a[3]^4+20*a[1]*a[3]^3*a[4]+30*a[1]*a[3]^2*a[4]^2+20*a[1]*a[3]*a[4]^3+5*a[1]*a[4]^4+a[2]^5+5*a[2]^4*a[3]+5*a[2]^4*a[4]+10*a[2]^3*a[3]^2+20*a[2]^3*a[3]*a[4]+10*a[2]^3*a[4]^2+10*a[2]^2*a[3]^3+30*a[2]^2*a[3]^2*a[4]+30*a[2]^2*a[3]*a[4]^2+10*a[2]^2*a[4]^3+5*a[2]*a[3]^4+20*a[2]*a[3]^3*a[4]+30*a[2]*a[3]^2*a[4]^2+20*a[2]*a[3]*a[4]^3+5*a[2]*a[4]^4+a[3]^5+5*a[3]^4*a[4]+10*a[3]^3*a[4]^2+10*a[3]^2*a[4]^3+5*a[3]*a[4]^4+a[4]^5

els := convert({op(pn1)}, list)

[a[1]^5, a[2]^5, a[3]^5, a[4]^5, 5*a[1]*a[2]^4, 5*a[1]*a[3]^4, 5*a[1]*a[4]^4, 10*a[1]^2*a[2]^3, 10*a[1]^2*a[3]^3, 10*a[1]^2*a[4]^3, 10*a[1]^3*a[2]^2, 10*a[1]^3*a[3]^2, 10*a[1]^3*a[4]^2, 5*a[1]^4*a[2], 5*a[1]^4*a[3], 5*a[1]^4*a[4], 5*a[2]*a[3]^4, 5*a[2]*a[4]^4, 10*a[2]^2*a[3]^3, 10*a[2]^2*a[4]^3, 10*a[2]^3*a[3]^2, 10*a[2]^3*a[4]^2, 5*a[2]^4*a[3], 5*a[2]^4*a[4], 5*a[3]*a[4]^4, 10*a[3]^2*a[4]^3, 10*a[3]^3*a[4]^2, 5*a[3]^4*a[4], 20*a[1]*a[2]*a[3]^3, 20*a[1]*a[2]*a[4]^3, 30*a[1]*a[2]^2*a[3]^2, 30*a[1]*a[2]^2*a[4]^2, 20*a[1]*a[2]^3*a[3], 20*a[1]*a[2]^3*a[4], 20*a[1]*a[3]*a[4]^3, 30*a[1]*a[3]^2*a[4]^2, 20*a[1]*a[3]^3*a[4], 30*a[1]^2*a[2]*a[3]^2, 30*a[1]^2*a[2]*a[4]^2, 30*a[1]^2*a[2]^2*a[3], 30*a[1]^2*a[2]^2*a[4], 30*a[1]^2*a[3]*a[4]^2, 30*a[1]^2*a[3]^2*a[4], 20*a[1]^3*a[2]*a[3], 20*a[1]^3*a[2]*a[4], 20*a[1]^3*a[3]*a[4], 20*a[2]*a[3]*a[4]^3, 30*a[2]*a[3]^2*a[4]^2, 20*a[2]*a[3]^3*a[4], 30*a[2]^2*a[3]*a[4]^2, 30*a[2]^2*a[3]^2*a[4], 20*a[2]^3*a[3]*a[4], 60*a[1]*a[2]*a[3]*a[4]^2, 60*a[1]*a[2]*a[3]^2*a[4], 60*a[1]*a[2]^2*a[3]*a[4], 60*a[1]^2*a[2]*a[3]*a[4]]

NULL

add(els[i], i = 1 .. nops(els))

a[1]^5+5*a[1]^4*a[2]+5*a[1]^4*a[3]+5*a[1]^4*a[4]+10*a[1]^3*a[2]^2+20*a[1]^3*a[2]*a[3]+20*a[1]^3*a[2]*a[4]+10*a[1]^3*a[3]^2+20*a[1]^3*a[3]*a[4]+10*a[1]^3*a[4]^2+10*a[1]^2*a[2]^3+30*a[1]^2*a[2]^2*a[3]+30*a[1]^2*a[2]^2*a[4]+30*a[1]^2*a[2]*a[3]^2+60*a[1]^2*a[2]*a[3]*a[4]+30*a[1]^2*a[2]*a[4]^2+10*a[1]^2*a[3]^3+30*a[1]^2*a[3]^2*a[4]+30*a[1]^2*a[3]*a[4]^2+10*a[1]^2*a[4]^3+5*a[1]*a[2]^4+20*a[1]*a[2]^3*a[3]+20*a[1]*a[2]^3*a[4]+30*a[1]*a[2]^2*a[3]^2+60*a[1]*a[2]^2*a[3]*a[4]+30*a[1]*a[2]^2*a[4]^2+20*a[1]*a[2]*a[3]^3+60*a[1]*a[2]*a[3]^2*a[4]+60*a[1]*a[2]*a[3]*a[4]^2+20*a[1]*a[2]*a[4]^3+5*a[1]*a[3]^4+20*a[1]*a[3]^3*a[4]+30*a[1]*a[3]^2*a[4]^2+20*a[1]*a[3]*a[4]^3+5*a[1]*a[4]^4+a[2]^5+5*a[2]^4*a[3]+5*a[2]^4*a[4]+10*a[2]^3*a[3]^2+20*a[2]^3*a[3]*a[4]+10*a[2]^3*a[4]^2+10*a[2]^2*a[3]^3+30*a[2]^2*a[3]^2*a[4]+30*a[2]^2*a[3]*a[4]^2+10*a[2]^2*a[4]^3+5*a[2]*a[3]^4+20*a[2]*a[3]^3*a[4]+30*a[2]*a[3]^2*a[4]^2+20*a[2]*a[3]*a[4]^3+5*a[2]*a[4]^4+a[3]^5+5*a[3]^4*a[4]+10*a[3]^3*a[4]^2+10*a[3]^2*a[4]^3+5*a[3]*a[4]^4+a[4]^5

L1 := []; L2 := []; L3 := []; L4 := []; for i to nops(els) do if nops(indets(els[i])) = 1 then L1 := [op(L1), els[i]] elif nops(indets(els[i])) = 2 then L2 := [op(L2), els[i]] elif nops(indets(els[i])) = 3 then L3 := [op(L3), els[i]] else L4 := [op(L4), els[i]] end if end do; L1; L2; L3; L4

[60*a[1]*a[2]*a[3]*a[4]^2, 60*a[1]*a[2]*a[3]^2*a[4], 60*a[1]*a[2]^2*a[3]*a[4], 60*a[1]^2*a[2]*a[3]*a[4]]

indets(els[7])

{a[1], a[4]}

NULL

indets(els(5))

{}

`~`[op](1 .. -1, L2)

[5, a[1], a[2]^4, 5, a[1], a[3]^4, 5, a[1], a[4]^4, 10, a[1]^2, a[2]^3, 10, a[1]^2, a[3]^3, 10, a[1]^2, a[4]^3, 10, a[1]^3, a[2]^2, 10, a[1]^3, a[3]^2, 10, a[1]^3, a[4]^2, 5, a[1]^4, a[2], 5, a[1]^4, a[3], 5, a[1]^4, a[4], 5, a[2], a[3]^4, 5, a[2], a[4]^4, 10, a[2]^2, a[3]^3, 10, a[2]^2, a[4]^3, 10, a[2]^3, a[3]^2, 10, a[2]^3, a[4]^2, 5, a[2]^4, a[3], 5, a[2]^4, a[4], 5, a[3], a[4]^4, 10, a[3]^2, a[4]^3, 10, a[3]^3, a[4]^2, 5, a[3]^4, a[4]]

NULL

op(2, L2[1])

a[1]

op(3, L2[1])

a[2]^4``

Download 30-7-22_Q_sort_equation_by_numerical_coeffs.mw

Why maple return trivial solution after integration (see (11) in the attached .mw))? The result should be some non-trivial solution.

solutionsg.mw

2 3 4 5 6 7 8 Last Page 4 of 2143