This post is related to the question. There were  proposed two ways of finding the volume of the cutted part of a sphere in the form of a wedge.  Here the procedure is presented that shows the rest of the sphere. Parameters procedure: R - radius of the sphere, H1 - the distance the first cutting plane to the plane  xOy,  H2 -  the distance the second cutting plane to the plane  zOy. Necessary conditions:  R>0,  H1>=0,  H2>=0,  H1^2+H2^2<R^2 . For clarity, different surfaces are painted in different colors.

restart;

Pic := proc (R::positive, H1::nonnegative, H2::nonnegative)

local A, B, C, E, F;

if R^2 <= H1^2+H2^2 then error "Should be H1^(2)+H2^(2)<R^(2)" end if;

A := plot3d([R*sin(theta)*cos(phi), R*sin(theta)*sin(phi), R*cos(theta)], phi = arctan(sqrt(-H1^2-H2^2+R^2), H2) .. 2*Pi-arctan(sqrt(-H1^2-H2^2+R^2), H2), theta = 0 .. Pi, color = green);

B := plot3d([R*sin(theta)*cos(phi), R*sin(theta)*sin(phi), R*cos(theta)], phi = -arctan(sqrt(-H1^2-H2^2+R^2), H2) .. arctan(sqrt(-H1^2-H2^2+R^2), H2), theta = 0 .. arccos(sqrt(R^2-H2^2-H2^2*tan(phi)^2)/R), color = green);

C := plot3d([R*sin(theta)*cos(phi), R*sin(theta)*sin(phi), R*cos(theta)], phi = -arctan(sqrt(-H1^2-H2^2+R^2), H2) .. arctan(sqrt(-H1^2-H2^2+R^2), H2), theta = arccos(H1/R) .. Pi, color = green);

E := plot3d([r*cos(phi), r*sin(phi), H1], phi = -arccos(H2/sqrt(R^2-H1^2)) .. arccos(H2/sqrt(R^2-H1^2)), r = H2/cos(phi) .. sqrt(R^2-H1^2), color = blue);

F := plot3d([H2, r*cos(phi), r*sin(phi)], phi = arccos(sqrt(-H1^2-H2^2+R^2)/sqrt(R^2-H2^2)) .. Pi-arccos(sqrt(-H1^2-H2^2+R^2)/sqrt(R^2-H2^2)), r = H1/sin(phi) .. sqrt(R^2-H2^2), color = gold);

plots[display](A, B, C, E, F, axes = none, view = [-1.5 .. 1.5, -1.5 .. 1.5, -1.5 .. 1.5], scaling = constrained, lightmodel = light4, orientation = [60, 80]);

end proc:

 

Example of use:

Pic(1,  0.5,  0.3);

                             

 

 


Please Wait...