Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

The uploaded worksheet describes a mechanics scenario which I would like to animate.

While I understand the expression for the kinetic energy of the torus, the term containing cos(theta) within the expression for the KE of the pearl baffles me.

From which physics aspect of the scenario does this term derive?

Pearl_in_torus.mw


 

eq := solve({2*m-5 < 0, -3*m <= 5}, {m})

{-5/3 <= m, m < 5/2}

(1)

" implies result list m  in  `&Zopf;`, so m can m=0, m=1, m=2 and count=3"``

count := 0:

countt = 4

(2)

``

``

``

eq := solve({m-3 < 0, -m <= 6}, {m})

{-6 <= m, m < 3}

(3)

" implies result list m  in  `&Zopf;`, so m can m=-6, m=-5, m=-4, m=-3, m=-2, m=-1, m=0, m=1, m=2 and count=3"

count := 0:

countt = 9

(4)

``


i want to list variable m in integer number from solve?

Can you help me?

@acer

@Carl Love

Download help_list_integer_equation.mw

Hello, i'm doing an interface for LU decomposition. I need to do a multiple windows interface using maplets, and i want to click one button on the inicial interface to open another window with other interface. I also need to create the second interface having N TextFields (N value will be inserted on the first window). Somebody knows how to do it?

Hello,

I'm new to Maple, but somewhat competent in computer mathematics. Below is some code that I wrote. I start off with f, my original function, and try to simplify it. I tried defining some assumptions as best I could. When I calculate the integral, it gives me an odd range of validity.

I'm wondering if I can further add to my assumptions to make the integral result more concise, i.e. without the piecewise range of validity. All my variables in f and g are already real and positive, so there is no reason one of the expressions should be less than zero. 

Thank you in advance for any insight.

 flat-geometry_recalc_Aug20_singleS.mw
 

f := (Pi*x+2*c+2*m)/(mu__c*S)+2*epsilon/(mu__a*S)+(Pi*x+2*c)/(mu__s*S)

(Pi*x+2*c+2*m)/(mu__c*S)+2*epsilon/(mu__a*S)+(Pi*x+2*c)/(mu__s*S)

(1)

g := simplify(f, symbolic)

(((Pi*x+2*c+2*m)*mu__s+2*((1/2)*Pi*x+c)*mu__c)*mu__a+2*epsilon*mu__c*mu__s)/(mu__c*S*mu__a*mu__s)

(2)

`assuming`([g], [S__s::positive]); 1; S__c::positive, S__a::positive, epsilon::positive, mu__s::positive, mu__c::positive, mu__a::positive, c::positive, m::positive

S__c::positive, S__a::positive, epsilon::positive, mu__s::positive, mu__c::positive, mu__a::positive, c::positive, m::positive

(3)

int(1/g, x = 0 .. w, AllSolutions)

`assuming`([int(1/g, x = 0 .. w)], [0 < w])

piecewise(And((c*mu__a*mu__c+c*mu__a*mu__s+epsilon*mu__c*mu__s+m*mu__a*mu__s)/(mu__a*(mu__c+mu__s)) < 0, -2*(c*mu__a*mu__c+c*mu__a*mu__s+epsilon*mu__c*mu__s+m*mu__a*mu__s)/(Pi*mu__a*(mu__c+mu__s)) < w), undefined, mu__s*S*mu__c*(-ln(2)-ln(c*mu__a*mu__c+c*mu__a*mu__s+epsilon*mu__c*mu__s+m*mu__a*mu__s)+ln(Pi*mu__a*mu__c*w+Pi*mu__a*mu__s*w+2*c*mu__a*mu__c+2*c*mu__a*mu__s+2*epsilon*mu__c*mu__s+2*m*mu__a*mu__s))/(Pi*(mu__c+mu__s)))``

(4)

 

NULL


 

Download flat-geometry_recalc_Aug20_singleS.mw

 

Hello!

I recently began learning how to 3D print with maple using the "Export & .stl " command together.

I was wondering if anyone knew how to increase the surface thickness for parametric plots and implicit plots. My hope would be to increase the "extrusion level" so to say.

I came across:

https://www.mapleprimes.com/questions/134103-Plotting-3d-Surfaces-With-A-Thickness

But I am not sure how to extend this idea to a parametric surface or an implict surface.

 

One more quick tidbit is that I will be trying to print several surfaces arising in differential geometry and algebraic geometry. Severel of these surfaces are open and or have singularities that I would like to "smooth out."

 

I would love to hear any ideas and thanks!

Hello,

I am trying to define a statespace object. Here my code reads:

with(DynamicSystems):

 

aSys≔StateSpace(⟨⟨1,2⟩∣∣⟨3,4⟩⟩,⟨⟨2,3⟩⟩,⟨⟨1,0⟩∣∣⟨0,1⟩⟩,⟨⟨0,0⟩⟩):

Error, (in DynamicSystems:-StateSpace) unsupported type of index, t

I do not have any clue what is wrong with my code.

 

Any help will be really appreciated.

Thanks

I want to extract lists that are term by term smaller than a fix one.

To be clearer, I want to create something like

if a[i] <= b[i] for all i=1..min(nops(a),nops(b)) then ...

I tried with the forall call, but it doesn't work:

if forall( i=1..min(nops(a),nops(b)),a[i] <= b[i]) then ...
 

I also tried the assuming call with the is call. It works, but doesnt't give me the result I want:

 

if is(a[i] <= b[i]) assuming(1 <= i, i <= min(nops(a),nops(b))) then...

Is there a way to have a chain of conditions in a if statement like I am trying to do?

1. y''(x)+10y(x)=99sin(x), y(0)=1, y'(0)=11 in the interval [0,100]

the exact solution is y(x)=cos(10x)+sin(10x)+sin(x)

 

2. y'=z, y(0)=1

    z'=-y(x)+x, z(0)=2

    the exact solutions are y(x)=cos(x)+sin(x)+x, z(x)=cos(x)-sin(10x)+1

 

Hi
i need to find equation of intersection between a plane(Z=0)  and 3d curve like below:

plane :  Z=0

curve:

sqrt(G*(2-G))+(1-G)*(arccos(G-1)+(1/5)*Pi)+k*sqrt(G*(2-G))*cos(sqrt((1+k)/k)*arccos(G-1)+(1/5)*Pi)+sqrt(k/(1+k))*(1-G)*k*sin(sqrt((1+k)/k)*arccos(G-1)+(1/5)*Pi)

I ploted Z=0 plane and that curve . it is like this .
i want equation of the pointed curve(curve equation of intersection between Z=  and curve )in bellow  such as k=f(G) .

best regards

The worksheet below animates the flattening of a tetrahedron by expanding one of its faces, namely its triangular base.

I would like to animate the flattening of an octahedron so that it assumes the 2D figure resembling the Morley triangle which is included in the worksheet.

Are there documents on the web explaining the technique for doing so? Is there a Maple worksheet available on the web demonstrating the desired animation?

Flatten_a_tetrahedron.mw

Hi, my codes ran smoothly well until I changed some assignment value. It reported invalid object error.

Error, Got internal error in Typesetting:-Parse:-Postprocess : "internal error: invalid object "

Part of the codes are as follows:

""sigma:=0.00002:    m:=5:   n:=4:
Error, Got internal error in Typesetting:-Parse:-Postprocess : "internal error: invalid object "

Could anyone give some hints on what goes wrong here? It seems to be a configuration issue but I completely have no clue..

Thanks a million in advance,

Best,

Jie

 

 

    

please where is the problem 

with(DEtools);

eq1 := (D(x))(t) = -y(t);

eq2 := (D(y))(t) = x(t)+2*x(t)^3-signum(z(t));

eq3 := (D(z))(t) = w(t);

eq4 := (D(w))(t) = -z(t)*(1+6*x(t)^2);

sys := eq1, eq2, eq3, eq4;

ic1 := [x(0) = 0, y(0) = 0, z(0) = cos(1), w(0) = sin(1)];

ic2 := [x(0) = 0, y(0) = 0, z(0) = cos(2.5), w(0) = sin(2.5)];

ic := ic1, ic2;

DEplot([sys], [x(t), y(t), z(t), w(t)], t = 0 .. 10, [ic], stepsize = 0.5e-1, scene = [x(t), y(t)], linecolor = [blue, red]);

sol1:=dsolve({sys,x(0)=0,y(0)=0,z(0)=cos(1),w(0)=sin(1)},{x(t),y(t),z(t),w(t)},type=numeric);

T := 10.0 ; N := 100 ; h := T/N;

xk := 0;

for k from 1 to N do

 solk := sol1(k*h);

  xknew := subs(solk,x(t));

 yknew := subs(solk,y(t));

 if xk*xknew<=0 and abs(yknew-6)<0.5 then break fi;

 xk := xknew;

od; sol1(k*h);

temps := proc(alpha,eps)

local sol,solk,T,N,h,k,xk,xknew,yknew,t0,t1,tm,x0,x1,xm;

sol := dsolve({sys,x(0)=0,y(0)=0,z(0)=cos(alpha),w(0)=sin(alpha)},{x(t),y(t),z(t),w(t)},type=numeric);

T := 10.0 ; N := 100 ; h := T/N;

xk := 0;

for k from 1 to N do

 solk := sol(k*h);

  xknew := subs(solk,x(t));

 yknew := subs(solk,y(t));

 if xk*xknew<=0 and abs(yknew-6)<0.5 then break fi;

 xk := xknew;

od; 

t0 := (k-1)*h ; t1 := k*h ;

x0 := subs(sol(t0),x(t)) ; x1 := subs(sol(t1),x(t)) ;

while abs(x0-x1)>eps do

 tm := (t0+t1)/2;

 xm := subs(sol(tm),x(t));

 if xm*x0<0 then x1 := xm; t1:=tm;

            else x0 := xm; t0:=tm;

 fi;

od;

RETURN(t0);

end;

 

dicho := proc(eps)

local a,b,m,sola,solb,solm,ta,tb,tm,ya,yb,ym;

a := 1 ; b := 2.5 ;

sola := dsolve({sys,x(0)=0,y(0)=0,z(0)=cos(a),w(0)=sin(a)},{x(t),y(t),z(t),w(t)},type=numeric);

solb := dsolve({sys,x(0)=0,y(0)=0,z(0)=cos(b),w(0)=sin(b)},{x(t),y(t),z(t),w(t)},type=numeric);

ta := temps(a,eps) ; tb := temps(b,eps) ;

ya := subs(sola(ta),y(t)) ; yb := subs(solb(tb),y(t)) ;

while abs(yb-ya)>eps do

m := evalf((a+b)/2);

solm := dsolve({sys,x(0)=0,y(0)=0,z(0)=cos(m),w(0)=sin(m)},{x(t),y(t),z(t),w(t)},type=numeric);

tm := temps(m,eps) ;

yb := subs(sol(tm),y(t));

 if (ym-6)*(ya-6)<0 then b := m; yb := ym;

            else a := m; ya := ym;

 fi;

od;

RETURN(a);

end;

dicho(0.01);

2.136718750

temps(2.136718750,0.01);

8.737500000

DEplot([sys], [x(t), y(t), z(t), w(t)], t = 0 .. 8.7375, [[x(0)=0,y(0)=0,z(0)=cos(2.136718750),w(0)=sin(2.136718750)]], stepsize = 0.5e-1, scene = [x(t), y(t)], linecolor = [blue]);

 

 

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 Hi guys,
I am trying write a code for homotopy perturbation, i have already generated the polynomial as you can see, i have also  solve for concentration equation since is not couple. But i have a lot of error massages for temperature, velocity and induced magnetic field. can some one please go through the code?
 

NULL

restart

PDEtools[declare](f(x),theta(x),u(x),w(x), prime=x):

f(x)*`will now be displayed as`*f

 

theta(x)*`will now be displayed as`*theta

 

u(x)*`will now be displayed as`*u

 

w(x)*`will now be displayed as`*w

 

`derivatives with respect to`*x*`of functions of one variable will now be displayed with '`

(1)

N := 4:

NULL

NULL

f(x):=sum((p^(i))*f[i](x),i=0..N);

f[0](x)+p*f[1](x)+p^2*f[2](x)+p^3*f[3](x)+p^4*f[4](x)

(2)

theta(x) := sum(p^i*theta[i](x), i = 0 .. N);

theta[0](x)+p*theta[1](x)+p^2*theta[2](x)+p^3*theta[3](x)+p^4*theta[4](x)

(3)

``

u(x) := sum(p^i*u[i](x), i = 0 .. N);

u[0](x)+p*u[1](x)+p^2*u[2](x)+p^3*u[3](x)+p^4*u[4](x)

(4)

``

w(x) := sum(p^i*w[i](x), i = 0 .. N);

w[0](x)+p*w[1](x)+p^2*w[2](x)+p^3*w[3](x)+p^4*w[4](x)

(5)

HPMEq := (1-p)*(diff(f(x), `$`(x, 2)))+p*(diff(f(x), `$`(x, 2))-k1*(diff(f(x), x))-k2*f(x));

(1-p)*(diff(diff(f[0](x), x), x)+p*(diff(diff(f[1](x), x), x))+p^2*(diff(diff(f[2](x), x), x))+p^3*(diff(diff(f[3](x), x), x))+p^4*(diff(diff(f[4](x), x), x)))+p*(diff(diff(f[0](x), x), x)+p*(diff(diff(f[1](x), x), x))+p^2*(diff(diff(f[2](x), x), x))+p^3*(diff(diff(f[3](x), x), x))+p^4*(diff(diff(f[4](x), x), x))-k1*(diff(f[0](x), x)+p*(diff(f[1](x), x))+p^2*(diff(f[2](x), x))+p^3*(diff(f[3](x), x))+p^4*(diff(f[4](x), x)))-k2*(f[0](x)+p*f[1](x)+p^2*f[2](x)+p^3*f[3](x)+p^4*f[4](x)))

(6)

HPMEr := (1-p)*(diff(theta(x), `$`(x, 2)))+p*(diff(theta(x), `$`(x, 2))-k11*(diff(theta(x), x))+k12*(diff(u(x), x))^2+k13*(diff(w(x), x))^2+k14*theta(x));

(1-p)*(diff(diff(theta[0](x), x), x)+p*(diff(diff(theta[1](x), x), x))+p^2*(diff(diff(theta[2](x), x), x))+p^3*(diff(diff(theta[3](x), x), x))+p^4*(diff(diff(theta[4](x), x), x)))+p*(diff(diff(theta[0](x), x), x)+p*(diff(diff(theta[1](x), x), x))+p^2*(diff(diff(theta[2](x), x), x))+p^3*(diff(diff(theta[3](x), x), x))+p^4*(diff(diff(theta[4](x), x), x))-k11*(diff(theta[0](x), x)+p*(diff(theta[1](x), x))+p^2*(diff(theta[2](x), x))+p^3*(diff(theta[3](x), x))+p^4*(diff(theta[4](x), x)))+k12*(diff(u[0](x), x)+p*(diff(u[1](x), x))+p^2*(diff(u[2](x), x))+p^3*(diff(u[3](x), x))+p^4*(diff(u[4](x), x)))^2+k13*(diff(w[0](x), x)+p*(diff(w[1](x), x))+p^2*(diff(w[2](x), x))+p^3*(diff(w[3](x), x))+p^4*(diff(w[4](x), x)))^2+k14*(theta[0](x)+p*theta[1](x)+p^2*theta[2](x)+p^3*theta[3](x)+p^4*theta[4](x)))

(7)

HPMEs := (1-p)*(diff(u(x), `$`(x, 2)))+p*(diff(u(x), `$`(x, 2))-R*(diff(u(x), x))-A-k8*w(x)-k7*u(x)+k5*theta(x)+k6*f(x));

(1-p)*(diff(diff(u[0](x), x), x)+p*(diff(diff(u[1](x), x), x))+p^2*(diff(diff(u[2](x), x), x))+p^3*(diff(diff(u[3](x), x), x))+p^4*(diff(diff(u[4](x), x), x)))+p*(diff(diff(u[0](x), x), x)+p*(diff(diff(u[1](x), x), x))+p^2*(diff(diff(u[2](x), x), x))+p^3*(diff(diff(u[3](x), x), x))+p^4*(diff(diff(u[4](x), x), x))-R*(diff(u[0](x), x)+p*(diff(u[1](x), x))+p^2*(diff(u[2](x), x))+p^3*(diff(u[3](x), x))+p^4*(diff(u[4](x), x)))-A-k8*(w[0](x)+p*w[1](x)+p^2*w[2](x)+p^3*w[3](x)+p^4*w[4](x))-k7*(u[0](x)+p*u[1](x)+p^2*u[2](x)+p^3*u[3](x)+p^4*u[4](x))+k5*(theta[0](x)+p*theta[1](x)+p^2*theta[2](x)+p^3*theta[3](x)+p^4*theta[4](x))+k6*(f[0](x)+p*f[1](x)+p^2*f[2](x)+p^3*f[3](x)+p^4*f[4](x)))

(8)

HPMEt := (1-p)*(diff(w(x), `$`(x, 2)))+p*(diff(w(x), `$`(x, 2))-R*(diff(w(x), x))+k9*u(x)-k10*w(x))

(1-p)*(diff(diff(w[0](x), x), x)+p*(diff(diff(w[1](x), x), x))+p^2*(diff(diff(w[2](x), x), x))+p^3*(diff(diff(w[3](x), x), x))+p^4*(diff(diff(w[4](x), x), x)))+p*(diff(diff(w[0](x), x), x)+p*(diff(diff(w[1](x), x), x))+p^2*(diff(diff(w[2](x), x), x))+p^3*(diff(diff(w[3](x), x), x))+p^4*(diff(diff(w[4](x), x), x))-R*(diff(w[0](x), x)+p*(diff(w[1](x), x))+p^2*(diff(w[2](x), x))+p^3*(diff(w[3](x), x))+p^4*(diff(w[4](x), x)))+k9*(u[0](x)+p*u[1](x)+p^2*u[2](x)+p^3*u[3](x)+p^4*u[4](x))-k10*(w[0](x)+p*w[1](x)+p^2*w[2](x)+p^3*w[3](x)+p^4*w[4](x)))

(9)

for i from 0 to N do equ[1][i] := coeff(HPMEq, p, i) = 0 end do;

diff(diff(f[0](x), x), x) = 0

 

diff(diff(f[1](x), x), x)-k1*(diff(f[0](x), x))-k2*f[0](x) = 0

 

diff(diff(f[2](x), x), x)-k2*f[1](x)-k1*(diff(f[1](x), x)) = 0

 

diff(diff(f[3](x), x), x)-k2*f[2](x)-k1*(diff(f[2](x), x)) = 0

 

diff(diff(f[4](x), x), x)-k1*(diff(f[3](x), x))-k2*f[3](x) = 0

(10)

for i from 0 to N do equa[1][i] := coeff(HPMEr, p, i) = 0 end do;

diff(diff(theta[0](x), x), x) = 0

 

diff(diff(theta[1](x), x), x)-k11*(diff(theta[0](x), x))+k12*(diff(u[0](x), x))^2+k13*(diff(w[0](x), x))^2+k14*theta[0](x) = 0

 

diff(diff(theta[2](x), x), x)+2*k13*(diff(w[0](x), x))*(diff(w[1](x), x))-k11*(diff(theta[1](x), x))+2*k12*(diff(u[0](x), x))*(diff(u[1](x), x))+k14*theta[1](x) = 0

 

diff(diff(theta[3](x), x), x)+k12*(2*(diff(u[0](x), x))*(diff(u[2](x), x))+(diff(u[1](x), x))^2)+k14*theta[2](x)+k13*(2*(diff(w[0](x), x))*(diff(w[2](x), x))+(diff(w[1](x), x))^2)-k11*(diff(theta[2](x), x)) = 0

 

diff(diff(theta[4](x), x), x)+k12*(2*(diff(u[0](x), x))*(diff(u[3](x), x))+2*(diff(u[1](x), x))*(diff(u[2](x), x)))-k11*(diff(theta[3](x), x))+k14*theta[3](x)+k13*(2*(diff(w[0](x), x))*(diff(w[3](x), x))+2*(diff(w[1](x), x))*(diff(w[2](x), x))) = 0

(11)

for i from 0 to N do equat[1][i] := coeff(HPMEs, p, i) = 0 end do;

diff(diff(u[0](x), x), x) = 0

 

diff(diff(u[1](x), x), x)-R*(diff(u[0](x), x))-A-k7*u[0](x)+k5*theta[0](x)+k6*f[0](x)-k8*w[0](x) = 0

 

diff(diff(u[2](x), x), x)-R*(diff(u[1](x), x))-k7*u[1](x)+k6*f[1](x)-k8*w[1](x)+k5*theta[1](x) = 0

 

diff(diff(u[3](x), x), x)-R*(diff(u[2](x), x))+k6*f[2](x)-k7*u[2](x)+k5*theta[2](x)-k8*w[2](x) = 0

 

diff(diff(u[4](x), x), x)-R*(diff(u[3](x), x))+k5*theta[3](x)+k6*f[3](x)-k7*u[3](x)-k8*w[3](x) = 0

(12)

``

for i from 0 to N do equati[1][i] := coeff(HPMEt, p, i) = 0 end do;

diff(diff(w[0](x), x), x) = 0

 

diff(diff(w[1](x), x), x)-R*(diff(w[0](x), x))-k10*w[0](x)+k9*u[0](x) = 0

 

diff(diff(w[2](x), x), x)-k10*w[1](x)+k9*u[1](x)-R*(diff(w[1](x), x)) = 0

 

diff(diff(w[3](x), x), x)-k10*w[2](x)+k9*u[2](x)-R*(diff(w[2](x), x)) = 0

 

diff(diff(w[4](x), x), x)+k9*u[3](x)-R*(diff(w[3](x), x))-k10*w[3](x) = 0

(13)

con[1][0] := f[0](-1) = 1, f[0](1) = 1:

-.5000000000*k2+0.3435019841e-1*k2^4+.5000000000*k2*x^2-.2500000000*k2^2*x^2+.2083333333*k2^2+0.4166666667e-1*k2^2*x^4-0.2083333333e-1*k2^3*x^4+.1041666667*k2^3*x^2+0.4166666667e-1*k1^2*k2+0.5952380952e-3*k2^3*k1*x^7-0.8472222222e-1*k2^3+0.2480158730e-4*k2^4*x^8+0.4166666667e-2*x^6*k1^2*k2^2+0.8333333333e-2*k2*x^5*k1^3-0.9722222222e-2*k1*k2^3*x^5-0.3472222222e-1*k1^2*k2^2*x^4-0.2777777778e-1*k2*x^3*k1^3+0.5046296296e-1*k1*k2^3*x^3+0.6805555556e-1*k2^2*k1^2*x^2-0.4133597884e-1*k1*k2^3*x+0.1944444444e-1*k2*k1^3*x+1.+0.1388888889e-2*k2^3*x^6+0.1666666667e-1*k1*k2^2*x^5+0.4166666667e-1*k2*x^4*k1^2-.1111111111*k2^2*k1*x^3+0.9444444444e-1*k1*k2^2*x-0.8333333333e-1*k2*k1^2*x^2+.1666666667*k2*k1*x^3-0.3750000000e-1*k1^2*k2^2-0.6944444444e-3*k2^4*x^6+0.8680555556e-2*k2^4*x^4-0.4236111111e-1*k2^4*x^2-.1666666667*k1*k2*x

 

1-(1/2)*k2+(277/8064)*k2^4+(1/2)*k2*x^2-(1/4)*k2^2*x^2+(5/24)*k2^2+(1/24)*k2^2*x^4-(1/48)*k2^3*x^4+(5/48)*k2^3*x^2+(1/24)*k1^2*k2+(1/1680)*k2^3*k1*x^7-(61/720)*k2^3+(1/40320)*k2^4*x^8+(1/240)*x^6*k1^2*k2^2+(1/120)*k2*x^5*k1^3-(7/720)*k1*k2^3*x^5-(5/144)*k1^2*k2^2*x^4-(1/36)*k2*x^3*k1^3+(109/2160)*k1*k2^3*x^3+(49/720)*k2^2*k1^2*x^2-(125/3024)*k1*k2^3*x+(7/360)*k2*k1^3*x+(1/720)*k2^3*x^6+(1/60)*k1*k2^2*x^5+(1/24)*k2*x^4*k1^2-(1/9)*k2^2*k1*x^3+(17/180)*k1*k2^2*x-(1/12)*k2*k1^2*x^2+(1/6)*k2*k1*x^3-(3/80)*k1^2*k2^2-(1/1440)*k2^4*x^6+(5/576)*k2^4*x^4-(61/1440)*k2^4*x^2-(1/6)*k1*k2*x

 

2.400000000*k2+0.3589208394e-1*k2^4+1.104000000*k2^2+2.713333334*k1*k2+1.904000000*k1^2*k2+0.115520003e-1*k2^3+.939244445*k1*k2^2+.3973226666*k1^2*k2^2+0.1412642116e-1*k1*k2^3+.9218444444*k1^3*k2

(14)

NULL

"cond[1][0]:=theta[0](-1)=0.1, theta[0](1)=1,w[0](-1)=0, w[0](1)=0,u[0](-1)=0, u[0](1)=0:  for j from 1 to N do:  cond[1][j]:=theta[j](-1)=0, theta[j](1)=0,w[j](-1)=0, w[j](1)=0,u[j](-1)=0, u[j](1)=0:  end do:    for i from 0 to N do:  dsolve({equa[1][i],cond[1][i]},theta[i](x));  theta[i](x):=rhs(`%`):    end do:    theta(x):=evalf(simplify(sum(theta[n](x),n=0..N)));  convert(theta(x),'rational'); "

Error, (in dsolve) found the following equations not depending on the unknowns of the input system: {u[0](-1) = 0, u[0](1) = 0, w[0](-1) = 0, w[0](1) = 0}

 

theta[0](x)+theta[1](x)+theta[2](x)+theta[3](x)+theta[4](x)

 

theta[0](x)+theta[1](x)+theta[2](x)+theta[3](x)+theta[4](x)

(15)

``

"condi[1][0]:=theta[0](-1)=0.1, theta[0](1)=1,w[0](-1)=0, w[0](1)=0,u[0](-1)=0, u[0](1)=0,f[0](-1)=1, f[0](1)=1:  for j from 1 to N do:  condi[1][j]:=theta[j](-1)=0, theta[j](1)=0,w[j](-1)=0, w[j](1)=0,u[j](-1)=0, u[j](1)=0, f[j](-1)=0, f[j](1)=0:  end do:    for i from 0 to N do:  dsolve({equat[1][i],condi[1][i]},u[i](x));  u[i](x):=rhs(`%`):    end do:    u(x):=evalf(simplify(sum(u[n](x),n=0..N)))"

Error, (in dsolve) found the following equations not depending on the unknowns of the input system: {f[0](-1) = 1, f[0](1) = 1, w[0](-1) = 0, w[0](1) = 0, theta[0](-1) = 1/10, theta[0](1) = 1}

 

u[0](x)+u[1](x)+u[2](x)+u[3](x)+u[4](x)

(16)

``

"condit[1][0]:=theta[0](-1)=0.1, theta[0](1)=1,w[0](-1)=0, w[0](1)=0,u[0](-1)=0, u[0](1)=0,f[0](-1)=1, f[0](1)=1:  for j from 1 to N do:  condit[1][j]:=theta[j](-1)=0, theta[j](1)=0,w[j](-1)=0, w[j](1)=0,u[j](-1)=0, u[j](1)=0, f[j](-1)=0, f[j](1)=0:  end do:    for i from 0 to N do:  dsolve({equati[1][i],condit[1][i]},w[i](x));  w[i](x):=rhs(`%`):    end do:    w(x):=evalf(simplify(sum(w[n](x),n=0..N)))"

Error, (in dsolve) found the following equations not depending on the unknowns of the input system: {f[0](-1) = 1, f[0](1) = 1, u[0](-1) = 0, u[0](1) = 0, theta[0](-1) = 1/10, theta[0](1) = 1}

 

w[0](x)+w[1](x)+w[2](x)+w[3](x)+w[4](x)

(17)

NULL

``

``


 

Download completecode.mw

Hi everyone,

I was wondering how I could modify the thickness of edges in a graph displayed as a Maple plot through DrawGraph. The point is, the graph comprises 100 vertices and 1000 edges. By default, edge thickness is set as 2 but due to the high number of edges I would like to set edge thickness to1 or even 0. How can I do so?

Here is an example with a random graph:

with(GraphTheory) : with(RandomGraphs) : G := RandomGraph(100, 1000) : DrawGraph(G)

 

Thank you very much

First 8 9 10 11 12 13 14 Last Page 10 of 60