Maple 2021 Questions and Posts

These are Posts and Questions associated with the product, Maple 2021

each time i use this i did not have any problem but this equation not seperate any one know what is problem?

restart

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(PDEtools)

P := U(xi)^3*mu*C[2]*h[9]+(2*I)*(diff(U(xi), xi))*a*k*mu+4*(diff(U(xi), xi))*k*mu^3*C[2]*h[7]-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*C[2]*h[7]-U(xi)^3*mu*C[2]*h[8]+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*C[2]*h[7]+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[9]-(6*I)*(diff(diff(U(xi), xi), xi))*k^2*mu^2*C[2]*h[7]+I*U(xi)*mu^4*C[2]*h[7]-I*(diff(U(xi), xi))*v-U(xi)*w+b*U(xi)^3-U(xi)*a*mu^2+(diff(diff(U(xi), xi), xi))*a*k^2+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[8]+C[1](-U(xi)^3*mu^2*h[2]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[4]-(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[5]+(diff(U(xi), xi))^2*U(xi)*k^2*h[2]-U(xi)^3*mu^2*h[5]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[5]-(4*(diff(U(xi), xi))*I)*k*mu^3*h[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*h[1]*I+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[2]+h[6]*U(xi)^5-U(xi)^3*mu^2*h[4]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[4]+U(xi)*mu^4*h[1]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*h[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*h[1]+h[3](k^2*(diff(U(xi), xi))^2+2*(0+I)*(diff(U(xi), xi))*k*mu*U(xi)-mu^2*U(xi)^2)*U(xi)) = 0

U(xi)^3*mu*C[2]*h[9]+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[8]+4*(diff(U(xi), xi))*k*mu^3*C[2]*h[7]-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*C[2]*h[7]-U(xi)^3*mu*C[2]*h[8]+I*(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[9]-(6*I)*(diff(diff(U(xi), xi), xi))*k^2*mu^2*C[2]*h[7]+I*U(xi)*mu^4*C[2]*h[7]-I*(diff(U(xi), xi))*v+(2*I)*(diff(U(xi), xi))*a*k*mu-U(xi)*w+b*U(xi)^3-U(xi)*a*mu^2+(diff(diff(U(xi), xi), xi))*a*k^2+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*C[2]*h[7]+C[1](-U(xi)^3*mu^2*h[2]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[4]-(4*I)*(diff(U(xi), xi))*k*mu^3*h[1]+(diff(U(xi), xi))^2*U(xi)*k^2*h[2]-U(xi)^3*mu^2*h[5]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[5]+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*h[1]-(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[5]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[2]+h[6]*U(xi)^5-U(xi)^3*mu^2*h[4]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[4]+U(xi)*mu^4*h[1]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*h[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*h[1]+h[3](k^2*(diff(U(xi), xi))^2+(2*I)*(diff(U(xi), xi))*k*mu*U(xi)-mu^2*U(xi)^2)*U(xi)) = 0

(2)

Re(P)

Re(U(xi)^3*mu*C[2]*h[9]+4*(diff(U(xi), xi))*k*mu^3*C[2]*h[7]-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*C[2]*h[7]-U(xi)^3*mu*C[2]*h[8]-U(xi)*w+b*U(xi)^3-U(xi)*a*mu^2+(diff(diff(U(xi), xi), xi))*a*k^2+C[1](-U(xi)^3*mu^2*h[2]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[4]-(4*I)*(diff(U(xi), xi))*k*mu^3*h[1]+(diff(U(xi), xi))^2*U(xi)*k^2*h[2]-U(xi)^3*mu^2*h[5]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[5]+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*k^3*mu*h[1]-(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[5]+(2*I)*(diff(U(xi), xi))*U(xi)^2*k*mu*h[2]+h[6]*U(xi)^5-U(xi)^3*mu^2*h[4]+U(xi)^2*(diff(diff(U(xi), xi), xi))*k^2*h[4]+U(xi)*mu^4*h[1]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*h[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*h[1]+h[3](k^2*(diff(U(xi), xi))^2+(2*I)*(diff(U(xi), xi))*k*mu*U(xi)-mu^2*U(xi)^2)*U(xi)))-Im((diff(U(xi), xi))*U(xi)^2*k*C[2]*h[8]+(diff(U(xi), xi))*U(xi)^2*k*C[2]*h[9]-6*(diff(diff(U(xi), xi), xi))*k^2*mu^2*C[2]*h[7]+U(xi)*mu^4*C[2]*h[7]-(diff(U(xi), xi))*v+2*(diff(U(xi), xi))*a*k*mu+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k^4*C[2]*h[7]) = 0

(3)
 

``

Download real_and_imaginary_.mw

I have  a big problem in transformation How we can do suh transformation in  type of  procure  without use any hand work for example in physic abs|-| remove the exponential term how the maple remove that term automatically and collect all term and do my transformation this example is really hard one which is must do a lot by hand and mixed them which maybe a week take my time to get results and how i reach the results without spending that time i have a result of this equation and i am try to get but i don't know the results of this person is correct or not but i will share in here,  i did some try i will share in here too if in DEchange add U(xi) it will work and give me the other step but i need something more effective, when q^* is conjugate of q =exp(-ipsi(x,t))U(xi)

NULL

restart

with(PDEtools)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

 

 

tr := {t = tau, x = xi/k+v*tau^alpha/(k*alpha)+theta, u(x, t) = U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)), u[1](x, t) = U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))}

{t = tau, x = xi/k+v*tau^alpha/(k*alpha)+theta, u(x, t) = U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)), u[1](x, t) = U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))}

(2)

pde := I*(I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)-mu*tau+theta))*w-exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))*v)+a*(diff(u(x, t), `$`(x, 2)))+b*U(xi)^2*u(x, t)+C[1](h[1]*(diff(u(x, t), `$`(x, 4)))+h[2]*(diff(u(x, t), x))^2*u[1](x, t)+h[3]*abs(diff(u(x, t), x))^2*u(x, t)+h[4]*U(xi)^2*(diff(u(x, t), `$`(x, 2)))+h[5]*u(x, t)^2*(diff(u[1](x, t), `$`(x, 2)))+h[6]*U(xi)^4*u(x, t))+I*C[2]*(h[7]*(diff(u(x, t), `$`(x, 4)))+h[8]*U(xi)^2*(diff(u(x, t), x))+h[9]*u(x, t)^2*(diff(u[1](x, t), x))) = 0

I*(I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)-mu*tau+theta))*w-exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))*v)+a*(diff(diff(u(x, t), x), x))+b*U(xi)^2*u(x, t)+C[1](h[1]*(diff(diff(diff(diff(u(x, t), x), x), x), x))+h[2]*(diff(u(x, t), x))^2*u[1](x, t)+h[3]*abs(diff(u(x, t), x))^2*u(x, t)+h[4]*U(xi)^2*(diff(diff(u(x, t), x), x))+h[5]*u(x, t)^2*(diff(diff(u[1](x, t), x), x))+h[6]*U(xi)^4*u(x, t))+I*C[2]*(h[7]*(diff(diff(diff(diff(u(x, t), x), x), x), x))+h[8]*U(xi)^2*(diff(u(x, t), x))+h[9]*u(x, t)^2*(diff(u[1](x, t), x))) = 0

(3)

``

PDEtools:-dchange(tr, pde, [xi, tau, U, U(xi)])

I*(I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)-mu*tau+theta))*w-exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))*v)+a*((2*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))-U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^2)*k^2+b*U(xi)^3*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))+C[1](h[1]*(-(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k^3-6*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))/k^2+(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(U(xi), xi), xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^4)*k^4+h[2]*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))+I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)^2*k^2*U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))+h[3]*abs((exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))+I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)*k)^2*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))+h[4]*U(xi)^2*((2*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))-U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^2)*k^2+h[5]*U(xi)^2*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)))^2*((diff(diff(U(xi), xi), xi))*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))-(2*I)*(diff(U(xi), xi))*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k-U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^2)*k^2+h[6]*U(xi)^5*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)))+I*C[2]*(h[7]*(-(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))/k^3-6*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(U(xi), xi), xi))/k^2+(4*I)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(U(xi), xi), xi), xi))/k+exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k^4)*k^4+h[8]*U(xi)^2*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))*(diff(U(xi), xi))+I*U(xi)*exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)*k+h[9]*U(xi)^2*(exp(I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta)))^2*((diff(U(xi), xi))*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))-I*U(xi)*exp(-I*(xi/k+v*tau^alpha/(k*alpha)+mu*tau+theta))/k)*k) = 0

(4)
 

NULL


Download find_ODE.mw

@Rouben Rostamian  

Dear Sir Professor Rostamian my name is Viorel Popescu from the Polytechnic University of Bucharest if you remember in the summer of 2019 you helped me to solve the equation: rH''(r)+H'(r)+(rk^2-r^2*b^2/R^2)H(r)=0 where k, b, and R are real constants positive number, with condition H(R)=0 and H'(1/R)=R. I appreciate it very much, please I'm in a similarly embarrassing situation to beg you for an answer. I want to find the equation of audion and complete the experiment http://www.michaelvio.byethost8.com/Audion.pdf

My account in Maple Primes is the same michaelvio (35) as the email michaelvio@yahoo.com and also @gmail.com it's an experiment that I want to make for my PhD. Practically I suppose that the energy can be approx. as a series of power of frequency t from I selected severaral terms Ea := 0.00762014687*t + a*t^2 + b*t^3 + c*t^4 + d*t^5 and I guess that satisfies an equation as in the document. The case of photons is beyond my possibility, but a little help from a distinguished Professor as you should cheer me up Audion1.mw

Audion.docx

Please help! 

Hi

How merge or combine two or more 3D plot together ? and How many 3D plot exist for describe graph ? and how we can transfer this combine plot to another program like matlab?

Maple is  good for decribe plot  and very faster from other program but for visualization and some other stuff we need other language program, so how we can combine the plot and how we transfer this plot another program like matlab i know the matlab have special template for this kind plot but i didn't have the template if any one have it it will be  awesome?

Download combine_graph.mw

Hi all
I have a simple problem with the following matrix entries. I probably have a problem with the indices. Because the matrix is ​​not calculated correctly. Anyone have suggestion?

I want a plot of the function & the approx. calculus of integral:

E0 := evalf(int(T2, x = x0 .. x0 + 1.542976947*10^(-13))); it doesn't compute in in normal time...Audion.mw

in the program:

restart;
a := -1.44670357887361*10^(-7);
b := -1.049267156*10^(-9);
c := 1.890440485*10^(-12);
d := -6.233924848*10^(-16);
Ea := 0.00762014687*t + a*t^2 + b*t^3 + c*t^4 + d*t^5;
E1 := diff(Ea, t);
E2 := subs(t = 435, Ea);
E3 := subs(t = 528, Ea);
E4 := subs(t = 2860, Ea);
 

how fixed this for ode test

restart

with(PDEtools)

with(Physics)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

``

pde := -I*(diff(U(xi), xi))*gamma*k*mu+I*gamma*(diff(U(xi), xi))*sigma*w+(diff(diff(U(xi), xi), xi))*gamma*k*w+U(xi)*gamma*mu*sigma+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*w-U(xi)*sigma^2-U(xi)*mu

-I*gamma*(diff(U(xi), xi))*k*mu+I*gamma*(diff(U(xi), xi))*sigma*w+gamma*(diff(diff(U(xi), xi), xi))*k*w+gamma*U(xi)*mu*sigma+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*w-U(xi)*sigma^2-U(xi)*mu

(2)

case1 := [mu = -(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1), A[0] = 0, A[1] = -RootOf(_Z^2*alpha+gamma*k*w+k^2), B[1] = RootOf(_Z^2*alpha+gamma*k*w+k^2), w = (gamma*k*mu-2*k*sigma)/(gamma*sigma-1)]

[mu = -(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1), A[0] = 0, A[1] = -RootOf(_Z^2*alpha+gamma*k*w+k^2), B[1] = RootOf(_Z^2*alpha+gamma*k*w+k^2), w = (gamma*k*mu-2*k*sigma)/(gamma*sigma-1)]

(3)

G1 := U(xi) = 2*RootOf(_Z^2*alpha+gamma*k*w+k^2)/sinh(2*xi)

U(xi) = 2*RootOf(_Z^2*alpha+gamma*k*w+k^2)/sinh(2*xi)

(4)

pde1 := subs(case1, pde)

I*gamma*(diff(U(xi), xi))*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)+I*gamma*(diff(U(xi), xi))*sigma*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)+gamma*(diff(diff(U(xi), xi), xi))*k*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)-gamma*U(xi)*(4*gamma*k*w+4*k^2-sigma^2)*sigma/(gamma*sigma-1)+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)-U(xi)*sigma^2+U(xi)*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)

(5)

pde2 := subs(case1, pde1)

I*gamma*(diff(U(xi), xi))*k*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)/(gamma*sigma-1)+I*gamma*(diff(U(xi), xi))*sigma*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)+gamma*(diff(diff(U(xi), xi), xi))*k*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)-gamma*U(xi)*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)*sigma/(gamma*sigma-1)+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)-U(xi)*sigma^2+U(xi)*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)/(gamma*sigma-1)

(6)

odetest(G1, pde2)

 

NULL

Download test_sol_for_PDE1.mw

I must approximate the coefficients a, b, c, and d in an exponential equation. Is it possible to plot?

Please help!

Ea := 0.00762014687*t + a*t^2 + b*t^3 + c*t^4 + d*t^5;
E1 := diff(Ea, t);
E2 := subs(t = 435, Ea);
E3 := subs(t = 528, Ea);
E4 := subs(t = 33168, Ea);

E1 = 5.012764943*10^(-24)*Ea/(exp(Ea/(4.100527530*10^(-21))) - 1)

Aph1.mw

restart;
with(plots);
A := [0, 0];
B := [4, 2];
C := [2, 3];
distance := proc(P1, P2) sqrt((P1[1] - P2[1])^2 + (P1[2] - P2[2])^2); end proc;
plot_triangle := proc(A, B, C) plot([A, B, C, A], style = line, color = black, thickness = 2); end proc;
plot_bisectors := proc(A, B, C) local AB, BC, CA, AB_bisector, BC_bisector, CA_bisector, i; AB := [A, B]; BC := [B, C]; CA := [C, A]; AB_bisector := [seq(A[i] + t*(B[i] - A[i]), i = 1 .. 2)]; BC_bisector := [seq(B[i] + t*(C[i] - B[i]), i = 1 .. 2)]; CA_bisector := [seq(C[i] + t*(A[i] - C[i]), i = 1 .. 2)]; plot([AB_bisector, BC_bisector, CA_bisector], t = 0 .. 1, style = line, color = blue, thickness = 2); end proc;
plot_apollonius := proc(A, B, C, ratio) local f, g; f := (x, y) -> sqrt((x - A[1])^2 + (y - A[2])^2)/sqrt((x - B[1])^2 + (y - B[2])^2) - ratio; g := implicitplot(f(x, y), x = -5 .. 5, y = -5 .. 5, grid = [100, 100], style = line, color = red, thickness = 2); g; end proc;
plot_inscribed_circle := proc(A, B, C) local a, b, c, s, r, Ii; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; r := sqrt((s - a)*(s - b)*(s - c)/s); Ii := [(a*A[1] + b*B[1] + c*C[1])/(a + b + c), (a*A[2] + b*B[2] + c*C[2])/(a + b + c)]; plot(circle(Ii, r), style = line, color = green, thickness = 2); end proc;
plot_exscribed_circles := proc(A, B, C) local a, b, c, s, rA, rB, rC, IA, IB, IC; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; rA := sqrt((s - b)*(s - c)*s/(s - a)); rB := sqrt((s - a)*(s - c)*s/(s - b)); rC := sqrt((s - a)*(s - b)*s/(s - c)); IA := [(a*A[1] - b*B[1] + c*C[1])/(a - b + c), (a*A[2] - b*B[2] + c*C[2])/(a - b + c)]; IB := [(a*A[1] + b*B[1] - c*C[1])/(a + b - c), (a*A[2] + b*B[2] - c*C[2])/(a + b - c)]; IC := [(-a*A[1] + b*B[1] + c*C[1])/(-a + b + c), (-a*A[2] + b*B[2] + c*C[2])/(-a + b + c)]; plot([circle(IA, rA), circle(IB, rB), circle(IC, rC)], style = line, color = magenta, thickness = 2); end proc;
with(geometry);
point(A1, 0, 0);
point(B1, 4, 2);
point(C1, 2, 3);
tx := textplot([[coordinates(A1)[], "A"], [coordinates(B1)[], "B"], [coordinates(C1)[], "C"]], font = [times, bold, 16], align = [above, left]);
triangle_plot := plot_triangle(A, B, C);
restart;
with(plots);
A := [0, 0];
B := [4, 2];
C := [2, 3];
distance := proc(P1, P2) sqrt((P1[1] - P2[1])^2 + (P1[2] - P2[2])^2); end proc;
plot_triangle := proc(A, B, C) plot([A, B, C, A], style = line, color = black, thickness = 2); end proc;
plot_bisectors := proc(A, B, C) local AB, BC, CA, AB_bisector, BC_bisector, CA_bisector, i; AB := [A, B]; BC := [B, C]; CA := [C, A]; AB_bisector := [seq(A[i] + t*(B[i] - A[i]), i = 1 .. 2)]; BC_bisector := [seq(B[i] + t*(C[i] - B[i]), i = 1 .. 2)]; CA_bisector := [seq(C[i] + t*(A[i] - C[i]), i = 1 .. 2)]; plot([AB_bisector, BC_bisector, CA_bisector], t = 0 .. 1, style = line, color = blue, thickness = 2); end proc;
plot_apollonius := proc(A, B, C, ratio) local f, g; f := (x, y) -> sqrt((x - A[1])^2 + (y - A[2])^2)/sqrt((x - B[1])^2 + (y - B[2])^2) - ratio; g := implicitplot(f(x, y), x = -5 .. 5, y = -5 .. 5, grid = [100, 100], style = line, color = red, thickness = 2); g; end proc;
plot_inscribed_circle := proc(A, B, C) local a, b, c, s, r, Ii; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; r := sqrt((s - a)*(s - b)*(s - c)/s); Ii := [(a*A[1] + b*B[1] + c*C[1])/(a + b + c), (a*A[2] + b*B[2] + c*C[2])/(a + b + c)]; plot(circle(Ii, r), style = line, color = green, thickness = 2); end proc;
plot_exscribed_circles := proc(A, B, C) local a, b, c, s, rA, rB, rC, IA, IB, IC; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; rA := sqrt((s - b)*(s - c)*s/(s - a)); rB := sqrt((s - a)*(s - c)*s/(s - b)); rC := sqrt((s - a)*(s - b)*s/(s - c)); IA := [(a*A[1] - b*B[1] + c*C[1])/(a - b + c), (a*A[2] - b*B[2] + c*C[2])/(a - b + c)]; IB := [(a*A[1] + b*B[1] - c*C[1])/(a + b - c), (a*A[2] + b*B[2] - c*C[2])/(a + b - c)]; IC := [(-a*A[1] + b*B[1] + c*C[1])/(-a + b + c), (-a*A[2] + b*B[2] + c*C[2])/(-a + b + c)]; plot([circle(IA, rA), circle(IB, rB), circle(IC, rC)], style = line, color = magenta, thickness = 2); end proc;
with(geometry);
point(A1, 0, 0);
point(B1, 4, 2);
point(C1, 2, 3);
tx := textplot([[coordinates(A1)[], "A"], [coordinates(B1)[], "B"], [coordinates(C1)[], "C"]], font = [times, bold, 16], align = [above, left]);
triangle_plot := plot_triangle(A, B, C);
bisectors_plot := plot_bisectors(A, B, C);
apollonius_plot := plot_apollonius(A, B, C, 1);
with(geometry);
inscribed_circle_plot := plot_inscribed_circle(A, B, C);
exscribed_circles_plot := plot_exscribed_circles(A, B, C);
display(triangle_plot, tx, bisectors_plot, apollonius_plot, axes = none, scaling = constrained, title = "Triangle with Bisectors, Apollonius Hyperbola, and Circles");
Error, (in plot) cannot determine plotting variable
Error, (in plot) cannot determine plotting variable
Warning, data could not be converted to float Matrix
Can you tel why these errors mean ? Thank you.
 

I have the function  and derivate with respect to ν and make the change variable ν=1/t it seems it doesn’t work. I put the derivate of 1/t => -1/t2 by hand  (could it be done by “dchange” the hole transformation ?)

I want to approximate the value of the integral. It seems that the solution of the equation and plot in 2 situations for low-frequency ν < 1014  and for high frequency so  when the exponential is dominated.

Thus plot the whole function E2 in the two situations. Could it be done with a series?

For value h := 6.62607015*10^(-34); c := 299792458; T := 273 + 24; k := 1.380649*10^(-23);

ec := 1.602176634*10^(-19); ν1 :=1012 ; ν2 := 1017 ;Tq := 1.765358264*10^(-19);

Could it be merged E2 into one plot for ν = 1012 .. 1017

PPh1.mw

I don't know how make my graph be beter for real part and imaginary part and abs part which part how work with parameter can any one explain on this example?

G.mw

i did two case of this equation and odetest is worked good but in this case the odetest is not worked well anyone can determine what is mistake ?

F_P_Correct_case_three.mw

I get my on results but the results are not the same please help me if i did any mistake in my code

 

symmetry_PDESYS_3_time_fraction[1].mw

This code is working for function f1 but not for f2
f2 := (x,y)->9*x^2-24*x*y+16*y^2+10*x-70*y + 175;
Why this code is not working for f2 ?
unprotect(D);
f1:= (x, y) -> 3*x^2 - 3*y*x + 6*y^2 - 6*x + 7*y - 9;
coeffs(f(x, y));
A, B, C, D, E, F := %;
theta := 1/2*arctan(B/(A - C));
solve({-2*A*xc - B*yc = D, -B*xc - 2*C*yc = E});
assign(%);
x := xcan*cos(theta) - ycan*sin(theta) + xc;
y := xcan*sin(theta) + ycan*cos(theta) + yc;
Eq := simplify(expand(f1(x, y)));
xcan^2/simplify(sqrt(-tcoeff(Eq)/coeff(Eq, xcan^2)))^`2` + ycan^2/simplify(sqrt(-tcoeff(Eq)/coeff(Eq, ycan^2)))^`2` = 1;

Thank you

how we can make pretty of changing equation or case in maple to latex but be more readble and be simplify and the scientific referee don't reject the writting for example in this picture when i do convert i get something like that

 

if you watch the result 1 it is better denomenator which is 2 come out will be better and then times multiply by radical so how we do something like that?

latex2.mw

1 2 3 4 5 6 7 Last Page 2 of 40