Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

restart

with(plottools)

with(plots)

with(CurveFitting)

Digits := 10

NULL

"f(t):=7.0*(e)^((-(t-13180)^(2))/(2000000))+4.7*(e)^((-(t-16000)^(2))/(3200000)):"

p1 := plot(f(t), t = 0 .. 20000, color = green); plots[display]({p1})

 

NULL

D1 := 15

epsilon := 200000

L := 6500

n := 200

t := 1000

1000

(1)

lambda := simplify(evalf(n*Pi*sqrt((1/2)*D1+sqrt((1/4)*D1^2+epsilon*(n*Pi/L)^2))/L))

.6928578233

(2)

b := 2*(int(f(t)*sin(m*Pi*x/L), x = 0 .. L))/L

-0.6366197724e-1*(0.1409730543e-28*cos(3.141592654*m)-0.1409730543e-28)/m

(3)

C(x, t) = sum(b*exp^(-lambda^2*t)*sin(m*Pi*x/L), m = 1 .. 2)

C(x, 1000) = 0.1794924675e-29*sin(0.4833219466e-3*x)/exp^(4800519633/10000000)

(4)

uu1000 := [seq(evalf(C(L-i, t)), i = 0 .. 6500, 100)]

[C(6500, 1000), C(6400, 1000), C(6300, 1000), C(6200, 1000), C(6100, 1000), C(6000, 1000), C(5900, 1000), C(5800, 1000), C(5700, 1000), C(5600, 1000), C(5500, 1000), C(5400, 1000), C(5300, 1000), C(5200, 1000), C(5100, 1000), C(5000, 1000), C(4900, 1000), C(4800, 1000), C(4700, 1000), C(4600, 1000), C(4500, 1000), C(4400, 1000), C(4300, 1000), C(4200, 1000), C(4100, 1000), C(4000, 1000), C(3900, 1000), C(3800, 1000), C(3700, 1000), C(3600, 1000), C(3500, 1000), C(3400, 1000), C(3300, 1000), C(3200, 1000), C(3100, 1000), C(3000, 1000), C(2900, 1000), C(2800, 1000), C(2700, 1000), C(2600, 1000), C(2500, 1000), C(2400, 1000), C(2300, 1000), C(2200, 1000), C(2100, 1000), C(2000, 1000), C(1900, 1000), C(1800, 1000), C(1700, 1000), C(1600, 1000), C(1500, 1000), C(1400, 1000), C(1300, 1000), C(1200, 1000), C(1100, 1000), C(1000, 1000), C(900, 1000), C(800, 1000), C(700, 1000), C(600, 1000), C(500, 1000), C(400, 1000), C(300, 1000), C(200, 1000), C(100, 1000), C(0, 1000)]

(5)

``

xx := [seq(k, k = 0 .. 6500, 100)]

NULL

p2 := plot(xx, uu1000, color = cyan)

Error, (in plot) two lists or Vectors of numerical values expected

 

plots[display]({p2})

Error, (in plots:-display) expecting plot structures but received: {p2}

 

NULL

Download easy_way.mw

 

The moment we've all been waiting for has arrived: Maple 2023 is here!

With this release we continue to pursue our mission to provide powerful technology to explore, derive, capture, solve and disseminate mathematical problems and their applications, and to make math easier to learn, understand, and use. Bearing this in mind, our team of mathematicians and developers have dedicated the last year to adding new features and enhancements that not only improve the math engine but make that math engine more easily accessible within a user-friendly interface.

And if you ever wonder where our team gets inspiration, you don't need to look further than Maple Primes. Many of the improvements that went into Maple 2023 came as a direct result of feedback from users. I’ll highlight a few of those user-requested features below, and you can learn more about these, and many, many other improvements, in What’s New in Maple 2023.

  • The Plot Builder in Maple 2023 now allows you to build interactive plot explorations where parameters are controlled by sliders or dials, and customize them as easily as you can other plots

Plot Builder Explore

 

  • In Maple 2023, 2-D contour and density plots now feature a color bar to show the values of the gradations.


  • For those who write a lot of code:  You can now open your .mpl Maple code files directly in Maple’s code editor, where you can  view and edit the file from inside Maple using the editor’s syntax highlighting, command completion, and automatic indenting.

Programming Improvements

  • Integration has been improved in many ways. Here’s one of them:  The definite integration method that works via MeijerG convolutions now does a better job of checking conditions on parameters so that they are only applied under proper assumptions. It also tells you the conditions under which the method could have produced an answer, so if your problem does meet those conditions, you can add the appropriate assumptions to get your result.
  • Many people have asked that we make it easier for them to create more complex interactive Math Apps and applications that require programming, such as interactive clickable plots, quizzes that provide feedback, examples that provide solution steps. And I’m pleased to announce that we’ve done that in Maple 2023 with the introduction of the Quiz Builder and the Canvas Scripting Gallery.
    • The new Quiz Builder comes loaded with sample quizzes and makes it easy to create your own custom quiz questions. Launch the quiz builder next time you want to author interactive quizzes with randomized questions, different response types, hints, feedback, and show the solution. It’s probably one of my favorite features in Maple 2023.

  • The Scripting Gallery in Maple 2023 provides 44 templates and modifiable examples that make it easier to create more complex Math Apps and interactive applications that require programming. The Maple code used to build each application in the scripting gallery can be easily viewed, copied and modified, so you can customize specific applications or use the code as a starting point for your own work

  • Finally, here’s one that is bound to make a lot of people happy: You can finally have more than one help page open at the same time!

For more information about all the new features and enhancements in Maple 2023, check out the What’s New in Maple 2023.

P.S. In case you weren’t aware - in addition to Maple, the Maplesoft Mathematics Suite includes a variety of other complementary software products, including online and mobile solutions, that help you teach and learn math and math-related courses.  Even avid Maple users may find something of interest!

The new command ArrayTools[GeneralOuterProduct] (introduced in Maple 2021) computes the generalized outer product of two rtables, and again, there exists a similar function Outer in Mma (cf. the end of this question). But in practice, it appears that this Maple command is not so fast as Mma's one. To begin with, we need to generate four lists: w, x, y, and z. Our goal is forming all possible combinations of the lowest‐level elements in a nested structure (rather than a flat structure). Now let us start the test.

In Mathematica (the real time is about ): 

And in Maple (the real time is about ): 
 

restart;

w := [`$`](0 .. 1e4):
x := [`$`](0 .. 2e3):
y := [`$`](0 .. 3e2):
z := [`$`](0 .. 4e1):

"time[real]((p1:=MmaTranslator:-Mma:-ReplaceRepeated(convert(ArrayTools:-GeneralOuterProduct(convert([w,x],Array,fill=NULL),()->`if`(nargs=2,`[]`(args),NULL),convert([y,z],Array,fill=NULL)),listlist),[]=NULL)))"

199.880

(1)

"time[real]((p2:=(s4->(s3->(s2->(s1->`[]`(s3,s1))~(s2))~([y,z]))~(s4))~([w,x])))"

7.699

(2)

p3 := parse(StringTools:-CharacterMap("{}", "[]", FileTools:-Text:-ReadFile("E:/data.txt")))

evalb(p1 = p2 and p2 = p3) = trueNULL


 

Download Outer.mw

As you can see, Maple and Mathematica returns identical results (∵p1p3); nevertheless, Maple consumes too much time: the ratio is 199.880/0.784176 ≈ 254.892. (What a wide gap between them!) 
So, is there any possibility of speeding up Maple's ArrayTools:-GeneralOuterProduct? Or any ideas of obtaining the same results in Maple efficiently?

Explanatory notes. Here is an illustrative animation: 

Let L be a list like

L:=[[3, 2], [2, 1], [1, 2], [1, 2], [2, 3], [2, 1], [1, 2], [1, 1], [2, 1], [1, 2], [1, 1], [2, 1], [1, 1], [1, 3], [1, 2], [2, 1], [1, 3], [1, 3], [1, 3], [1, 2], [2, 2], [2, 3]]

Now we consider [3,1] and [1,3] as same 

First we form a list gives us 

Lk:=[[[1,3],4],[[1.2],11],[[2,3],3],[[2,2],1],[[1,1],3]]

That is [1,3] appears 4 times in L

[1,2] appears 11 times in L

[2,3] appears 3 times in L

[1,1] appears.3 times in L

[2,2] appears 1 times in L

now we do addtion in [1,3] which is 1+3=4 therefore [[1,3],4] become [4,4]

[2,2] becomes 2+2=4 therefore [[2,2],1] is [4,1]

[[1,2],11] become [3,11]

[[2,3],3] becomes [5,3]

[[1,1],3] becomes [2,3]

So new list is [[4,4],[3,11],[5,3],[2,3],[4,1]]

so answer is from [4,4] we get 4 *4 , from [3,11] we get 3*11 , from [5,3] we get 5*3 and from [2,3] we get 2*3 from [4,1] we get 4*1

final required answer is (4*4)*(3*11)*(5*3)*(2*3)*(4*1)  =190080

Any list L like above if given kind help with a function which can do the above operation and give the final answer that is in above case 190080

Hi,

 Is it possible to write the Maple code to reach the partial differential equation from the following answer and reach the equation?

 

 Examples of it 

Here are all non-isomorphic 3-regular vertex-transitive graphs with 62 vertices. I wanted to draw them all at once, but I found that tables cannot use the map function.

with(GraphTheory):
CubicVT[1] := Graph({{23,60}, {37,6}, {36,27}, {61,19}, {60,29}, {2,52},
{40,43}, {23,25}, {45,50}, {1,30}, {11,17}, {13,41}, {34,4}, {11,54}, {26,49}, 
{56,2}, {49,51}, {3,21}, {47,28}, {24,52}, {13,7}, {48,27}, {51,42}, {4,60}, 
{55,45}, {46,21}, {46,38}, {57,14}, {4,31}, {24,8}, {47,20}, {44,5}, {55,43}, 
{30,31}, {18,41}, {17,42}, {46,37}, {36,16}, {8,43}, {58,30}, {17,53}, {25,5}, 
{5,31}, {24,9}, {9,53}, {22,26}, {35,50}, {48,20}, {12,36}, {33,13}, {12,58}, 
{33,29}, {35,14}, {3,19}, {41,42}, {14,10}, {25,21}, {37,32}, {2,48}, {52,10}, 
{61,10}, {57,58}, {38,7}, {3,62}, {29,51}, {35,8}, {39,32}, {49,6}, {1,27}, 
{39,40}, {12,50}, {56,53}, {59,62}, {34,15}, {18,9}, {1,28}, {22,55}, {33,15}, 
{39,7}, {44,57}, {59,38}, {11,26}, {45,54}, {15,59}, {44,19}, {47,62}, {16,54}, {61,20}, {23,6}, {56,16}, {22,32}, {18,40}, {34,28}});

CubicVT[2] := Graph({{39,7}, {18,41}, {11,17}, {22,32}, {46,29}, {24,8},
{18,40}, {44,19}, {55,43}, {23,25}, {45,9}, {46,38}, {59,38}, {13,6}, {39,51}, 
{48,27}, {56,16}, {57,58}, {25,21}, {52,10}, {17,43}, {22,41}, {61,20}, {15,59},
{14,27}, {39,32}, {24,54}, {42,32}, {17,53}, {56,35}, {41,42}, {34,15}, {2,52}, 
{40,43}, {33,13}, {36,10}, {44,28}, {49,6}, {56,2}, {45,54}, {25,15}, {2,50}, 
{58,20}, {61,30}, {57,48}, {48,20}, {47,62}, {35,8}, {37,6}, {13,7}, {4,31}, 
{47,28}, {35,50}, {1,19}, {49,7}, {60,29}, {61,19}, {51,42}, {11,26}, {55,45}, 
{3,4}, {36,27}, {16,54}, {9,53}, {11,40}, {47,5}, {14,10}, {23,59}, {16,8}, 
{5,31}, {24,9}, {12,36}, {3,21}, {62,31}, {22,26}, {33,37}, {57,14}, {46,37}, 
{34,21}, {1,28}, {12,52}, {34,4}, {44,5}, {12,50}, {38,60}, {55,53}, {23,60}, 
{1,30}, {58,30}, {33,29}, {3,62}, {26,18}, {49,51}});

CubicVT[3] := Graph({{23,60}, {37,6}, {38,51}, {36,27}, {61,19}, 
{60,29}, {2,52}, {40,43}, {23,25}, {1,30}, {17,39}, {11,17}, {34,4}, {33,21}, 
{23,7}, {56,2}, {1,10}, {11,8}, {49,51}, {3,21}, {47,28}, {13,7}, {48,27}, 
{25,28}, {51,42}, {55,45}, {13,26}, {46,38}, {57,14}, {4,31}, {24,8}, {44,5}, 
{55,43}, {44,27}, {2,58}, {15,6}, {18,41}, {46,37}, {58,30}, {17,53}, {5,31}, 
{24,9}, {9,53}, {22,26}, {35,50}, {48,20}, {12,36}, {33,13}, {18,54}, {50,53}, 
{24,36}, {33,29}, {3,30}, {41,42}, {14,10}, {25,21}, {20,31}, {12,61}, {52,10}, 
{57,58}, {3,62}, {35,8}, {39,32}, {49,6}, {29,32}, {12,50}, {56,43}, {55,42}, 
{22,9}, {34,15}, {1,28}, {39,7}, {45,52}, {59,5}, {59,38}, {57,47}, {60,62}, 
{11,26}, {37,41}, {35,48}, {45,54}, {15,59}, {44,19}, {47,62}, {16,54}, {46,4}, 
{61,20}, {14,16}, {56,16}, {34,19}, {22,32}, {18,40}, {49,40}});

CubicVT[4] := Graph({{13,9}, {39,7}, {18,41}, {33,28}, {11,17}, {39,8}, 
{22,32}, {24,8}, {18,40}, {44,35}, {44,19}, {55,43}, {23,25}, {46,38}, {59,38}, 
{34,27}, {2,47}, {12,31}, {48,27}, {7,62}, {56,16}, {57,58}, {25,21}, {52,10}, 
{3,10}, {61,20}, {15,59}, {45,58}, {5,6}, {39,32}, {17,53}, {41,42}, {34,15}, 
{2,52}, {59,20}, {48,53}, {40,43}, {38,40}, {33,13}, {49,6}, {56,2}, {45,54}, 
{1,16}, {48,20}, {55,37}, {47,62}, {35,8}, {14,43}, {37,6}, {13,7}, {4,31}, 
{47,28}, {35,50}, {60,29}, {61,19}, {51,42}, {24,61}, {22,50}, {11,26}, {55,45},
{11,36}, {4,51}, {49,54}, {36,27}, {16,54}, {9,53}, {14,10}, {5,31}, {24,9}, 
{12,36}, {21,32}, {3,21}, {18,52}, {22,26}, {15,41}, {56,42}, {17,29}, {57,14}, 
{46,37}, {1,28}, {34,4}, {44,5}, {23,26}, {12,50}, {60,30}, {23,60}, {1,30}, 
{58,30}, {33,29}, {3,62}, {57,25}, {46,19}, {49,51}});

CubicVT[5] := Graph({{39,7}, {18,41}, {11,17}, {22,32}, {24,8}, {18,40},
{44,19}, {56,49}, {55,43}, {23,25}, {52,42}, {2,3}, {14,18}, {59,38}, {46,38}, 
{62,32}, {48,27}, {56,16}, {26,21}, {15,40}, {57,58}, {25,21}, {58,43}, {33,30},
{52,10}, {22,36}, {61,20}, {15,59}, {13,8}, {39,32}, {28,7}, {17,53}, {41,42}, 
{23,17}, {34,15}, {2,52}, {40,43}, {33,13}, {49,6}, {56,2}, {45,54}, {47,16}, 
{25,10}, {12,34}, {61,53}, {5,51}, {48,20}, {39,50}, {47,62}, {35,31}, {35,8}, 
{37,6}, {13,7}, {4,31}, {47,28}, {35,50}, {60,29}, {61,19}, {51,42}, {11,26}, 
{57,60}, {55,45}, {6,19}, {44,24}, {36,27}, {16,54}, {9,53}, {14,10}, {5,31}, 
{24,9}, {12,36}, {11,48}, {3,21}, {22,26}, {29,9}, {57,14}, {46,37}, {1,28}, 
{55,38}, {46,20}, {34,4}, {59,27}, {4,41}, {44,5}, {1,45}, {12,50}, {23,60}, 
{1,30}, {58,30}, {33,29}, {3,62}, {49,51}, {37,54}});

CubicVT[6] := Graph({{39,7}, {57,54}, {18,41}, {11,17}, {22,32}, {24,8},
{18,40}, {44,19}, {55,43}, {11,33}, {23,25}, {4,48}, {46,38}, {59,38}, {12,17}, 
{47,29}, {48,27}, {56,16}, {57,58}, {25,21}, {52,10}, {16,41}, {61,20}, {15,59},
{35,26}, {56,30}, {39,32}, {6,43}, {17,53}, {41,42}, {34,15}, {2,52}, {27,9}, 
{40,43}, {33,13}, {14,62}, {49,6}, {56,2}, {34,49}, {45,54}, {13,3}, {28,52}, 
{48,20}, {47,62}, {35,8}, {7,53}, {37,6}, {13,7}, {4,31}, {47,28}, {35,50}, 
{60,29}, {2,40}, {61,19}, {51,42}, {58,21}, {11,26}, {55,45}, {22,60}, {1,23}, 
{25,39}, {36,27}, {16,54}, {46,18}, {9,53}, {14,10}, {36,5}, {5,31}, {37,31}, 
{24,9}, {12,36}, {24,32}, {55,10}, {8,20}, {15,61}, {3,21}, {44,38}, {22,26}, 
{57,14}, {45,51}, {46,37}, {1,28}, {34,4}, {44,5}, {12,50}, {50,19}, {23,60}, 
{1,30}, {59,42}, {58,30}, {33,29}, {3,62}, {49,51}});

CubicVT[7] := Graph({{27,20}, {57,30}, {24,53}, {19,20}, {37,49}, 
{13,29}, {11,17}, {56,52}, {24,8}, {18,40}, {44,19}, {57,10}, {55,43}, {28,62}, 
{6,51}, {46,38}, {33,7}, {18,42}, {48,27}, {56,16}, {4,5}, {57,58}, {25,21}, 
{11,22}, {12,27}, {25,60}, {61,20}, {44,31}, {62,21}, {15,59}, {17,9}, {39,32}, 
{41,42}, {2,10}, {2,52}, {37,38}, {11,53}, {36,50}, {45,54}, {46,6}, {2,16}, 
{44,61}, {14,58}, {26,32}, {5,19}, {48,61}, {37,6}, {13,7}, {47,28}, {49,42}, 
{35,50}, {3,47}, {12,35}, {4,15}, {23,29}, {55,54}, {34,59}, {55,40}, {1,58}, 
{46,59}, {45,16}, {9,53}, {8,9}, {40,41}, {22,39}, {14,10}, {45,43}, {5,31}, 
{12,36}, {56,54}, {23,21}, {24,35}, {50,8}, {28,30}, {18,43}, {34,31}, {22,26}, 
{7,32}, {3,25}, {14,52}, {15,38}, {26,17}, {34,4}, {1,47}, {33,60}, {23,60}, 
{1,30}, {33,29}, {3,62}, {51,41}, {36,48}, {49,51}, {13,39}});

 

DrawGraph~(CubicVT)

Error, invalid input: GraphTheory:-DrawGraph expects its 1st argument, H, to be of type {GRAPHLN, list(GRAPHLN), set(GRAPHLN)}, but received Graph({{1, 30}, {1, 47}, {1, 58}, {2, 10}, {2, 16}, {2, 52}, {3, 25}, {3, 47}, {3, 62}, {4, 5}, {4, 15}, {4, 34}, {5, 19}, {5, 31}, {6, 37}, {6, 46}, {6, 51}, {7, 13}, {7, 32}, {7, 33}, {8, 9}, {8, 24}, {8, 50}, {9, 17}, {9, 53}, {10, 14}, {10, 57}, {11, 17}, {11, 22}, {11, 53}, {12, 27}, {12, 35}, {12, 36}, {13, 29}, {13, 39}, {14, 52}, {14, 58}, {15, 38}, {15, 59}, {16, 45}, {16, 56}, {17, 26}, {18, 40}, {18, 42}, {18, 43}, {19, 20}, {19, 44}, {20, 27}, {20, 61}, {21, 23}, {21, 25}, {21, 62}, {22, 26}...
Why can lists use the map function, but tables cannot?

DrawGraph~([seq(CubicVT[i],i=1..7)])

tablemap.mw

restart;

with(Physics):with(plots):with(DETools):

sys := {diff(r(t),t)=p(t)/m,
diff(p(t),t)=l^2/(m*r(t)^3)-n*k*r(t)^(n-1),
diff(phi(t),t)=l/(m*r(t)^2)};

{diff(p(t), t) = l^2/(m*r(t)^3)-n*k*r(t)^(n-1), diff(phi(t), t) = l/(m*r(t)^2), diff(r(t), t) = p(t)/m}

(1)

sys1:=subs({n=1,k=1},sys);

{diff(p(t), t) = l^2/(m*r(t)^3)-1, diff(phi(t), t) = l/(m*r(t)^2), diff(r(t), t) = p(t)/m}

(2)

conv:=plottools:-transform((a,b)->[a*cos(b),a*sin(b)]):

p1:=DEplot(sys1,[r(t),phi(t)],t=0..30,r=0..10,phi=0..2*Pi,stepsize=0.01);

Error, (in DEtools/DEplot) system must have same number of dependent variables as DE's.

 

plots:-display([conv(p1)],axiscoordinates=polar);

Error, (in conv) invalid argument

 

 


Could you help how to fix the code?

Download DEplot_v1.mw

Hello everyone

I create a curved space ( with Physics) and create a metric tensor of 

a sphere . I see some Christoffel correcly . Is it possible to visualize all non zero Christoffel in one shot ?

Thank's a lot

Best Regards

restart; with(Physics)

Physics:-Setup(mathematicalnotation = true)

[mathematicalnotation = true]

(1)

Physics:-Setup(spacetimeindices, dimension = 2, signature = "++")

[dimension = 2, signature = `+ +`, spacetimeindices = greek]

(2)

Physics:-Coordinates(X)

{X}

(3)

ds2 := Physics:-`^`(dx1, 2)+Physics:-`*`(Physics:-`^`(sin(x1), 2), Physics:-`^`(dx2, 2))

dx1^2+sin(x1)^2*dx2^2

(4)

NULL

Physics:-Setup(metric = ds2)

[metric = {(1, 1) = 1, (2, 2) = sin(x1)^2}]

(5)

NULL

NULL

g_[]

g[mu, nu] = (Matrix(2, 2, {(1, 1) = 1, (1, 2) = 0, (2, 2) = sin(x1)^2}, storage = triangular[upper], shape = [symmetric]))

(6)

Physics:-Christoffel[`~k`, i, j]

Physics:-Christoffel[`~k`, i, j]

(7)

Physics:-Christoffel[`~1`, 2, 2]

-sin(x1)*cos(x1)

(8)

Physics:-Christoffel[`~2`, 1, 2]

cos(x1)/sin(x1)

(9)

Physics:-Christoffel[`~1`, 1, 1]

0

(10)

Download Approfondimento_1_-_Calcolo_Sfera_2D.mw

I have JPG images and plots from a CAD code and from Matlab. I want to insert them into a Maple worksheet and do the following:

      1. Resize the images or plots while preserving aspect ratio

      2. Add a figure number and caption to the image or plot.

          I would prefer automatic numbering if that is available in Maple.

          I would also prefer to have the caption "linked" to the image or plot so that they can be moved together

I assumed that these kinds of tools were available in Maple, but I sure cannot find them. Any help will be greatly appreciated.

Thanks, Neill Smith

I just downloaded maple 2021 (I get i free from my school). I used maple for the last 4 years but, now when i opdatede to maple 2021 from version 2020, its just keep freezing i have try to uninstall 3 times by now and it still keep freezing.

Hi.

plot([cos(t), sin(t), t = 0 .. 2*Pi]) give a nice circle.

but

plot([cos(t), sin(t), t = 0 .. 2*Pi*10000])

have the whole circle filled.

Is this a bug or expected behavior?

Thanks.

Huajun

That is to say, a generalized map
E.g., here is a nested list: 

nl := [[[[s, t]], [u, [v, w]]], [[x, [y, z]]]]:

We can use map to apply the mapped function F to "each operand" (i.e., the first‐level parts) of : 

:-map(F, nl);
 = 
         [F([[[s, t]], [u, [v, w]]]), F([[x, [y, z]]])]

But in Mathematica, we can make further explorations: 

In[1]:= nl = {{{{s, t}}, {u, {v, w}}}, {{x, {y, z}}}}; 

In[2]:= Map[F, nl, {1}] (*Maple's result*)

Out[2]= {F[{{{s, t}}, {u, {v, w}}}], F[{{x, {y, z}}}]}

In[3]:= Map[F, nl, {2, -2}]

Out[3]= {{F[{F[{s, t}]}], F[{u, F[{v, w}]}]}, {F[{x, F[{y, z}]}]}}

In[4]:= Map[F, nl, {-3, 3}]

Out[4]= {{F[{F[{s, t}]}], F[{F[u], F[{v, w}]}]}, {F[{F[x], F[{y, z}]}]}}

In[5]:= Map[F, nl, {0, \[Infinity]}, Heads -> \[Not] True]

Out[5]= F[{F[{F[{F[{F[s], F[t]}]}], F[{F[u], F[{F[v], F[w]}]}]}], F[{F[{F[x], F[{F[y], F[z]}]}]}]}]

Note that the last case has been implemented in Maple as MmaTranslator[Mma][MapAll]:  

MmaTranslator:-Mma:-MapAll(F,nl);
 = 
   F([F([F([F([F(s), F(t)])]), F([F(u), F([F(v), F(w)])])]), 

     F([F([F(x), F([F(y), F(z)])])])])

Naturally, how to reproduce the other two results in Maple programmatically? (The output may not be easy to read or understand; I have added an addendum below.)

Addendum. It is also possible to display in "tree" structure (like dismantle) manually: 

`[]`
(
    `[]`
    (
        `[]`
        (
            `[]`
            (
                s
            ,
                t
            )
        )
    ,
        `[]`
        (
            u
        ,
            `[]`
            (
                v
            ,
                w
            )
        )
    )
,
    `[]`
    (
        `[]`
        (
            x
        ,
            `[]`
            (
                y
            ,
                z
            )
        )
    )
)

As you can see, the "depth" of  is five (0, 1, 2, 3, and 4), while the classical map just maps at the first "level". (Moreover, such descriptions may lead to a confusion.)

Supplement. Unfortunately, there remains a bug in the MmaTranslator[Mma][Level]. Compare: 

MmaTranslator:-Mma:-Level(nl, [4]); (*Maple*)
                             [v, w]

MmaTranslator:-Mma:-Level(nl, [-1]); (*Maple*)
          [s, t, u, v, w, x, y, z, -1, x, c, r, y, 2]

In[6]:= Level[nl, {4}] (*Mathematica*)

Out[6]= {s, t, v, w, y, z}

In[7]:= Level[nl, {-1}] (*Mathematica*)

Out[7]= {s, t, u, v, w, x, y, z}

Hey guys.

I want to replace _Z1, _Z2 and _B2 with n but it doesn't work. Can anyone help?

An example is attached.

Regards,

Oliveira

Example3.mw

I have noticed this before few times. I wonder if others have seen it.

When I have Maple open, (with may be few worksheets open) and not being used at all for anything and it is not running anything, after sometime (say 2-4 hrs or more), when I go back to using Maple, I find the GUI unresponsive. Nothing happens. Clicking on anything does nothing, It is frozen. Resizing the window, it become black and does not repaint.  

But If I wait about 5-10 minutes after doing this window resizing, it suddenly becomes responsive again and it become alive again.  This happened twice this week, where I was about to just kill Maple. Good thing I did not.

It feels like the Maple process/frontend went to sleep when not being used, and it takes few minutes to wake it up by shaking the window. I do not know what else could explain this.

This is windows 10. Latest updates and lots of RAM and nothing else is running on the PC at this time.

I go take a nap, come back and notice this. It does not happen all the time, but noticed it twice this week.

Any others seen this problem? Does Maple process go to sleep or hibernate when it detects it is not being used for sometime? Looking at task manager when this happens, I see no CPU activity at all and no memory changes at all in any of the servers.exe. So I think this might be a GUI issue, where Java go to sleep or something.   

Or it could be a windows 10 issue and not Maple. But I only noticed this with Maple where it seems to go to sleep when not used.

Maple can be set to calculate approximately/numerically for instance by adding af . e.g. calculate f(4.) instead of f(4), but it is possible to set Maple to default calculate, as if alle numbers were entered as "4." (even though I enter "4")?

First 224 225 226 227 228 229 230 Last Page 226 of 2219