Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hello, I am getting the following output from maple: (-ln(lambda)-gamma-ln(k+b))/(k+b) . I have all variables (lambda, k, b) but not gamma and I am not sure what actually it is. I believe it is some kind of Gamma function but I cannot find any expressions for that. Ussually for gamma function I get something like GAMMA(x). Does someone know what this lower case gamma is?

I wish to write a simple procedure to evaluate the Poisson quantile function, F, for many possible parameter values, lambda.

The Maple commands to evaluate F for individual lambda values works just fine, however, I have tried to write a simple procedure to evaluate F for prescribed lambda values (imported from Excel) but to no avail. I'm missing something quite basic, I'm sure.

Can anybody offer a suggestion please? Thanks.

 

Inverse_Poisson_Procedure.mw

i want to gain diff(p(t), t) and diff(q(t), t) and Jacobian matrix
 according to the attached pdf file.

please help me.

thanks

simplify.mw
 

k := diff(a(t), t) = -mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t))

diff(a(t), t) = -mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t))

(1)

j := a(t)*(diff(gamma(t), t)) = 2*a(t)*sigma-(6*(1/8))*(alpha1-alpha2+(1/3)*alpha3)*a(t)^3-(1/2)*alpha6*a(t)*cos(gamma(t))

a(t)*(diff(gamma(t), t)) = 2*a(t)*sigma-(3/4)*(alpha1-alpha2+(1/3)*alpha3)*a(t)^3-(1/2)*alpha6*a(t)*cos(gamma(t))

(2)

"p(t):=a(t)*cos(gamma(t))"

proc (t) options operator, arrow, function_assign; a(t)*cos(gamma(t)) end proc

(3)

"q(t):=a(t)*sin(gamma(t))"

proc (t) options operator, arrow, function_assign; a(t)*sin(gamma(t)) end proc

(4)

diff(p(t), t)

(diff(a(t), t))*cos(gamma(t))-a(t)*(diff(gamma(t), t))*sin(gamma(t))

(5)

(-mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t)))*cos(gamma(t))-a(t)*(2*sigma-(6*(1/8))*(alpha1-alpha2+(1/3)*alpha3)*a(t)^2-(1/2)*alpha6*cos(gamma(t)))*sin(gamma(t))

(-mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t)))*cos(gamma(t))-a(t)*(2*sigma-(3/4)*(alpha1-alpha2+(1/3)*alpha3)*a(t)^2-(1/2)*alpha6*cos(gamma(t)))*sin(gamma(t))

(6)

diff(p(t), t)

2*t

(7)

``


subs.pdf

Download simplify.mw

 

 

Hi

I am having some trouble with a procedure. One of the procedures arguments is a mathematical function g(var). For simplification lets say I wish to make a procedure which calculates some values of the unknown function, g: 

SomeProc:=proc(g,var:=x)
f(var):=g
return f(2)
end proc

This does not seem to work. No matter what value of var is inserted into f, the return is g(var). 

Any help would be much appreciated:

How do I combine log10 terms. I can do it with natural logs but I have not been able do do it with log10.

 

    

 

Hello, I would like to make my polynomial equation simpler by replacing every coefficient of each degree in s by any constant.

For example, one of the variable solutions it is:


How can i re-write this equation in the form, lets say, C0+C1*s+C2*s^2+C3*s^3?

I draw a 3d graph and now i want the table of this graph. how can we get a table from the data of a plotted graph.

May grapg was obtained from the following commands

 

restart;
plot3d(1/2*(q^(2*n)-5.*q^n+(2.*q-1)^n+3), q = 2 .. 15, n = 2 .. 20);
 

I am carrying out a research in dynamical system to which end I need to do optimal control. I have coded the control equations but its not displaying any result. I need guidance. The code is shown below....

 

restart;
with(plots);
r := 3; r[1] := 3; k := 10; a := 0.2e-1; b := 0.1e-1; c := 0.1e-1; beta := 0.3e-1; alpha := 0.3e-1; m := 0.5e-1;
z := 40; q := 5; p := 100; T := 3;
sigma := 0.1e-1; k[1] := 10; rho := 0.5e-1;

u[1] := min(max(0, z), 1); z := (a*m*k*lambda[2](t)*x(t)*y(t)-lambda[1](t)*r*(1+b*x(t)+c*y(t))*x(t)*x(t))/(z*k*(1+b*x(t)+c*y(t))); u[2] := min(max(0, q), 1); q := -lambda[1](t)*beta*x(t)*s(t)/q; u[3] := min(max(0, p), 1); p := -(r[1]*lambda[3](t)*s(t)*s(t))/(p*k[1]);
NULL;
sys := diff(x(t), t) = r*x(t)*(1-(1-u[1])*x(t)/k)-a*m*x(t)*y(t)/(1+b*x(t)+c*y(t))-beta*(1-u[2])*x(t)*s(t), diff(y(t), t) = -alpha*y(t)+a*m*x(t)*y(t)/(1+b*x(t)+c*y(t)), diff(s(t), t) = sigma*s(t)+r[1]*s(t)*(1-(1-u[3])*s(t)/k[1])-rho*s(t)*y(t), diff(lambda[1](t), t) = -lambda[1](t)*(r-2*r*(1-u[1])*x(t)/k-a*y(t)*(1+c*y(t))/((1+b*x(t)+c*y(t)) . (1+b*x(t)+c*y(t)))-beta*(1-u[2])*s(t))-lambda[2](t)*a*m*(1-u[1])*(1+c*y(t))*y(t)/((1+b*x(t)+c*y(t)) . (1+b*x(t)+c*y(t))), diff(lambda[2](t), t) = -lambda[1](t)*a*x(t)*(1+b*x(t))/((1+b*x(t)+c*y(t))*(1+b*x(t)+c*y(t)))+lambda[2](t) . (-alpha+(a*m*(1-u[1]) . (1+b*x(t)))*x(t)/((1+b*x(t)+c*y(t))*(1+b*x(t)+c*y(t))))+lambda[3](t)*rho*s(t), diff(lambda[3](t), t) = lambda[1](t)*beta*(1-u[2])*x(t)-lambda[1](t)*(r[1]-2*r[1]*(1-u[3])*s(t)/k[1]-sigma-rho*y(t)), x(0) = 100, y(0) = 200, s(0) = 100, lambda[1](T) = 0, lambda[2](T) = 0, lambda[3](T) = 0;
p1 := dsolve({sys}, type = numeric, method = bvp[midrich], abserr = .1);
 

Hi!

I have the following problem: to create a special elimination ordering which is a weighted degree ordering suitable for elimination + pure lexicographic ordering. Let me provide an example. Assume my variables are x,y,z,t,u,v and I want to eliminate x,y,z. For this purpose, I define the weight vector [1,1,1,0,0,0] and compare monomials wrt corresponding weighted degree. If such degrees are equal, I compare monomials by pure lexicographic ordering. This is exactly what I need. How to obtain such monomial ordering by the package Groebner? I have tried monomial orderings defined by matrices using command  'matrix'(M,vars) but it seems it does not work for 30 variables.

Any suggestion? Thanks in advance.

I am unable to the get the output  in ans2 , error is comming

 

restart:
with(DETools):
with(PDEtools):
u[o](r,z):=(-1/4)*diff(p[o](z),z)*(1-r^2):
ode:=gamma1*diff(u[o](r,z),z)+(1/r)*diff(v[1](r)*r,r)=0:
#dsolve( (ode), { v[1](r) } ):
IC1 := {v[1](0) = 0}:
ans2 := combine(dsolve(`union`(ode, IC1),{v[1](r)}));
 

Hi, I have a long expression (differential polynomial).

It may contain different functions a(x,y), b(x,y), c(x,y) and its derrivatives.

Visually i do not see variable a (and its derivative) in expression.

But I want to be sure. How can I check it automatically?

Also I don't know maximal order of derivative that could appear in this expression.

Hello!

Assume we have the first N positive integres, 1,..,N, and we assing to these numbers a (discrete) probability distribution p1,...,pN. Of course, p1+...+pN=1.

Then, How can we select a number in {1,..,N} according to the given probability distribution? That is, the number 1 can be chosen with probability p1, 2 with a probability p2, etc.

Many thanks in advance for your comments.

Hi,

I am collecting the coefficients of funciton terms(like sin, cos, log,exp,abs) form the expression. I was able to collect using the function 'coeff'. Initially am getting all functions in the expression using Indets[flat(expression, funciton)] then using seq and coeff trying to get all funcitons

expression := a*sin((a+b)/(a-b))*log(a/b)/c+a*b/c+2*sin(a+b);
numOfFuncs := numelems(indets[flat](expression, function));
Funcs := convert(indets[flat](Expression, function), list);

funcCoeffList := [seq(coeff(Expression, Funcs[i]), i = 1 .. numOfFuncs )];

funcCoeffList := [a*sin((a+b)/(a-b))/c, a*ln(a/b)/c, 2]

When there are terms of form funtion*function I would like to collect the coefficient for function*function as one term rather than two terms. simply I want to write a code which reads the functions having product between them as one term gives me back the coefficient.

Looking for the output as : [a/c,2] or [a/c,1,2];

Hello

I have an expression which invokes the LambertW function.

LambertW(-ln(1+i)*EP*p*(1+i)^(-(365*EP*hr*kw*p+SC*i)/(365*FIT*hr*i*kw*(-1+p)))/(FIT*i*(-1+p)))

I was trying to import this expression into Excel, but my version doesn't have LambertW.

Does someone know an analagous function in a form Excel can compute?

According to wiki The Lambert W relation cannot be expressed in terms of elementary functions.

I have gotten around the problem using Newton-Raphson method, but it takes a few cells to converge....

 

how i can remove root of from result.

I want to plot function.

Thnaks

root_of.mw
 

sigma2 := RootOf(43980465111040000000000000000*sqrt(3)*Pi^25*sqrt(32*Pi^2+2)*sigma+21990232555520000000000000000*sqrt(3)*Pi^23*sqrt(32*Pi^2+2)*sigma-98268851732480000000000000000*sqrt(3)*Pi^21*sqrt(32*Pi^2+2)*sigma-44495861186560000000000000000*sqrt(3)*Pi^19*sqrt(32*Pi^2+2)*sigma+82188225740800000000000000000*sqrt(3)*Pi^17*sqrt(32*Pi^2+2)*sigma+33095407370240000000000000000*sqrt(3)*Pi^15*sqrt(32*Pi^2+2)*sigma-30136000839680000000000000000*sqrt(3)*Pi^13*sqrt(32*Pi^2+2)*sigma-10618895073280000000000000000*sqrt(3)*Pi^11*sqrt(32*Pi^2+2)*sigma+3822293002240000000000000000*sqrt(3)*Pi^9*sqrt(32*Pi^2+2)*sigma+1210118016000000000000000000*sqrt(3)*Pi^7*sqrt(32*Pi^2+2)*sigma+118805400000000000000000000*sqrt(3)*Pi^5*sqrt(32*Pi^2+2)*sigma+5028750000000000000000000*sqrt(3)*Pi^3*sqrt(32*Pi^2+2)*sigma+79101562500000000000000*sqrt(3)*sigma*Pi*sqrt(32*Pi^2+2)+111484894360500000*Pi^2*20^RootOf8+1765920726670320000*Pi^4*20^RootOf8-569534208772147200*Pi^6*20^RootOf8-4505569481375428608*Pi^8*20^RootOf8+972005049637797888*Pi^10*20^RootOf8+5143616921914048512*Pi^12*20^RootOf8-554194415829123072*Pi^14*20^RootOf8-2216777663316492288*Pi^16*20^RootOf8+(-9231519020818020433920000000000*Pi^22+195541371952408496701440000000000*Pi^20+89300299589267320995840000000000*Pi^18-333503605675043554590720000000000*Pi^16-115500365322956203622400000000000*Pi^14+204706142659640339988480000000000*Pi^12+55783620627641021399040000000000*Pi^10-43454880575740151285760000000000*Pi^8-9286786763553830541120000000000*Pi^6-635208422610519981000000000000*Pi^4-16054449064166199375000000000*Pi^2-85686765999732421875000000)*_Z+(1683627180032000000000000000000*Pi^28+947040288768000000000000000000*Pi^26-243897798836910985052160000000000*Pi^24-105849518880314282213376000000000*Pi^22+543806205557386676011008000000000*Pi^20+206745517628405562998784000000000*Pi^18-493535946568048375234560000000000*Pi^16-161556685841710476165120000000000*Pi^14+209521703041307302907904000000000*Pi^12+57932333046211895115008000000000*Pi^10-32606166808014116503296000000000*Pi^8-7574931806403147431400000000000*Pi^6-916854325001083153125000000000*Pi^4-60848666758777034179687500000*Pi^2-1531121744500488281250000000)*_Z^2+(14538675656595603456000000000000*Pi^20+6360670599760576512000000000000*Pi^18-24363640065154351104000000000000*Pi^16-9459367828326973440000000000000*Pi^14+10040437028153917440000000000000*Pi^12+3693930616897744896000000000000*Pi^10+1609933205706216192000000000000*Pi^8+58674582771546096000000000000*Pi^6-1202653471578517170000000000000*Pi^4-149668239567146343750000000000*Pi^2-4663745768352832031250000000)*_Z^3+(-8723205391669003498291200000000*Pi^24-4361602695834501749145600000000*Pi^22+19490912047010429691494400000000*Pi^20+8825430454852624633036800000000*Pi^18-16301436833461042151424000000000*Pi^16-6564233354119088386867200000000*Pi^14+5977256592087501137510400000000*Pi^12+2106180608207148770918400000000*Pi^10-758124018049754123827200000000*Pi^8-240018107472837924480000000000*Pi^6-23564187036740637000000000000*Pi^4-997415989180706250000000000*Pi^2-15689219628471679687500000)*_Z^4-13647882752248245117187500000-261292721157421875*20^RootOf8-535230827832343213125000000000*Pi^2-90526382422649463214540800000000*Pi^8-18587959930253464168320000000000*Pi^6-5863377073505044924800000000000*Pi^4+305811336261213249011712000000000*Pi^12+79115470702645314657484800000000*Pi^10-239241111641945951698944000000000*Pi^16-79895480796476508576153600000000*Pi^14+7986315188014109687808000000000*Pi^22-60346149989113268482867200000000*Pi^20-18258684357505568263372800000000*Pi^18+14855623787650488886886400000000*Pi^24)

F := plot([sigma2], sigma = -10 .. 10, color = [RED], thickness = 1)

Warning, expecting only range variable sigma in expression RootOf(-2216777663316492288*Pi^16*20^RootOf8-554194415829123072*Pi^14*20^RootOf8+5143616921914048512*Pi^12*20^RootOf8+33095407370240000000000000000*3^(1/2)*Pi^15*(32*Pi^2+2)^(1/2)*sigma-30136000839680000000000000000*3^(1/2)*Pi^13*(32*Pi^2+2)^(1/2)*sigma+5028750000000000000000000*3^(1/2)*Pi^3*(32*Pi^2+2)^(1/2)*sigma+79101562500000000000000*3^(1/2)*sigma*Pi*(32*Pi^2+2)^(1/2)-10618895073280000000000000000*3^(1/2)*Pi^11*(32*Pi^2+2)^(1/2)*sigma+3822293002240000000000000000*3^(1/2)*Pi^9*(32*Pi^2+2)^(1/2)*sigma+1210118016000000000000000000*3^(1/2)*Pi^7*(32*Pi^2+2)^(1/2)*sigma+118805400000000000000000000*3^(1/2)*Pi^5*(32*Pi^2+2)^(1/2)*sigma+43980465111040000000000000000*3^(1/2)*Pi^25*(32*Pi^2+2)^(1/2)*sigma+21990232555520000000000000000*3^(1/2)*Pi^23*(32*Pi^2+2)^(1/2)*sigma-98268851732480000000000000000*3^(1/2)*Pi^21*(32*Pi^2+2)^(1/2)*sigma-44495861186560000000000000000*3^(1/2)*Pi^19*(32*Pi^2+2)^(1/2)*sigma+82188225740800000000000000000*3^(1/2)*Pi^17*(32*Pi^2+2)^(1/2)*sigma+14855623787650488886886400000000*Pi^24-18587959930253464168320000000000*Pi^6-5863377073505044924800000000000*Pi^4+79115470702645314657484800000000*Pi^10-90526382422649463214540800000000*Pi^8-239241111641945951698944000000000*Pi^16-79895480796476508576153600000000*Pi^14+305811336261213249011712000000000*Pi^12-60346149989113268482867200000000*Pi^20-18258684357505568263372800000000*Pi^18+7986315188014109687808000000000*Pi^22-535230827832343213125000000000*Pi^2+111484894360500000*Pi^2*20^RootOf8+1765920726670320000*Pi^4*20^RootOf8-569534208772147200*Pi^6*20^RootOf8-4505569481375428608*Pi^8*20^RootOf8+972005049637797888*Pi^10*20^RootOf8+(-9231519020818020433920000000000*Pi^22+195541371952408496701440000000000*Pi^20+89300299589267320995840000000000*Pi^18-333503605675043554590720000000000*Pi^16-115500365322956203622400000000000*Pi^14+204706142659640339988480000000000*Pi^12+55783620627641021399040000000000*Pi^10-43454880575740151285760000000000*Pi^8-9286786763553830541120000000000*Pi^6-635208422610519981000000000000*Pi^4-16054449064166199375000000000*Pi^2-85686765999732421875000000)*_Z+(1683627180032000000000000000000*Pi^28+947040288768000000000000000000*Pi^26-243897798836910985052160000000000*Pi^24-105849518880314282213376000000000*Pi^22+543806205557386676011008000000000*Pi^20+206745517628405562998784000000000*Pi^18-493535946568048375234560000000000*Pi^16-161556685841710476165120000000000*Pi^14+209521703041307302907904000000000*Pi^12+57932333046211895115008000000000*Pi^10-32606166808014116503296000000000*Pi^8-7574931806403147431400000000000*Pi^6-916854325001083153125000000000*Pi^4-60848666758777034179687500000*Pi^2-1531121744500488281250000000)*_Z^2+(14538675656595603456000000000000*Pi^20+6360670599760576512000000000000*Pi^18-24363640065154351104000000000000*Pi^16-9459367828326973440000000000000*Pi^14+10040437028153917440000000000000*Pi^12+3693930616897744896000000000000*Pi^10+1609933205706216192000000000000*Pi^8+58674582771546096000000000000*Pi^6-1202653471578517170000000000000*Pi^4-149668239567146343750000000000*Pi^2-4663745768352832031250000000)*_Z^3+(-8723205391669003498291200000000*Pi^24-4361602695834501749145600000000*Pi^22+19490912047010429691494400000000*Pi^20+8825430454852624633036800000000*Pi^18-16301436833461042151424000000000*Pi^16-6564233354119088386867200000000*Pi^14+5977256592087501137510400000000*Pi^12+2106180608207148770918400000000*Pi^10-758124018049754123827200000000*Pi^8-240018107472837924480000000000*Pi^6-23564187036740637000000000000*Pi^4-997415989180706250000000000*Pi^2-15689219628471679687500000)*_Z^4-13647882752248245117187500000-261292721157421875*20^RootOf8) to be plotted but found name RootOf8

 

``


 

Download root_of.mw

 

First 750 751 752 753 754 755 756 Last Page 752 of 2224