# Question:Taking the coeff of theta dot out maple fails to exceute the command

## Question:Taking the coeff of theta dot out maple fails to exceute the command

Here is my code where I get the problem of taking the coeff of theta dot . The output of matlab Cm shows the coeff in the output matlab ( Cmatrix , optimize) at t2727 I see coeff .Meaning when the loop ran coeff didn't execute.

> J[p1] := Matrix(3, 4, {(1, 1) = -sin(theta[1](t))*`&Delta;x`[1]-cos(theta[1](t))*`&Delta;z`[1], (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = cos(theta[1](t))*`&Delta;x`[1]-sin(theta[1](t))*`&Delta;z`[1], (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 1) = (1/2)*rho*cos((1/2)*theta[1](t)), (3, 2) = 0, (3, 3) = 0, (3, 4) = 0});
> J[o1] := Matrix(3, 4, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 1) = 1, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0});
> J[p2] := Matrix(3, 4, {(1, 1) = -sin(theta[1](t))*a[2]*cos(theta[2](t))-cos(theta[1](t))*(d[2]+rho*sin((1/2)*theta[2](t)))-sin(theta[1](t))*cos(theta[2](t))*`&Delta;x`[2]-sin(theta[1](t))*sin(theta[2](t))*`&Delta;y`[2]+cos(theta[1](t))*`&Delta;z`[2], (1, 2) = -cos(theta[1](t))*a[2]*sin(theta[2](t))-(1/2)*sin(theta[1](t))*rho*cos((1/2)*theta[2](t))-cos(theta[1](t))*sin(theta[2](t))*`&Delta;x`[2]+cos(theta[1](t))*cos(theta[2](t))*`&Delta;y`[2], (1, 3) = 0, (1, 4) = 0, (2, 1) = cos(theta[1](t))*a[2]*cos(theta[2](t))-sin(theta[1](t))*(d[2]+rho*sin((1/2)*theta[2](t)))+cos(theta[1](t))*cos(theta[2](t))*`&Delta;x`[2]+cos(theta[1](t))*sin(theta[2](t))*`&Delta;y`[2]+sin(theta[1](t))*`&Delta;z`[2], (2, 2) = -sin(theta[1](t))*a[2]*sin(theta[2](t))+(1/2)*cos(theta[1](t))*rho*cos((1/2)*theta[2](t))-sin(theta[1](t))*sin(theta[2](t))*`&Delta;x`[2]+sin(theta[1](t))*cos(theta[2](t))*`&Delta;y`[2], (2, 3) = 0, (2, 4) = 0, (3, 1) = (1/2)*rho*cos((1/2)*theta[1](t)), (3, 2) = -a[2]*cos(theta[2](t))-cos(theta[2](t))*`&Delta;x`[2]-sin(theta[2](t))*`&Delta;y`[2], (3, 3) = 0, (3, 4) = 0});
> J[o2] := Matrix(3, 4, {(1, 1) = 0, (1, 2) = -sin(theta[1](t)), (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = cos(theta[1](t)), (2, 3) = 0, (2, 4) = 0, (3, 1) = 1, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0});
>
> J[3] := Matrix(6, 4, {(1, 1) = cos(theta[1](t))*(d[3]+rho*sin((1/2)*theta[3](t)))-cos(theta[1](t))*(d[2]+rho*sin((1/2)*theta[2](t)))-sin(theta[1](t))*a[2]*cos(theta[2](t))+(-sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;x`[3]-cos(theta[1](t))*`&Delta;y`[3]+(sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;z`[3], (1, 2) = (cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;x`[3]-cos(theta[1](t))*a[2]*sin(theta[2](t))-(1/2)*sin(theta[1](t))*rho*cos((1/2)*theta[2](t))+(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[3], (1, 3) = (1/2)*sin(theta[1](t))*rho*cos((1/2)*theta[3](t))+(-cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;x`[3]+(-cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[3], (1, 4) = 0, (2, 1) = sin(theta[1](t))*(d[3]+rho*sin((1/2)*theta[3](t)))+cos(theta[1](t))*a[2]*cos(theta[2](t))-sin(theta[1](t))*(d[2]+rho*sin((1/2)*theta[2](t)))+(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;x`[3]-sin(theta[1](t))*`&Delta;y`[3]+(-cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;z`[3], (2, 2) = (sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;x`[3]-sin(theta[1](t))*a[2]*sin(theta[2](t))+(1/2)*cos(theta[1](t))*rho*cos((1/2)*theta[2](t))+(sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[3], (2, 3) = -(1/2)*cos(theta[1](t))*rho*cos((1/2)*theta[3](t))+(-sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;x`[3]+(-sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[3], (2, 4) = 0, (3, 1) = (1/2)*rho*cos((1/2)*theta[1](t)), (3, 2) = -a[2]*cos(theta[2](t))+(-cos(theta[2](t))*cos(theta[3](t))-sin(theta[2](t))*sin(theta[3](t)))*`&Delta;x`[3]+(-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[3], (3, 3) = (sin(theta[2](t))*sin(theta[3](t))+cos(theta[2](t))*cos(theta[3](t)))*`&Delta;x`[3]+(sin(theta[2](t))*cos(theta[3](t))-cos(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[3], (3, 4) = 0, (4, 1) = 0, (4, 2) = -sin(theta[1](t)), (4, 3) = sin(theta[1](t)), (4, 4) = 0, (5, 1) = 0, (5, 2) = cos(theta[1](t)), (5, 3) = -cos(theta[1](t)), (5, 4) = 0, (6, 1) = 1, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0});
> J[p3] := J[3][1 .. 3, 1 .. 4];
> J[o3] := J[3][4 .. 6, 1 .. 4];
> J[4] := Matrix(6, 4, {(1, 1) = cos(theta[1](t))*(d[3]+rho*sin((1/2)*theta[3](t)))+(sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))+((-sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))-cos(theta[1](t))*sin(theta[4](t)))*`&Delta;x`[4]-cos(theta[1](t))*(d[2]+rho*sin((1/2)*theta[2](t)))+(-(-sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))-cos(theta[1](t))*cos(theta[4](t)))*`&Delta;y`[4]-sin(theta[1](t))*a[2]*cos(theta[2](t))+(sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;z`[4], (1, 2) = (cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))-(cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*sin(theta[4](t))*`&Delta;y`[4]+(cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*cos(theta[4](t))*`&Delta;x`[4]+(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[4]-cos(theta[1](t))*a[2]*sin(theta[2](t))-(1/2)*sin(theta[1](t))*rho*cos((1/2)*theta[2](t)), (1, 3) = (-cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))+(-cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*cos(theta[4](t))*`&Delta;x`[4]+(1/2)*sin(theta[1](t))*rho*cos((1/2)*theta[3](t))-(-cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*sin(theta[4](t))*`&Delta;y`[4]+(-cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[4], (1, 4) = (-(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))+sin(theta[1](t))*sin(theta[4](t)))*`&Delta;y`[4]+(-(1/2)*cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+(1/2)*cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*rho*cos((1/2)*theta[4](t))+(-(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))-sin(theta[1](t))*cos(theta[4](t)))*`&Delta;x`[4], (2, 1) = (-cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))+sin(theta[1](t))*(d[3]+rho*sin((1/2)*theta[3](t)))+cos(theta[1](t))*a[2]*cos(theta[2](t))-sin(theta[1](t))*(d[2]+rho*sin((1/2)*theta[2](t)))+((cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))-sin(theta[1](t))*sin(theta[4](t)))*`&Delta;x`[4]+(-(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))-sin(theta[1](t))*cos(theta[4](t)))*`&Delta;y`[4]+(-cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*`&Delta;z`[4], (2, 2) = (sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))-(sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*sin(theta[4](t))*`&Delta;y`[4]+(sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*cos(theta[4](t))*`&Delta;x`[4]+(sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[4]-sin(theta[1](t))*a[2]*sin(theta[2](t))+(1/2)*cos(theta[1](t))*rho*cos((1/2)*theta[2](t)), (2, 3) = (-sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))+(-sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*cos(theta[4](t))*`&Delta;x`[4]-(1/2)*cos(theta[1](t))*rho*cos((1/2)*theta[3](t))-(-sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*sin(theta[4](t))*`&Delta;y`[4]+(-sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))-sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[4], (2, 4) = (-(sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))-cos(theta[1](t))*sin(theta[4](t)))*`&Delta;y`[4]+(-(1/2)*sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+(1/2)*sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)))*rho*cos((1/2)*theta[4](t))+(-(sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))+cos(theta[1](t))*cos(theta[4](t)))*`&Delta;x`[4], (3, 1) = (1/2)*rho*cos((1/2)*theta[1](t)), (3, 2) = (-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))-a[2]*cos(theta[2](t))-(-cos(theta[2](t))*cos(theta[3](t))-sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))*`&Delta;y`[4]+(-cos(theta[2](t))*cos(theta[3](t))-sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))*`&Delta;x`[4]+(-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[4], (3, 3) = (sin(theta[2](t))*sin(theta[3](t))+cos(theta[2](t))*cos(theta[3](t)))*cos(theta[4](t))*`&Delta;x`[4]+(sin(theta[2](t))*cos(theta[3](t))-cos(theta[2](t))*sin(theta[3](t)))*(d[4]+rho*sin((1/2)*theta[4](t)))+(sin(theta[2](t))*cos(theta[3](t))-cos(theta[2](t))*sin(theta[3](t)))*`&Delta;z`[4]-(sin(theta[2](t))*sin(theta[3](t))+cos(theta[2](t))*cos(theta[3](t)))*sin(theta[4](t))*`&Delta;y`[4], (3, 4) = -(-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))*`&Delta;y`[4]+((1/2)*sin(theta[2](t))*sin(theta[3](t))+(1/2)*cos(theta[2](t))*cos(theta[3](t)))*rho*cos((1/2)*theta[4](t))-(-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))*`&Delta;x`[4], (4, 1) = 0, (4, 2) = -sin(theta[1](t)), (4, 3) = sin(theta[1](t)), (4, 4) = -cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)), (5, 1) = 0, (5, 2) = cos(theta[1](t)), (5, 3) = -cos(theta[1](t)), (5, 4) = -sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)), (6, 1) = 1, (6, 2) = 0, (6, 3) = 0, (6, 4) = sin(theta[2](t))*sin(theta[3](t))+cos(theta[2](t))*cos(theta[3](t))});
> J[p4] := J[4][1 .. 3, 1 .. 4];
> J[o4] := J[4][4 .. 6, 1 .. 4];
> ner[l1] := Matrix(3, 3, {(1, 1) = exx[1], (1, 2) = -exy[1], (1, 3) = -exz[1], (2, 1) = exy[1], (2, 2) = eyy[1], (2, 3) = -eyz[1], (3, 1) = exz[1], (3, 2) = eyz[1], (3, 3) = ezz[1]});
> ner[l2] := Matrix(3, 3, {(1, 1) = exx[2], (1, 2) = -exy[2], (1, 3) = -exz[2], (2, 1) = exy[2], (2, 2) = eyy[2], (2, 3) = -eyz[2], (3, 1) = exz[2], (3, 2) = eyz[2], (3, 3) = ezz[2]});
> ner[l3] := Matrix(3, 3, {(1, 1) = exx[3], (1, 2) = -exy[3], (1, 3) = -exz[3], (2, 1) = exy[3], (2, 2) = eyy[3], (2, 3) = -eyz[3], (3, 1) = exz[3], (3, 2) = eyz[3], (3, 3) = ezz[3]});
> ner[l4] := Matrix(3, 3, {(1, 1) = exx[4], (1, 2) = -exy[4], (1, 3) = -exz[4], (2, 1) = exy[4], (2, 2) = eyy[4], (2, 3) = -eyz[4], (3, 1) = exz[4], (3, 2) = eyz[4], (3, 3) = ezz[4]});
> with(LinearAlgebra);
> J[p1t] := Transpose(J[p1]);
> J[p2t] := Transpose(J[p2]);
> J[p3t] := Transpose(J[p3]);
> J[p4t] := Transpose(J[p4]);
> J[o1t] := Transpose(J[o1]);
> J[o2t] := Transpose(J[o2]);
> J[o3t] := Transpose(J[o3]);
> J[o4t] := Transpose(J[o4]);
> R[1] := Matrix(3, 3, {(1, 1) = cos(theta[1](t)), (1, 2) = 0, (1, 3) = -sin(theta[1](t)), (2, 1) = sin(theta[1](t)), (2, 2) = 0, (2, 3) = cos(theta[1](t)), (3, 1) = 0, (3, 2) = -1, (3, 3) = 0});
> R[t1] := Transpose(R[1]);
> R[2] := Matrix(3, 3, {(1, 1) = cos(theta[1](t))*cos(theta[2](t)), (1, 2) = cos(theta[1](t))*sin(theta[2](t)), (1, 3) = sin(theta[1](t)), (2, 1) = sin(theta[1](t))*cos(theta[2](t)), (2, 2) = sin(theta[1](t))*sin(theta[2](t)), (2, 3) = -cos(theta[1](t)), (3, 1) = -sin(theta[2](t)), (3, 2) = cos(theta[2](t)), (3, 3) = 0});
> R[t2] := Transpose(R[2]);
> R[3] := Matrix(3, 3, {(1, 1) = cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)), (1, 2) = -sin(theta[1](t)), (1, 3) = -cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)), (2, 1) = sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)), (2, 2) = cos(theta[1](t)), (2, 3) = -sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)), (3, 1) = -sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)), (3, 2) = 0, (3, 3) = sin(theta[2](t))*sin(theta[3](t))+cos(theta[2](t))*cos(theta[3](t))});
> R[t3] := Transpose(R[3]);
> R[4] := Matrix(3, 3, {(1, 1) = (cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))-sin(theta[1](t))*sin(theta[4](t)), (1, 2) = -(cos(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))-sin(theta[1](t))*cos(theta[4](t)), (1, 3) = -cos(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+cos(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)), (2, 1) = (sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t))+cos(theta[1](t))*sin(theta[4](t)), (2, 2) = -(sin(theta[1](t))*cos(theta[2](t))*cos(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t))+cos(theta[1](t))*cos(theta[4](t)), (2, 3) = -sin(theta[1](t))*cos(theta[2](t))*sin(theta[3](t))+sin(theta[1](t))*sin(theta[2](t))*cos(theta[3](t)), (3, 1) = (-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*cos(theta[4](t)), (3, 2) = -(-sin(theta[2](t))*cos(theta[3](t))+cos(theta[2](t))*sin(theta[3](t)))*sin(theta[4](t)), (3, 3) = sin(theta[2](t))*sin(theta[3](t))+cos(theta[2](t))*cos(theta[3](t))});
> R[t4] := Transpose(R[4]);
> B := m[1]*J[p1t].J[p1]+J[o1t].R[1].ner[l1].R[t1].J[o1]+m[2]*J[p2t].J[p2]+J[o2t].R[2].ner[l2].R[t2].J[o2]+m[3]*J[p3t].J[p3]+J[o3t].R[3].ner[l3].R[t3].J[o3]+m[4]*J[p4t].J[p4]+J[o4t].R[4].ner[l4].R[t4].J[o4]; type(B, Matrix);
true
> n := 4;
> Cmatrix := Matrix(n); for i to n do for j to n do for k to n do Cmatrix[i, j] := Cmatrix[i, j]+(1/2*(coeff*(map(diff, B[i, j], t), diff(theta[k](t), t))+coeff(map(diff, B[i, k], t), diff(theta[j](t), t))-coeff(map(diff, B[j, k], t), diff(theta[i](t), t))))*(diff(theta[k](t), t)) end do end do end do;
> type(Cmatrix, Matrix);
true
> Gr := Vector(3, {(1) = 0, (2) = 0, (3) = g});
> Grt := Transpose(Gr);
> Grv := m[1]*Grt.J[p1]+m[2]*Grt.J[p2]+m[3]*Grt.J[p3]+m[4]*Grt.J[p4];
>
> GrvT := Transpose(Grv);
print(`output redirected...`); # input placeholder
> with(CodeGeneration);
print(`output redirected...`); # input placeholder
> M := subs(theta[1](t) = w[1], theta[2](t) = w[2], theta[3](t) = w[3], theta[4](t) = w[4], B);
print(`output redirected...`); # input placeholder
> Ge := subs(theta[1](t) = w[1], theta[2](t) = w[2], theta[3](t) = w[3], theta[4](t) = w[4], GrvT); Cmatrix;
print(`output redirected...`); # input placeholder
[Length of output exceeds limit of 1000000]
> coeff(Ge, m[1]);
print(??); # input placeholder
>
print(`output redirected...`); # input placeholder

print(`output redirected...`); # input placeholder
> Matlab;
> Matlab(Cmatrix, optimize);
%;
Warning, the function names {diff, `theta[1]`, `theta[2]`, `theta[3]`, `theta[4]`} are not recognized in the target language
Warning, the following variable name replacements were made: ["cg", "cg2", "cg4"] = ["&Delta;x", "&Delta;y", "&Delta;z"]
t1 = theta[1](t);
t2 = sin(t1);
t3 = theta[3](t);
t4 = t3 / 0.2e1;
t5 = sin(t4);
t7 = d(3) + rho * t5;
t8 = t2 * t7;
t9 = cos(t1);
t10 = t9 * a(2);
t11 = theta[2](t);
t12 = cos(t11);
t13 = t10 * t12;
t14 = t11 / 0.2e1;
t15 = sin(t14);
t17 = d(2) + rho * t15;
t18 = t2 * t17;
t19 = t9 * t12;
t20 = cos(t3);
t22 = sin(t11);
t23 = t9 * t22;
t24 = sin(t3);
t26 = t19 * t20 + t23 * t24;
t27 = t26 * cg(3);
t28 = t2 * cg2(3);
t31 = -t19 * t24 + t23 * t20;
t32 = t31 * cg4(3);
t34 = m(3) * (t8 + t13 - t18 + t27 - t28 + t32);
t35 = diff(theta[1](t), t);
t36 = t9 * t35;
t37 = t36 * t7;
t38 = t2 * rho;
t39 = cos(t4);
t40 = diff(theta[3](t), t);
t41 = t39 * t40;
t43 = t38 * t41 / 0.2e1;
t44 = t2 * t35;
t45 = a(2) * t12;
t46 = t44 * t45;
t47 = diff(theta[2](t), t);
t48 = t22 * t47;
t49 = t10 * t48;
t50 = t36 * t17;
t51 = cos(t14);
t52 = t51 * t47;
t54 = t38 * t52 / 0.2e1;
t55 = t12 * t20;
t57 = t47 * t20;
t59 = t24 * t40;
t61 = t22 * t24;
t63 = t47 * t24;
t65 = t20 * t40;
t67 = -t44 * t55 - t23 * t57 - t19 * t59 - t44 * t61 + t19 * t63 + t23 * t65;
t70 = t12 * t24;
t74 = t22 * t20;
t78 = t44 * t70 + t23 * t63 - t19 * t65 - t44 * t74 + t19 * t57 - t23 * t59;
t80 = t37 + t43 - t46 - t49 - t50 - t54 + t67 * cg(3) - t36 * cg2(3) + t78 * cg4(3);
t83 = -t74 + t70;
t84 = theta[4](t);
t85 = cos(t84);
t86 = t83 * t85;
t87 = t86 * exy(4);
t88 = sin(t84);
t89 = t83 * t88;
t91 = t61 + t55;
t93 = -t87 - t89 * eyy(4) + t91 * eyz(4);
t94 = t12 * t47;
t99 = -t94 * t20 + t61 * t40 - t48 * t24 + t55 * t40;
t101 = t93 * t99 * t88;
t102 = t2 * a(2);
t103 = t102 * t12;
t104 = t9 * t17;
t105 = t2 * t12;
t106 = t105 * cg(2);
t107 = t2 * t22;
t108 = t107 * cg2(2);
t111 = m(2) * (-t103 - t104 - t106 - t108 + t9 * cg4(2));
t112 = t36 * t45;
t113 = t102 * t48;
t114 = t44 * t17;
t115 = t9 * rho;
t117 = t115 * t52 / 0.2e1;
t118 = t12 * cg(2);
t120 = t47 * cg(2);
t122 = t22 * cg2(2);
t124 = t47 * cg2(2);
t127 = -t112 + t113 + t114 - t117 - t36 * t118 + t107 * t120 - t36 * t122 - t105 * t124 - t44 * cg4(2);
t139 = t19 * cg(2);
t140 = t23 * cg2(2);
t142 = t13 - t18 + t139 + t140 + t2 * cg4(2);
t143 = m(2) * t142;
t149 = -t46 - t49 - t50 - t54 - t44 * t118 - t23 * t120 - t44 * t122 + t19 * t124 + t36 * cg4(2);
t152 = t9 * t7;
t155 = -t105 * t20 - t107 * t24;
t156 = t155 * cg(3);
t160 = t105 * t24 - t107 * t20;
t161 = t160 * cg4(3);
t163 = m(3) * (t152 - t104 - t103 + t156 - t9 * cg2(3) + t161);
t164 = t44 * t7;
t166 = t115 * t41 / 0.2e1;
t173 = -t36 * t55 + t107 * t57 + t105 * t59 - t36 * t61 - t105 * t63 - t107 * t65;
t182 = t36 * t70 - t107 * t63 + t105 * t65 - t36 * t74 - t105 * t57 + t107 * t59;
t184 = -t164 + t166 + t114 - t117 - t112 + t113 + t173 * cg(3) + t44 * cg2(3) + t182 * cg4(3);
t187 = t84 / 0.2e1;
t188 = sin(t187);
t190 = d(4) + rho * t188;
t191 = t31 * t190;
t192 = t26 * t85;
t193 = t2 * t88;
t194 = t192 - t193;
t196 = t26 * t88;
t197 = t2 * t85;
t198 = -t196 - t197;
t200 = t31 * cg4(4);
t202 = m(4) * (t191 + t8 + t13 - t18 + t194 * cg(4) + t198 * cg2(4) + t200);
t204 = t31 * rho;
t205 = cos(t187);
t206 = diff(theta[4](t), t);
t207 = t205 * t206;
t214 = t67 * t85 - t196 * t206 - t36 * t88 - t197 * t206;
t220 = -t67 * t88 - t192 * t206 - t36 * t85 + t193 * t206;
t223 = t78 * t190 + t204 * t207 / 0.2e1 + t37 + t43 - t46 - t49 - t50 - t54 + t214 * cg(4) + t220 * cg2(4) + t78 * cg4(4);
t226 = t99 * t85;
t230 = t99 * t88;
t232 = t206 * exy(4);
t238 = t94 * t24 + t74 * t40 - t48 * t20 - t70 * t40;
t240 = t226 * exx(4) - t89 * t206 * exx(4) - t230 * exy(4) - t86 * t232 + t238 * exz(4);
t242 = t240 * t83 * t85;
t249 = -t226 * exy(4) + t89 * t232 - t230 * eyy(4) - t86 * t206 * eyy(4) + t238 * eyz(4);
t251 = t249 * t83 * t88;
t253 = t89 * exy(4);
t255 = t86 * exx(4) - t253 + t91 * exz(4);
t256 = t255 * t83;
t257 = t88 * t206;
t258 = t256 * t257;
t259 = t93 * t83;
t260 = t85 * t206;
t261 = t259 * t260;
t262 = rho ^ 2;
t264 = t1 / 0.2e1;
t265 = cos(t264);
t266 = sin(t264);
t268 = t265 * t266 * t35;
t277 = 0.2e1 * t34 * t80 - t101 + 0.2e1 * t111 * t127 + 0.2e1 * m(1) * (-t2 * cg(1) - t9 * cg4(1)) * (-t36 * cg(1) + t44 * cg4(1)) + 0.2e1 * t143 * t149 + 0.2e1 * t163 * t184 + 0.2e1 * t202 * t223 + t242 - t251 - t258 - t261 - m(1) * t262 * t268 / 0.4e1 - m(2) * t262 * t268 / 0.4e1 - m(3) * t262 * t268 / 0.4e1;
t283 = t99 * exx(3) + t238 * exz(3);
t286 = t91 * exz(3);
t287 = t83 * exx(3) + t286;
t291 = -t99 * exz(3) + t238 * ezz(3);
t293 = t83 * exz(3);
t295 = -t293 + t91 * ezz(3);
t304 = -t226 * exz(4) + t89 * t206 * exz(4) + t230 * eyz(4) + t86 * t206 * eyz(4) + t238 * ezz(4);
t305 = t304 * t91;
t309 = -t86 * exz(4) + t89 * eyz(4) + t91 * ezz(4);
t310 = t309 * t238;
t313 = -t94 * exx(2) - t48 * exy(2);
t317 = t94 * exy(2) - t48 * eyy(2);
t319 = t160 * t190;
t320 = t155 * t85;
t321 = t9 * t88;
t322 = t320 - t321;
t324 = t155 * t88;
t325 = t9 * t85;
t326 = -t324 - t325;
t328 = t160 * cg4(4);
t330 = m(4) * (t152 + t319 + t322 * cg(4) - t104 + t326 * cg2(4) - t103 + t328);
t332 = t160 * rho;
t337 = t44 * t88;
t338 = t325 * t206;
t343 = t44 * t85;
t344 = t321 * t206;
t348 = -t164 + t166 + t182 * t190 + t332 * t207 / 0.2e1 + (t173 * t85 - t324 * t206 + t337 - t338) * cg(4) + t114 - t117 + (-t173 * t88 - t320 * t206 + t343 + t344) * cg2(4) - t112 + t113 + t182 * cg4(4);
t352 = t255 * t99 * t85;
t353 = t22 * exy(2);
t355 = t353 + t12 * eyy(2);
t356 = t355 * t22;
t359 = t12 * exy(2);
t360 = -t22 * exx(2) + t359;
t361 = t360 * t12;
t372 = -m(4) * t262 * t268 / 0.4e1 + t283 * t83 + t287 * t99 + t291 * t91 + t295 * t238 + t305 + t310 - t313 * t22 + t317 * t12 + 0.2e1 * t330 * t348 + t352 - t356 * t47 - t361 * t47 + 0.2e1 * m(1) * (t9 * cg(1) - t2 * cg4(1)) * (-t44 * cg(1) - t36 * cg4(1));
t374 = coeff * (t277 + t372);
t380 = -t31 * t190;
t381 = -t26 * t85;
t384 = -t26 * t88;
t387 = -t31 * cg4(4);
t389 = m(4) * (-t8 + t380 + (t381 + t193) * cg(4) + t18 + (-t384 + t197) * cg2(4) - t13 + t387);
t391 = -t31 * t88;
t393 = -t31 * t85;
t396 = t10 * t22;
t398 = t38 * t51 / 0.2e1;
t399 = t26 * t190 - t391 * cg2(4) + t393 * cg(4) + t26 * cg4(4) - t396 - t398;
t400 = t389 * t399;
t401 = t102 * t22;
t403 = t115 * t51 / 0.2e1;
t406 = t401 - t403 + t107 * cg(2) - t105 * cg2(2);
t407 = t111 * t406;
t410 = -t396 - t398 - t23 * cg(2) + t19 * cg2(2);
t411 = t143 * t410;
t413 = -m(2) * t142 * t410;
t414 = -t111 * t406;
t415 = -t26 * cg(3);
t416 = -t31 * cg4(3);
t418 = m(3) * (-t8 + t18 - t13 + t415 + t28 + t416);
t421 = -t31 * cg(3) - t396 - t398 + t26 * cg4(3);
t422 = t418 * t421;
t423 = -t160 * cg(3);
t424 = t155 * cg4(3);
t425 = t423 + t401 - t403 + t424;
t426 = t163 * t425;
t427 = -t155 * t190;
t428 = t160 * t88;
t429 = t428 * cg2(4);
t430 = t160 * t85;
t431 = t430 * cg(4);
t432 = -t155 * cg4(4);
t433 = t427 - t429 + t431 + t432 - t401 + t403;
t434 = t330 * t433;
t435 = t202 * t399;
t437 = -t155 * t85;
t438 = t437 + t321;
t440 = -t2 * t322 - t2 * t438;
t443 = -t155 * t88;
t444 = -t443 + t325;
t446 = -t2 * t326 - t2 * t444;
t450 = 0;
t452 = -t440 * exy(4) + t446 * eyy(4) + t450 * eyz(4);
t454 = t452 * t83 * t88;
t456 = -t93 * t91 * t88;
t458 = -t255 * t91 * t85;
t459 = -t91 * t85;
t461 = -t91 * t88;
t464 = t459 * exx(4) - t461 * exy(4) + t83 * exz(4);
t466 = t464 * t83 * t85;
t470 = -t459 * exy(4) - t461 * eyy(4) + t83 * eyz(4);
t472 = t470 * t83 * t88;
t476 = t440 * exx(4) + t446 * exy(4) + t450 * exz(4);
t478 = t476 * t83 * t85;
t479 = m(2) * rho;
t480 = -t45 - t118 - t122;
t483 = t479 * t266 * t480 / 0.4e1;
t484 = m(3) * rho;
t487 = -t45 - t91 * cg(3) + t83 * cg4(3);
t490 = t484 * t266 * t487 / 0.4e1;
t491 = -t400 + t407 + t411 - t413 - t414 - t422 + t426 - t434 + t435 + t454 - t456 + t458 + t466 - t472 - t478 + t483 + t490;
t492 = m(4) * rho;
t497 = t83 * t190 - t45 - t461 * cg2(4) + t459 * cg(4) + t83 * cg4(4);
t500 = t492 * t266 * t497 / 0.4e1;
t501 = m(4) * t223;
t502 = t501 * t433;
t503 = a(2) * t22;
t504 = t36 * t503;
t505 = t102 * t94;
t506 = rho * t51;
t508 = t44 * t506 / 0.2e1;
t509 = t15 * t47;
t511 = t115 * t509 / 0.4e1;
t512 = t22 * cg(2);
t515 = t12 * cg2(2);
t518 = -t504 - t505 - t508 - t511 - t36 * t512 - t105 * t120 + t36 * t515 - t107 * t124;
t519 = t143 * t518;
t521 = m(2) * t127 * t410;
t522 = t44 * t503;
t523 = t10 * t94;
t525 = t36 * t506 / 0.2e1;
t527 = t38 * t509 / 0.4e1;
t532 = t522 - t523 - t525 + t527 + t44 * t512 - t19 * t120 - t44 * t515 - t23 * t124;
t533 = t111 * t532;
t534 = t360 * t9;
t536 = t355 * t9;
t540 = t22 * exz(2) - t12 * eyz(2);
t541 = t540 * t2;
t545 = t360 * t2;
t547 = t355 * t2;
t549 = t540 * t9;
t553 = m(3) * t184;
t554 = t553 * t421;
t557 = -t78 * cg(3) + t522 - t523 - t525 + t527 + t67 * cg4(3);
t558 = t163 * t557;
t561 = t182 * cg(3) - t504 - t505 - t508 - t511 - t173 * cg4(3);
t562 = t34 * t561;
t566 = -t83 * exy(3) + t91 * eyz(3);
t567 = t566 * t2;
t571 = (t287 * t26 - t567 + t295 * t31) * t9 * t35;
t572 = m(4) * t348;
t573 = t572 * t399;
t575 = t26 * rho;
t580 = t206 * cg2(4);
t584 = t206 * cg(4);
t587 = t67 * t190 + t575 * t207 / 0.2e1 + t78 * t88 * cg2(4) - t393 * t580 - t78 * t85 * cg(4) - t391 * t584 + t67 * cg4(4) + t522 - t523 - t525 + t527;
t588 = t330 * t587;
t590 = -t155 * rho;
t600 = -t173 * t190 + t590 * t207 / 0.2e1 - t182 * t88 * cg2(4) - t430 * t580 + t182 * t85 * cg(4) - t428 * t584 - t173 * cg4(4) - t504 - t505 - t508 - t511;
t601 = t202 * t600;
t605 = t255 * t194 + t93 * t198 + t309 * t31;
t607 = t605 * t9 * t35;
t608 = t503 * t47;
t611 = t608 + t48 * cg(2) - t94 * cg2(2);
t614 = t479 * t265 * t611 / 0.2e1;
t615 = t502 + t519 + t521 + t533 - (t534 * t12 + t536 * t22 + t541) * t9 * t35 - (t545 * t12 + t547 * t22 - t549) * t2 * t35 + t554 + t558 + t562 - t571 + t573 + t588 + t601 - t607 + t614;
t618 = t608 - t238 * cg(3) + t99 * cg4(3);
t621 = t484 * t265 * t618 / 0.2e1;
t623 = t83 * rho;
t633 = t99 * t190 + t623 * t207 / 0.2e1 + t608 + t238 * t88 * cg2(4) - t459 * t580 - t238 * t85 * cg(4) - t461 * t584 + t99 * cg4(4);
t636 = t492 * t265 * t633 / 0.2e1;
t637 = t266 * t35;
t640 = t479 * t637 * t480 / 0.4e1;
t643 = t484 * t637 * t487 / 0.4e1;
t646 = t492 * t637 * t497 / 0.4e1;
t649 = t35 * t12;
t654 = t35 * t22;
t659 = t94 * exz(2) + t48 * eyz(2);
t680 = -t99 * exy(3) + t238 * eyz(3);
t682 = t566 * t9;
t687 = (t283 * t26 + t287 * t67 - t680 * t2 - t682 * t35 + t291 * t31 + t295 * t78) * t2;
t695 = (-t283 * t155 - t287 * t173 + t680 * t9 - t567 * t35 - t291 * t160 - t295 * t182) * t9;
t702 = t240 * t194 + t255 * t214 + t249 * t198 + t93 * t220 + t304 * t31 + t309 * t78;
t703 = t702 * t2;
t707 = -t173 * t85 - t443 * t206 - t337 + t338;
t712 = t173 * t88 - t437 * t206 - t343 - t344;
t716 = t240 * t438 + t255 * t707 + t249 * t444 + t93 * t712 - t304 * t160 - t309 * t182;
t717 = t716 * t9;
t722 = (-t287 * t155 + t682 - t295 * t160) * t2 * t35;
t724 = -m(2) * t149 * t406;
t725 = m(3) * t80;
t726 = t160 * cg(3);
t727 = -t155 * cg4(3);
t728 = t726 - t401 + t403 + t727;
t729 = t725 * t728;
t733 = t255 * t438 + t93 * t444 - t309 * t160;
t735 = t733 * t2 * t35;
t736 = t621 + t636 - t640 - t643 - t646 - (t313 * t9 * t12 - t545 * t649 - t534 * t48 + t317 * t9 * t22 - t547 * t654 + t536 * t94 + t659 * t2 + t549 * t35) * t2 + (t313 * t2 * t12 + t534 * t649 - t545 * t48 + t317 * t2 * t22 + t536 * t654 + t547 * t94 - t659 * t9 + t541 * t35) * t9 - t687 + t695 - t703 + t717 - t722 + t724 + t729 - t735;
t738 = coeff * (t615 + t736);
t740 = -t91 * exx(3) + t293;
t741 = t740 * t83;
t742 = -t287 * t91;
t743 = t295 * t83;
t746 = t91 * exz(3) + t83 * ezz(3);
t747 = t746 * t91;
t751 = -t459 * exz(4) + t461 * eyz(4) + t83 * ezz(4);
t752 = t751 * t91;
t753 = t309 * t83;
t755 = -t12 * exx(2) - t353;
t756 = t755 * t22;
t758 = t359 - t22 * eyy(2);
t759 = t758 * t12;
t762 = 0;
t765 = t762 * exx(3) + t450 * exz(3);
t766 = t765 * t83;
t769 = -t762 * exz(3) + t450 * ezz(3);
t770 = t769 * t91;
t774 = -t440 * exz(4) - t446 * eyz(4) + t450 * ezz(4);
t775 = t774 * t91;
t776 = t34 * t421;
t777 = t155 * t190;
t778 = -t160 * t88;
t779 = t778 * cg2(4);
t780 = -t160 * t85;
t781 = t780 * cg(4);
t782 = t155 * cg4(4);
t783 = t777 - t779 + t781 + t782 + t401 - t403;
t784 = t330 * t783;
t785 = t163 * t728;
t786 = t500 + t738 - t361 - t356 + t741 + t742 + t743 + t747 + t752 + t753 - t756 + t759 - t766 - t770 - t775 + t776 + t784 - t785;
t790 = m(2) * t406 * t410;
t792 = t38 * t15 / 0.4e1;
t794 = t111 * (-t13 + t792 - t139 - t140);
t795 = m(2) * t410;
t796 = -t795 * t406;
t798 = t115 * t15 / 0.4e1;
t800 = t143 * (-t103 - t798 - t106 - t108);
t801 = m(3) * t425;
t802 = t801 * t421;
t803 = t415 - t13 + t792 + t416;
t804 = t163 * t803;
t805 = m(3) * t421;
t806 = t805 * t728;
t807 = t156 - t103 - t798 + t161;
t808 = t34 * t807;
t809 = m(4) * t783;
t810 = t809 * t399;
t811 = t384 * cg2(4);
t812 = t381 * cg(4);
t813 = t380 - t811 + t812 + t387 - t13 + t792;
t814 = t330 * t813;
t815 = m(4) * t399;
t816 = t815 * t433;
t817 = t324 * cg2(4);
t818 = t320 * cg(4);
t819 = t319 - t817 + t818 + t328 - t103 - t798;
t820 = t202 * t819;
t824 = t479 * t265 * (t503 + t512 - t515) / 0.2e1;
t825 = -t83 * cg(3);
t826 = -t91 * cg4(3);
t827 = t503 + t825 + t826;
t830 = t484 * t265 * t827 / 0.2e1;
t831 = -t91 * t190;
t833 = -t83 * t88 * cg2(4);
t835 = -t83 * t85 * cg(4);
t836 = -t91 * cg4(4);
t837 = t831 + t503 - t833 + t835 + t836;
t840 = t492 * t265 * t837 / 0.2e1;
t841 = -t790 + t794 - t796 + t800 - t802 + t804 - t806 + t808 - t810 + t814 - t816 + t820 + t824 + t830 + t840 + t738;
t845 = -t2 * t194 + t9 * t438;
t849 = -t2 * t198 + t9 * t444;
t850 = t849 * exy(4);
t851 = t2 * t31;
t852 = -t9 * t160;
t853 = -t851 + t852;
t855 = t845 * exx(4) + t850 + t853 * exz(4);
t861 = -t845 * exy(4) + t849 * eyy(4) + t853 * eyz(4);
t867 = -t845 * exz(4) - t849 * eyz(4) + t853 * ezz(4);
t869 = t476 * t194 + t855 * t322 + t452 * t198 + t861 * t326 + t774 * t31 + t867 * t160;
t870 = t869 * t2;
t872 = t855 * t194;
t874 = t861 * t198;
t876 = t867 * t31;
t877 = t476 * t438 + t872 + t452 * t444 + t874 - t774 * t160 + t876;
t878 = t877 * t9;
t887 = t464 * t194 - t255 * t31 * t85 + t470 * t198 + t93 * t31 * t88 + t751 * t31 + t309 * t26;
t888 = t887 * t2;
t897 = t464 * t438 + t255 * t160 * t85 + t470 * t444 - t93 * t160 * t88 - t751 * t160 - t309 * t155;
t898 = t897 * t9;
t907 = t12 * exz(2) + t22 * eyz(2);
t924 = t91 * exy(3) + t83 * eyz(3);
t929 = (t740 * t26 - t287 * t31 - t924 * t2 + t746 * t31 + t295 * t26) * t2;
t936 = (-t740 * t155 + t287 * t160 + t924 * t9 - t746 * t160 - t295 * t155) * t9;
t937 = t2 ^ 2;
t938 = t9 ^ 2;
t939 = -t937 - t938;
t940 = t939 * exz(2);
t942 = t939 * eyz(2);
t944 = t939 * ezz(2);
t946 = -t940 * t105 - t942 * t107 + t944 * t9;
t951 = -t2 * t26 - t9 * t155;
t954 = t853 * exz(3);
t955 = t951 * exx(3) - t939 * exy(3) + t954;
t959 = -t762 * exy(3) + t450 * eyz(3);
t964 = -t951 * exy(3) - t939 * eyy(3) + t853 * eyz(3);
t965 = t964 * t9;
t970 = -t951 * exz(3) + t939 * eyz(3) + t853 * ezz(3);
t973 = (t765 * t26 + t955 * t155 - t959 * t2 - t965 + t769 * t31 + t970 * t160) * t2;
t975 = t955 * t26;
t977 = t964 * t2;
t979 = t970 * t31;
t981 = (-t765 * t155 + t975 + t959 * t9 - t977 - t769 * t160 + t979) * t9;
t982 = -t946 * t2;
t984 = (t975 - t977 + t979) * t9;
t988 = (-t955 * t155 + t965 - t970 * t160) * t2;
t989 = t872 + t874 + t876;
t990 = t989 * t9;
t994 = t855 * t438 + t861 * t444 - t867 * t160;
t995 = t994 * t2;
t996 = t870 - t878 - t888 + t898 - (t755 * t9 * t12 - t534 * t22 + t758 * t9 * t22 + t536 * t12 + t907 * t2) * t2 + (t755 * t2 * t12 - t545 * t22 + t758 * t2 * t22 + t547 * t12 - t907 * t9) * t9 - t929 + t936 + t946 * t2 + t973 - t981 + t982 + t984 + t988 + t990 + t995;
t1001 = t83 * cg(3) + t91 * cg4(3);
t1004 = t484 * t265 * t1001 / 0.2e1;
t1005 = t86 * cg(4);
t1008 = t89 * cg2(4);
t1009 = t1005 + t91 * t190 + t91 * cg4(4) - t1008;
t1012 = t492 * t265 * t1009 / 0.2e1;
t1014 = t115 * t39 / 0.2e1;
t1015 = t1014 + t726 + t727;
t1016 = t805 * t1015;
t1017 = m(3) * t728;
t1019 = t38 * t39 / 0.2e1;
t1022 = t1019 + t31 * cg(3) - t26 * cg4(3);
t1023 = t1017 * t1022;
t1024 = t427 + t431 + t1014 - t429 + t432;
t1025 = t815 * t1024;
t1026 = m(4) * t433;
t1028 = t31 * t85;
t1030 = t31 * t88;
t1033 = -t26 * t190 + t1028 * cg(4) + t1019 - t1030 * cg2(4) - t26 * cg4(4);
t1034 = t1026 * t1033;
t1035 = t738 + t1004 + t1012 - t1016 - t1023 - t1025 - t1034 - t870 + t878 + t888 - t898;
t1036 = t27 + t32;
t1037 = t163 * t1036;
t1040 = -t155 * cg(3) - t160 * cg4(3);
t1041 = t34 * t1040;
t1044 = t191 + t192 * cg(4) - t196 * cg2(4) + t200;
t1045 = t330 * t1044;
t1050 = -t160 * t190 + t437 * cg(4) - t443 * cg2(4) - t160 * cg4(4);
t1051 = t202 * t1050;
t1052 = t929 - t936 - t973 + t981 - t984 - t988 - t990 - t995 + t1037 + t1041 + t1045 + t1051;
t1055 = t393 * cg2(4);
t1058 = t391 * cg(4);
t1059 = -t1055 + t26 * rho * t205 / 0.2e1 - t1058;
t1060 = t330 * t1059;
t1061 = t430 * cg2(4);
t1064 = t428 * cg(4);
t1065 = -t1061 - t155 * rho * t205 / 0.2e1 - t1064;
t1066 = t202 * t1065;
t1067 = t459 * cg2(4);
t1070 = t461 * cg(4);
t1071 = -t1067 + t83 * rho * t205 / 0.2e1 - t1070;
t1074 = t492 * t265 * t1071 / 0.2e1;
t1075 = t887 * t31;
t1076 = t605 * t26;
t1077 = -t897 * t160;
t1078 = -t733 * t155;
t1080 = (t466 + t458 - t472 - t456 + t752 + t753) * t91;
t1084 = t256 * t85 - t259 * t88 + t309 * t91;
t1085 = t1084 * t83;
t1086 = -t322 * cg2(4);
t1089 = t326 * cg(4);
t1090 = t1086 + t160 * rho * t205 / 0.2e1 + t1089;
t1091 = t815 * t1090;
t1092 = -t194 * cg2(4);
t1093 = t31 * rho / 0.2e1;
t1095 = t198 * cg(4);
t1096 = t1092 + t1093 * t205 + t1095;
t1097 = t1026 * t1096;
t1098 = t869 * t31;
t1099 = t989 * t160;
t1100 = -t877 * t160;
t1101 = t994 * t31;
t1103 = (t478 - t454 + t775) * t91;
t1104 = t738 + t1060 + t1066 + t1074 + t1075 + t1076 + t1077 + t1078 + t1080 + t1085 - t1091 - t1097 - t1098 - t1099 - t1100 - t1101 - t1103;
t1107 = t418 * t1022;
t1108 = t163 * t1015;
t1109 = -t1014 + t423 + t424;
t1110 = t163 * t1109;
t1111 = t34 * t1022;
t1112 = t389 * t1033;
t1113 = t330 * t1024;
t1114 = t777 + t781 - t1014 - t779 + t782;
t1115 = t330 * t1114;
t1116 = t202 * t1033;
t1118 = t93 * t91 * t88;
t1120 = t255 * t91 * t85;
t1121 = t91 * t85;
t1123 = t91 * t88;
t1126 = t1121 * exx(4) - t1123 * exy(4) - t83 * exz(4);
t1128 = t1126 * t83 * t85;
t1132 = -t1121 * exy(4) - t1123 * eyy(4) - t83 * eyz(4);
t1134 = t1132 * t83 * t88;
t1138 = -t440 * exx(4) - t446 * exy(4) - t450 * exz(4);
t1140 = t1138 * t83 * t85;
t1141 = -t1107 + t1108 - t1110 + t1111 - t1112 + t1113 - t1115 + t1116 - t1118 + t1120 + t1128 - t1134 - t1140;
t1145 = t440 * exy(4) - t446 * eyy(4) - t450 * eyz(4);
t1147 = t1145 * t83 * t88;
t1150 = t91 * cg(3) - t83 * cg4(3);
t1153 = t484 * t266 * t1150 / 0.4e1;
t1158 = t1121 * cg(4) - t83 * t190 - t83 * cg4(4) - t1123 * cg2(4);
t1161 = t492 * t266 * t1158 / 0.4e1;
t1162 = t553 * t1022;
t1163 = rho * t39;
t1165 = t36 * t1163 / 0.2e1;
t1166 = t5 * t40;
t1168 = t38 * t1166 / 0.4e1;
t1171 = t1165 - t1168 + t78 * cg(3) - t67 * cg4(3);
t1172 = t163 * t1171;
t1173 = t725 * t1109;
t1175 = t44 * t1163 / 0.2e1;
t1177 = t115 * t1166 / 0.4e1;
t1180 = t1175 + t1177 - t182 * cg(3) + t173 * cg4(3);
t1181 = t34 * t1180;
t1184 = t484 * t637 * t1150 / 0.4e1;
t1187 = t238 * cg(3) - t99 * cg4(3);
t1190 = t484 * t265 * t1187 / 0.2e1;
t1191 = t572 * t1033;
t1193 = -t26 * rho;
t1203 = -t67 * t190 + t1193 * t207 / 0.2e1 + t78 * t85 * cg(4) - t1030 * t584 + t1165 - t1168 - t78 * t88 * cg2(4) - t1028 * t580 - t67 * cg4(4);
t1204 = t330 * t1203;
t1205 = t501 * t1114;
t1207 = t155 * rho;
t1217 = t173 * t190 + t1207 * t207 / 0.2e1 - t182 * t85 * cg(4) - t778 * t584 + t1175 + t1177 + t182 * t88 * cg2(4) - t780 * t580 + t173 * cg4(4);
t1218 = t202 * t1217;
t1221 = t492 * t637 * t1158 / 0.4e1;
t1226 = -t83 * rho;
t1233 = t238 * t85 * cg(4) - t1123 * t584 - t99 * t190 + t1226 * t207 / 0.2e1 - t99 * cg4(4) - t238 * t88 * cg2(4) - t1121 * t580;
t1236 = t492 * t265 * t1233 / 0.2e1;
t1237 = t1162 + t1172 + t1173 + t1181 - t1184 + t1190 + t687 + t571 - t695 + t722 + t1191 + t1204 + t1205 + t1218 - t1221 + t1236 + t703 + t607 - t717 + t735;
t1238 = coeff * t1237;
t1241 = t91 * exx(3) - t83 * exz(3);
t1242 = t1241 * t83;
t1243 = t287 * t91;
t1244 = -t295 * t83;
t1246 = -t286 - t83 * ezz(3);
t1247 = t1246 * t91;
t1251 = -t1121 * exz(4) + t1123 * eyz(4) - t83 * ezz(4);
t1252 = t1251 * t91;
t1253 = -t309 * t83;
t1256 = -t762 * exx(3) - t450 * exz(3);
t1257 = t1256 * t83;
t1260 = t762 * exz(3) - t450 * ezz(3);
t1261 = t1260 * t91;
t1265 = t440 * exz(4) + t446 * eyz(4) - t450 * ezz(4);
t1266 = t1265 * t91;
t1267 = t1147 + t1153 + t1161 + t1238 + t1242 + t1243 + t1244 + t1247 + t1252 + t1253 - t1257 - t1261 - t1266;
t1270 = t801 * t1022;
t1271 = t805 * t1109;
t1272 = t809 * t1033;
t1273 = t815 * t1114;
t1274 = t1004 + t1012 + t1238 - t1270 + t1037 - t1271 + t1041 - t1272 + t1045 - t1273 + t1051;
t1277 = -t849 * exy(4);
t1279 = -t845 * exx(4) + t1277 - t853 * exz(4);
t1280 = t1279 * t194;
t1285 = t845 * exy(4) - t849 * eyy(4) - t853 * eyz(4);
t1286 = t1285 * t198;
t1291 = t845 * exz(4) + t849 * eyz(4) - t853 * ezz(4);
t1292 = t1291 * t31;
t1293 = t1138 * t438 + t1280 + t1145 * t444 + t1286 - t1265 * t160 + t1292;
t1294 = t1293 * t9;
t1298 = t1279 * t438 + t1285 * t444 - t1291 * t160;
t1299 = t1298 * t2;
t1303 = -t951 * exx(3) + t939 * exy(3) - t853 * exz(3);
t1304 = t1303 * t26;
t1308 = t951 * exy(3) + t939 * eyy(3) - t853 * eyz(3);
t1309 = t1308 * t2;
t1310 = -t951 * exz(3);
t1313 = -t1310 - t939 * eyz(3) - t853 * ezz(3);
t1314 = t1313 * t31;
t1316 = (t1304 - t1309 + t1314) * t9;
t1318 = t1308 * t9;
t1321 = (-t1303 * t155 + t1318 - t1313 * t160) * t2;
t1322 = t1280 + t1286 + t1292;
t1323 = t1322 * t9;
t1328 = -t91 * exy(3) - t83 * eyz(3);
t1333 = (-t1241 * t155 - t287 * t160 + t1328 * t9 - t1246 * t160 + t295 * t155) * t9;
t1340 = (t1241 * t26 + t287 * t31 - t1328 * t2 + t1246 * t31 - t295 * t26) * t2;
t1349 = t1126 * t194 + t255 * t31 * t85 + t1132 * t198 - t93 * t31 * t88 + t1251 * t31 - t309 * t26;
t1350 = t1349 * t2;
t1359 = t1126 * t438 - t255 * t160 * t85 + t1132 * t444 + t93 * t160 * t88 - t1251 * t160 + t309 * t155;
t1360 = t1359 * t9;
t1365 = t762 * exy(3) - t450 * eyz(3);
t1370 = (t1256 * t26 + t1303 * t155 - t1365 * t2 - t1318 + t1260 * t31 + t1313 * t160) * t2;
t1375 = (-t1256 * t155 + t1304 + t1365 * t9 - t1309 - t1260 * t160 + t1314) * t9;
t1382 = t1138 * t194 + t1279 * t322 + t1145 * t198 + t1285 * t326 + t1265 * t31 + t1291 * t160;
t1383 = t1382 * t2;
t1384 = -t1294 + t1299 + t1316 + t1321 + t1323 + t1333 - t1340 - t1350 + t1360 + t1370 - t1375 + t1383;
t1387 = t825 + t826;
t1390 = t484 * t265 * t1387 / 0.2e1;
t1391 = t835 + t831 + t836 - t833;
t1394 = t492 * t265 * t1391 / 0.2e1;
t1396 = m(3) * t1015 * t1022;
t1398 = t38 * t5 / 0.4e1;
t1399 = -t1398 + t415 + t416;
t1400 = t163 * t1399;
t1401 = m(3) * t1022;
t1402 = t1401 * t1109;
t1404 = t115 * t5 / 0.4e1;
t1405 = t1404 + t156 + t161;
t1406 = t34 * t1405;
t1407 = m(4) * t1024;
t1408 = t1407 * t1033;
t1409 = t380 + t812 - t1398 - t811 + t387;
t1410 = t330 * t1409;
t1411 = t1390 + t1394 + t1294 + t1238 - t1299 - t1396 + t1400 - t1402 + t1406 - t1408 + t1410;
t1412 = m(4) * t1033;
t1413 = t1412 * t1114;
t1414 = t319 + t818 + t1404 - t817 + t328;
t1415 = t202 * t1414;
t1416 = -t1413 + t1415 - t1316 - t1321 - t1323 - t1333 + t1340 + t1350 - t1360 - t1370 + t1375 - t1383;
t1419 = t1028 * cg2(4);
t1422 = t1030 * cg(4);
t1423 = -t1419 - t26 * rho * t205 / 0.2e1 - t1422;
t1424 = t330 * t1423;
t1425 = t780 * cg2(4);
t1428 = t778 * cg(4);
t1429 = -t1425 + t155 * rho * t205 / 0.2e1 - t1428;
t1430 = t202 * t1429;
t1431 = t1121 * cg2(4);
t1434 = t1123 * cg(4);
t1435 = -t1431 - t83 * rho * t205 / 0.2e1 - t1434;
t1438 = t492 * t265 * t1435 / 0.2e1;
t1439 = t1349 * t31;
t1440 = -t605 * t26;
t1441 = -t1359 * t160;
t1442 = t733 * t155;
t1444 = (t1128 + t1120 - t1134 - t1118 + t1252 + t1253) * t91;
t1445 = -t1084 * t83;
t1446 = t1412 * t1090;
t1447 = m(4) * t1114;
t1448 = t1447 * t1096;
t1449 = t1382 * t31;
t1450 = t1322 * t160;
t1451 = -t1293 * t160;
t1452 = t1298 * t31;
t1454 = (t1140 - t1147 + t1266) * t91;
t1455 = t1238 + t1424 + t1430 + t1438 + t1439 + t1440 + t1441 + t1442 + t1444 + t1445 - t1446 - t1448 - t1449 - t1450 - t1451 - t1452 - t1454;
t1458 = t572 * t1096;
t1462 = t188 * t206;
t1466 = -t214 * cg2(4) + t78 * rho * t205 / 0.2e1 - t1093 * t1462 / 0.2e1 + t220 * cg(4);
t1467 = t330 * t1466;
t1469 = -t160 * rho / 0.2e1;
t1472 = -t438 * cg2(4) + t1469 * t205 + t444 * cg(4);
t1473 = t501 * t1472;
t1480 = -t707 * cg2(4) - t182 * rho * t205 / 0.2e1 - t1469 * t1462 / 0.2e1 + t712 * cg(4);
t1481 = t202 * t1480;
t1483 = t91 * rho / 0.2e1;
t1486 = -t86 * cg2(4) + t1483 * t205 - t89 * cg(4);
t1489 = t492 * t637 * t1486 / 0.4e1;
t1498 = -t226 * cg2(4) + t89 * t580 + t238 * rho * t205 / 0.2e1 - t1483 * t1462 / 0.2e1 - t230 * cg(4) - t86 * t584;
t1501 = t492 * t265 * t1498 / 0.2e1;
t1509 = t1458 + t1467 + t1473 + t1481 - t1489 + t1501 + t702 * t31 + t605 * t78 - t716 * t160 - t733 * t182 + (t242 + t352 - t258 - t251 - t101 - t261 + t305 + t310) * t91 + t1084 * t238;
t1510 = coeff * t1509;
t1513 = t332 * t205 / 0.2e1 + t1089 + t1086;
t1515 = 0.2e1 * t330 * t1513;
t1518 = t204 * t205 / 0.2e1 + t1095 + t1092;
t1520 = 0.2e1 * t202 * t1518;
t1522 = -t89 * exx(4) - t87;
t1524 = t1522 * t83 * t85;
t1526 = t253 - t86 * eyy(4);
t1528 = t1526 * t83 * t88;
t1529 = t256 * t88;
t1530 = t259 * t85;
t1533 = t89 * exz(4) + t86 * eyz(4);
t1534 = t1533 * t91;
t1535 = t389 * t1096;
t1536 = t330 * t1090;
t1537 = t330 * t1472;
t1538 = t202 * t1096;
t1541 = t492 * t266 * t1486 / 0.4e1;
t1546 = t31 * t322 + t31 * t438;
t1552 = t31 * t326 + t31 * t444;
t1556 = 0;
t1558 = t1546 * exx(4) + t1552 * exy(4) + 0.2e1 * t1556 * exz(4);
t1560 = t1558 * t83 * t85;
t1564 = -t1546 * exy(4) + t1552 * eyy(4) + 0.2e1 * t1556 * eyz(4);
t1566 = t1564 * t83 * t88;
t1570 = -t1546 * exz(4) - t1552 * eyz(4) + 0.2e1 * t1556 * ezz(4);
t1571 = t1570 * t91;
t1572 = t1510 + t1515 + t1520 + t1524 - t1528 - t1529 - t1530 + t1534 - t1535 - t1536 - t1537 - t1538 + t1541 - t1560 + t1566 - t1571;
t1576 = t623 * t205 / 0.2e1 - t1067 - t1070;
t1579 = t492 * t265 * t1576 / 0.2e1;
t1585 = t1522 * t194 + t255 * t198 + t1526 * t198 - t93 * t194 + t1533 * t31;
t1586 = t1585 * t2;
t1592 = t1522 * t438 + t255 * t444 + t1526 * t444 - t93 * t438 - t1533 * t160;
t1593 = t1592 * t9;
t1594 = m(4) * t1513;
t1595 = t1594 * t399;
t1598 = t575 * t205 / 0.2e1 - t1055 - t1058;
t1599 = t330 * t1598;
t1600 = m(4) * t1518;
t1601 = t1600 * t433;
t1604 = t590 * t205 / 0.2e1 - t1061 - t1064;
t1605 = t202 * t1604;
t1606 = t809 * t1096;
t1607 = t815 * t1472;
t1611 = t91 * t83;
t1613 = t31 * t194 - t160 * t438 + t1611 * t85;
t1618 = t31 * t198 - t160 * t444 - t1611 * t88;
t1620 = t31 ^ 2;
t1621 = t160 ^ 2;
t1622 = t91 ^ 2;
t1623 = t1620 + t1621 + t1622;
t1625 = t1613 * exx(4) + t1618 * exy(4) + t1623 * exz(4);
t1631 = -t1613 * exy(4) + t1618 * eyy(4) + t1623 * eyz(4);
t1637 = -t1613 * exz(4) - t1618 * eyz(4) + t1623 * ezz(4);
t1639 = t1558 * t194 + t1625 * t322 + t1564 * t198 + t1631 * t326 + t1570 * t31 + t1637 * t160;
t1640 = t1639 * t2;
t1641 = t1625 * t194;
t1642 = t1631 * t198;
t1643 = t1637 * t31;
t1644 = t1641 + t1642 + t1643;
t1645 = t1644 * t9;
t1649 = t1558 * t438 + t1641 + t1564 * t444 + t1642 - t1570 * t160 + t1643;
t1650 = t1649 * t9;
t1654 = t1625 * t438 + t1631 * t444 - t1637 * t160;
t1655 = t1654 * t2;
t1656 = t1510 + t1579 - t1586 + t1593 + t1595 + t1599 + t1601 + t1605 - t1606 - t1091 - t1607 - t1097 + t1640 + t1645 - t1650 + t1655;
t1658 = t1594 * t1033;
t1661 = t1193 * t205 / 0.2e1 - t1422 - t1419;
t1662 = t330 * t1661;
t1663 = t1600 * t1114;
t1666 = t1207 * t205 / 0.2e1 - t1428 - t1425;
t1667 = t202 * t1666;
t1670 = -t1434 + t1226 * t205 / 0.2e1 - t1431;
t1673 = t492 * t265 * t1670 / 0.2e1;
t1674 = t1407 * t1096;
t1675 = t1412 * t1472;
t1676 = t1510 + t1658 + t1662 + t1663 + t1667 + t1673 + t1586 - t1593 - t1674 - t1446 - t1675 - t1448 - t1640 - t1645 + t1650 - t1655;
t1678 = t1594 * t1096;
t1683 = -t198 * cg2(4) - t1093 * t188 / 0.2e1 - t194 * cg(4);
t1684 = t330 * t1683;
t1685 = t1600 * t1472;
t1690 = -t444 * cg2(4) - t1469 * t188 / 0.2e1 - t438 * cg(4);
t1691 = t202 * t1690;
t1694 = t1008 - t1483 * t188 / 0.2e1 - t1005;
t1697 = t492 * t265 * t1694 / 0.2e1;
t1698 = t1585 * t31;
t1699 = -t1592 * t160;
t1701 = (t1524 - t1529 - t1528 - t1530 + t1534) * t91;
t1702 = m(4) * t1096;
t1704 = 0.2e1 * t1702 * t1090;
t1705 = m(4) * t1472;
t1707 = 0.2e1 * t1705 * t1096;
t1708 = t1639 * t31;
t1709 = t1644 * t160;
t1710 = -t1649 * t160;
t1711 = t1654 * t31;
t1713 = (t1560 - t1566 + t1571) * t91;
t1714 = t1510 + t1678 + t1684 + t1685 + t1691 + t1697 + t1698 + t1699 + t1701 - t1704 - t1707 - t1708 - t1709 - t1710 - t1711 - t1713;
t1721 = -t36 * t26 - t2 * t67 + t44 * t155 - t9 * t173;
t1727 = -t36 * t31 - t2 * t78 + t44 * t160 - t9 * t182;
t1729 = t1721 * exx(3) + t1727 * exz(3);
t1734 = -t1721 * exz(3) + t1727 * ezz(3);
t1741 = -t36 * t194 - t2 * t214 - t44 * t438 + t9 * t707;
t1747 = -t36 * t198 - t2 * t220 - t44 * t444 + t9 * t712;
t1750 = -t1741 * exz(4) - t1747 * eyz(4) + t1727 * ezz(4);
t1751 = t1750 * t91;
t1752 = t867 * t238;
t1753 = t1729 * t83 + t955 * t99 + t1734 * t91 + t970 * t238 + t1751 + t1752 + t502 + t519 + t521 + t533 + t554 + t558 + t562 + t573 + t588 + t601;
t1754 = t855 * t83;
t1755 = t1754 * t257;
t1756 = t861 * t83;
t1757 = t1756 * t260;
t1761 = t855 * t99 * t85;
t1763 = t861 * t99 * t88;
t1767 = t1741 * exx(4) + t1747 * exy(4) + t1727 * exz(4);
t1769 = t1767 * t83 * t85;
t1773 = -t1741 * exy(4) + t1747 * eyy(4) + t1727 * eyz(4);
t1775 = t1773 * t83 * t88;
t1776 = t614 + t621 + t636 - t640 - t643 - t646 - t1755 - t1757 - t940 * t94 - t942 * t48 + t1761 - t1763 + t1769 - t1775 + t724 + t729;
t1778 = coeff * (t1753 + t1776);
t1779 = t1778 + t400 - t407 - t411 + t413 + t414 + t422 - t426 + t434 - t435 - t454 + t456 - t458 - t466 + t472 + t478 - t483;
t1780 = -t490 - t500 + t361 + t356 - t741 - t742 - t743 - t747 - t752 - t753 + t756 - t759 + t766 + t770 + t775 - t776 - t784 + t785;
t1783 = t1778 + t790 - t794 + t796 - t800 + t802 - t804 + t806 - t808 + t810 - t814 + t816 - t820 - t824 - t830 - t840;
t1786 = -t1004 - t1012 + t1016 + t1023 + t1025 + t1034 + t870 - t878 - t888 + t898 - t929;
t1787 = t936 + t973 - t981 + t984 + t988 + t990 + t995 - t1037 - t1041 - t1045 - t1051 + t1778;
t1790 = t1778 + t1091 + t1097 + t1098 + t1099 + t1100 + t1101 + t1103 - t1060 - t1066 - t1074 - t1075 - t1076 - t1077 - t1078 - t1080 - t1085;
t1834 = m(3) * t487;
t1842 = -t1721 * exy(3) + t1727 * eyz(3);
t1848 = (t1729 * t26 + t955 * t67 - t1842 * t2 - t965 * t35 + t1734 * t31 + t970 * t78) * t2;
t1849 = t984 * t35;
t1857 = (-t1729 * t155 - t955 * t173 + t1842 * t9 - t977 * t35 - t1734 * t160 - t970 * t182) * t9;
t1858 = t988 * t35;
t1863 = m(4) * t497;
t1872 = t1767 * t194 + t855 * t214 + t1773 * t198 + t861 * t220 + t1750 * t31 + t867 * t78;
t1873 = t1872 * t2;
t1874 = t990 * t35;
t1881 = t1767 * t438 + t855 * t707 + t1773 * t444 + t861 * t712 - t1750 * t160 - t867 * t182;
t1882 = t1881 * t9;
t1883 = t995 * t35;
t1884 = -t1848 - t1849 + t1857 - t1858 + 0.2e1 * t815 * t587 + 0.2e1 * t1026 * t600 + 0.2e1 * t1863 * t633 - t1873 - t1874 + t1882 - t1883;
t1886 = coeff * (0.2e1 * t795 * t532 - 0.2e1 * m(2) * t406 * t518 + 0.2e1 * m(2) * t480 * t611 - (-t940 * t44 * t12 - t940 * t23 * t47 - t942 * t44 * t22 + t942 * t19 * t47 + t944 * t36) * t2 - (t940 * t19 + t942 * t23 + t944 * t2) * t9 * t35 + (t940 * t36 * t12 - t940 * t107 * t47 + t942 * t36 * t22 + t942 * t105 * t47 + t944 * t44) * t9 - t982 * t35 + 0.2e1 * t805 * t557 + 0.2e1 * t1017 * t561 + 0.2e1 * t1834 * t618 + t1884);
t1893 = m(3) * t557 * t1022;
t1894 = t805 * t1171;
t1896 = m(3) * t561 * t1109;
t1897 = t1017 * t1180;
t1899 = m(3) * t618 * t1150;
t1900 = t1834 * t1187;
t1901 = m(4) * t587;
t1902 = t1901 * t1033;
t1903 = t815 * t1203;
t1904 = m(4) * t600;
t1905 = t1904 * t1114;
t1906 = t1026 * t1217;
t1907 = m(4) * t633;
t1908 = t1907 * t1158;
t1909 = t1863 * t1233;
t1910 = t1893 + t1894 + t1896 + t1897 + t1899 + t1900 + t1848 + t1849 - t1857 + t1858 + t1902 + t1903 + t1905 + t1906 + t1908 + t1909 + t1873 + t1874 - t1882 + t1883;
t1911 = coeff * t1910;
t1915 = t2 * t26 + t9 * t155;
t1917 = t853 * exx(3) + t1915 * exz(3);
t1918 = t1917 * t83;
t1919 = t955 * t91;
t1921 = -t954 + t1915 * ezz(3);
t1922 = t1921 * t91;
t1923 = -t970 * t83;
t1926 = -t851 * t85 + t852 * t85;
t1930 = t851 * t88 - t852 * t88;
t1933 = -t1926 * exz(4) - t1930 * eyz(4) + t1915 * ezz(4);
t1934 = t1933 * t91;
t1935 = -t867 * t83;
t1936 = -t2 * t31;
t1937 = t9 * t160;
t1938 = t1936 - t1937;
t1940 = t1938 * exx(3) + t1310;
t1941 = t1940 * t83;
t1942 = -t1303 * t91;
t1945 = -t1938 * exz(3) - t951 * ezz(3);
t1946 = t1945 * t91;
t1947 = t1313 * t83;
t1950 = t1936 * t85 - t1937 * t85;
t1954 = -t1936 * t88 + t1937 * t88;
t1957 = -t1950 * exz(4) - t1954 * eyz(4) - t951 * ezz(4);
t1958 = t1957 * t91;
t1959 = t1291 * t83;
t1960 = t1911 + t1918 + t1919 + t1922 + t1923 + t1934 + t1935 - t1941 - t1942 - t1946 - t1947 - t1958 - t1959 + t1016;
t1962 = t855 * t91 * t85;
t1964 = t861 * t91 * t88;
t1968 = t1926 * exx(4) + t1930 * exy(4) + t1915 * exz(4);
t1970 = t1968 * t83 * t85;
t1974 = -t1926 * exy(4) + t1930 * eyy(4) + t1915 * eyz(4);
t1976 = t1974 * t83 * t88;
t1980 = t1950 * exx(4) + t1954 * exy(4) - t951 * exz(4);
t1982 = t1980 * t83 * t85;
t1984 = -t1279 * t91 * t85;
t1988 = -t1950 * exy(4) + t1954 * eyy(4) - t951 * eyz(4);
t1990 = t1988 * t83 * t88;
t1992 = -t1285 * t91 * t88;
t1993 = t1023 + t1025 + t1034 - t1270 - t1271 - t1272 - t1273 + t1962 - t1964 + t1970 - t1976 - t1982 - t1984 + t1990 + t1992;
t2000 = -t1938 * exy(3) - t951 * eyz(3);
t2005 = (-t1940 * t155 + t1303 * t160 + t2000 * t9 - t1945 * t160 - t1313 * t155) * t9;
t2014 = t1980 * t194 - t1279 * t31 * t85 + t1988 * t198 + t1285 * t31 * t88 + t1957 * t31 + t1291 * t26;
t2015 = t2014 * t2;
t2024 = t1980 * t438 + t1279 * t160 * t85 + t1988 * t444 - t1285 * t160 * t88 - t1957 * t160 - t1291 * t155;
t2025 = t2024 * t9;
t2027 = m(3) * t803 * t1022;
t2028 = t805 * t1036;
t2030 = m(3) * t807 * t1109;
t2032 = m(3) * t827 * t1150;
t2033 = t1017 * t1040;
t2034 = t1834 * t1001;
t2035 = m(4) * t813;
t2036 = t2035 * t1033;
t2038 = t815 * t1044;
t2039 = m(4) * t819;
t2040 = t2039 * t1114;
t2041 = t1026 * t1050;
t2042 = m(4) * t837;
t2043 = t2042 * t1158;
t2044 = t1863 * t1009;
t2049 = -t853 * exy(3) + t1915 * eyz(3);
t2054 = (t1917 * t26 + t955 * t31 - t2049 * t2 + t1921 * t31 - t970 * t26) * t2;
t2061 = (-t1917 * t155 - t955 * t160 + t2049 * t9 - t1921 * t160 + t970 * t155) * t9;
t2070 = t1968 * t194 + t855 * t31 * t85 + t1974 * t198 - t861 * t31 * t88 + t1933 * t31 - t867 * t26;
t2071 = t2070 * t2;
t2080 = t1968 * t438 - t855 * t160 * t85 + t1974 * t444 + t861 * t160 * t88 - t1933 * t160 + t867 * t155;
t2081 = t2080 * t9;
t2088 = (t1940 * t26 - t1303 * t31 - t2000 * t2 + t1945 * t31 + t1313 * t26) * t2;
t2089 = t2038 - t2040 + t2041 - t2043 + t2044 + t1911 - t2054 + t2061 - t2071 + t2081 + t2088;
t2093 = m(3) * t1036 * t1022;
t2094 = t805 * t1399;
t2096 = m(3) * t1040 * t1109;
t2098 = m(3) * t1001 * t1150;
t2099 = t1017 * t1405;
t2100 = t1834 * t1387;
t2101 = m(4) * t1044;
t2102 = t2101 * t1033;
t2104 = t815 * t1409;
t2105 = m(4) * t1050;
t2106 = t2105 * t1114;
t2107 = t1026 * t1414;
t2108 = m(4) * t1009;
t2109 = t2108 * t1158;
t2110 = t1863 * t1391;
t2111 = t2104 - t2106 + t2107 - t2109 + t2110 + t1911 + t2054 - t2061 + t2071 - t2081 - t2088;
t2114 = t815 * t1423;
t2115 = t1026 * t1429;
t2116 = t1863 * t1435;
t2117 = t1412 * t1059;
t2118 = t1447 * t1065;
t2119 = m(4) * t1158;
t2120 = t2119 * t1071;
t2121 = -t1298 * t155;
t2123 = (t1982 + t1984 - t1990 - t1992 + t1958 + t1959) * t91;
t2124 = t1279 * t83;
t2126 = t1285 * t83;
t2129 = t2124 * t85 - t2126 * t88 + t1291 * t91;
t2130 = t2129 * t83;
t2131 = t2070 * t31;
t2132 = -t989 * t26;
t2133 = -t2080 * t160;
t2134 = t994 * t155;
t2136 = (t1970 + t1962 - t1976 - t1964 + t1934 + t1935) * t91;
t2140 = t1754 * t85 - t1756 * t88 + t867 * t91;
t2141 = -t2140 * t83;
t2142 = t2014 * t31;
t2143 = t1322 * t26;
t2144 = -t2024 * t160;
t2145 = t2114 + t2115 + t2116 - t2117 - t2118 - t2120 - t2121 - t2123 - t2130 + t1911 + t2131 + t2132 + t2133 + t2134 + t2136 + t2141 - t2142 - t2143 - t2144;
t2148 = t1901 * t1096;
t2149 = t815 * t1466;
t2150 = t1904 * t1472;
t2151 = t1026 * t1480;
t2152 = t1907 * t1486;
t2153 = t1863 * t1498;
t2161 = t2148 + t2149 + t2150 + t2151 + t2152 + t2153 + t1872 * t31 + t989 * t78 - t1881 * t160 - t994 * t182 + (t1769 + t1761 - t1755 - t1775 - t1763 - t1757 + t1751 + t1752) * t91 + t2140 * t238;
t2162 = coeff * t2161;
t2166 = t2 * t194 - t9 * t438;
t2168 = -t849 * exz(4) - t2166 * eyz(4);
t2169 = t2168 * t91;
t2172 = t849 * exx(4) + t2166 * exy(4);
t2174 = t2172 * t83 * t85;
t2176 = -t850 + t2166 * eyy(4);
t2178 = t2176 * t83 * t88;
t2179 = t1754 * t88;
t2180 = t1756 * t85;
t2181 = t2162 + t1595 + t1599 + t1601 + t2169 + t1605 + t2174 - t2178 - t2179 - t2180 + t1579;
t2183 = -t31 ^ 2;
t2186 = -t160 ^ 2;
t2188 = t83 ^ 2;
t2190 = -t91 ^ 2;
t2192 = t26 * t194 + t2183 * t85 - t155 * t438 + t2186 * t85 + t2188 * t85 + t2190 * t85;
t2200 = t26 * t198 - t2183 * t88 - t155 * t444 - t2186 * t88 - t2188 * t88 - t2190 * t88;
t2204 = t31 * t26 + t160 * t155 + t1611;
t2206 = t2192 * exx(4) + t2200 * exy(4) + 0.2e1 * t2204 * exz(4);
t2208 = t2206 * t83 * t85;
t2210 = -t1625 * t91 * t85;
t2214 = -t2192 * exy(4) + t2200 * eyy(4) + 0.2e1 * t2204 * eyz(4);
t2216 = t2214 * t83 * t88;
t2218 = -t1631 * t91 * t88;
t2222 = -t2192 * exz(4) - t2200 * eyz(4) + 0.2e1 * t2204 * ezz(4);
t2223 = t2222 * t91;
t2224 = t1637 * t83;
t2225 = -t1606 - t1060 - t1607 - t1066 - t1074 - t2208 - t2210 + t2216 + t2218 - t2223 - t2224;
t2229 = 0.2e1 * t815 * t1598;
t2231 = 0.2e1 * t1026 * t1604;
t2233 = 0.2e1 * t1863 * t1576;
t2239 = t2172 * t194 + t855 * t198 + t2176 * t198 - t861 * t194 + t2168 * t31;
t2240 = t2239 * t2;
t2246 = t2172 * t438 + t855 * t444 + t2176 * t444 - t861 * t438 - t2168 * t160;
t2247 = t2246 * t9;
t2248 = t2035 * t1096;
t2249 = t815 * t1059;
t2250 = t2039 * t1472;
t2251 = t1026 * t1065;
t2252 = t2042 * t1486;
t2253 = t1863 * t1071;
t2262 = t2206 * t194 - t1625 * t31 * t85 + t2214 * t198 + t1631 * t31 * t88 + t2222 * t31 + t1637 * t26;
t2263 = t2262 * t2;
t2272 = t2206 * t438 + t1625 * t160 * t85 + t2214 * t444 - t1631 * t160 * t88 - t2222 * t160 - t1637 * t155;
t2273 = t2272 * t9;
t2274 = t2162 + t2229 + t2231 + t2233 - t2240 + t2247 - t2248 - t2249 - t2250 - t2251 - t2252 - t2253 + t2263 - t2273;
t2276 = m(4) * t1598;
t2277 = t2276 * t1033;
t2278 = t815 * t1661;
t2279 = m(4) * t1604;
t2280 = t2279 * t1114;
t2281 = t1026 * t1666;
t2282 = m(4) * t1576;
t2283 = t2282 * t1158;
t2284 = t1863 * t1670;
t2285 = t2101 * t1096;
t2286 = t2105 * t1472;
t2287 = t2108 * t1486;
t2288 = t2162 + t2277 + t2278 + t2280 + t2281 + t2283 + t2284 + t2240 - t2247 - t2285 - t2117 - t2286 - t2118 - t2287 - t2120 - t2263 + t2273;
t2290 = t2276 * t1096;
t2291 = t815 * t1683;
t2292 = t2279 * t1472;
t2293 = t1026 * t1690;
t2294 = t2282 * t1486;
t2295 = t1863 * t1694;
t2296 = t2239 * t31;
t2297 = -t2246 * t160;
t2299 = (t2174 - t2179 - t2178 - t2180 + t2169) * t91;
t2301 = 0.2e1 * t1702 * t1059;
t2303 = 0.2e1 * t1705 * t1065;
t2304 = m(4) * t1486;
t2306 = 0.2e1 * t2304 * t1071;
t2307 = t2262 * t31;
t2308 = t1644 * t26;
t2309 = -t2272 * t160;
t2310 = -t1654 * t155;
t2312 = (t2208 + t2210 - t2216 - t2218 + t2223 + t2224) * t91;
t2313 = t1625 * t83;
t2315 = t1631 * t83;
t2318 = t2313 * t85 - t2315 * t88 + t1637 * t91;
t2319 = t2318 * t83;
t2320 = t2162 + t2290 + t2291 + t2292 + t2293 + t2294 + t2295 + t2296 + t2297 + t2299 - t2301 - t2303 - t2306 - t2307 - t2308 - t2309 - t2310 - t2312 - t2319;
t2325 = -t1721 * exx(3) - t1727 * exz(3);
t2330 = t1721 * exz(3) - t1727 * ezz(3);
t2333 = t1162 + t1172 + t1173 + t1181 - t1184 + t1190 + t2325 * t83 + t1303 * t99 + t2330 * t91 + t1313 * t238 + t1191 + t1204;
t2337 = -t1741 * exx(4) - t1747 * exy(4) - t1727 * exz(4);
t2339 = t2337 * t83 * t85;
t2341 = t1279 * t99 * t85;
t2342 = t2124 * t257;
t2346 = t1741 * exy(4) - t1747 * eyy(4) - t1727 * eyz(4);
t2348 = t2346 * t83 * t88;
t2350 = t1285 * t99 * t88;
t2351 = t2126 * t260;
t2355 = t1741 * exz(4) + t1747 * eyz(4) - t1727 * ezz(4);
t2356 = t2355 * t91;
t2357 = t1291 * t238;
t2358 = t1205 + t1218 - t1221 + t1236 + t2339 + t2341 - t2342 - t2348 - t2350 - t2351 + t2356 + t2357;
t2360 = coeff * (t2333 + t2358);
t2361 = t2360 + t1107 - t1108 + t1110 - t1111 + t1112 - t1113 + t1115 - t1116 + t1118 - t1120 - t1128 + t1134;
t2362 = t1140 - t1147 - t1153 - t1161 - t1242 - t1243 - t1244 - t1247 - t1252 - t1253 + t1257 + t1261 + t1266;
t2365 = -t1004 - t1012 + t1270 - t1037 + t1271 - t1041 + t1272 - t1045 + t1273 - t1051 + t1294;
t2366 = -t1299 - t1316 - t1321 - t1323 - t1333 + t1340 + t1350 + t2360 - t1360 - t1370 + t1375 - t1383;
t2369 = -t1390 - t1394 - t1294 + t1299 + t1396 - t1400 + t1402 - t1406 + t1408 - t1410 + t1413;
t2370 = -t1415 + t1316 + t1321 + t1323 + t1333 - t1340 - t1350 + t2360 + t1360 + t1370 - t1375 + t1383;
t2373 = t2360 + t1446 + t1448 + t1449 + t1450 + t1451 + t1452 + t1454 - t1424 - t1430 - t1438 - t1439 - t1440 - t1441 - t1442 - t1444 - t1445;
t2380 = t1721 * exy(3) - t1727 * eyz(3);
t2386 = (t2325 * t26 + t1303 * t67 - t2380 * t2 - t1318 * t35 + t2330 * t31 + t1313 * t78) * t2;
t2387 = t1316 * t35;
t2395 = (-t2325 * t155 - t1303 * t173 + t2380 * t9 - t1309 * t35 - t2330 * t160 - t1313 * t182) * t9;
t2396 = t1321 * t35;
t2403 = t2337 * t194 + t1279 * t214 + t2346 * t198 + t1285 * t220 + t2355 * t31 + t1291 * t78;
t2404 = t2403 * t2;
t2405 = t1323 * t35;
t2412 = t2337 * t438 + t1279 * t707 + t2346 * t444 + t1285 * t712 - t2355 * t160 - t1291 * t182;
t2413 = t2412 * t9;
t2414 = t1299 * t35;
t2415 = t1893 + t1894 + t1896 + t1897 + t1899 + t1900 - t2386 - t2387 + t2395 - t2396 + t1902 + t1903 + t1905 + t1906 + t1908 + t1909 - t2404 - t2405 + t2413 - t2414;
t2416 = coeff * t2415;
t2417 = -t1918 - t1919 - t1922 - t1923 - t1934 - t1935 + t1941 + t1942 + t1946 + t1947 + t1958 + t1959 + t2416 - t1016;
t2421 = t2036 - t2038 + t2040 - t2041 + t2043 - t2044 + t2054 - t2061 + t2071 - t2081 - t2088;
t2425 = t2102 - t2104 + t2106 - t2107 + t2109 - t2110 - t2054 + t2061 - t2071 + t2081 + t2088;
t2428 = -t2114 - t2115 - t2116 + t2117 + t2118 + t2120 + t2121 + t2123 + t2130 - t2131 - t2132 - t2133 - t2134 - t2136 - t2141 + t2142 + t2143 + t2144 + t2416;
t2445 = 0.2e1 * t1401 * t1171 + 0.2e1 * m(3) * t1109 * t1180 + 0.2e1 * m(3) * t1150 * t1187 + t2386 + t2387 - t2395 + t2396 + 0.2e1 * t1412 * t1203 + 0.2e1 * t1447 * t1217 + 0.2e1 * t2119 * t1233 + t2404 + t2405 - t2413 + t2414;
t2446 = coeff * t2445;
t2453 = m(4) * t1203 * t1096;
t2454 = t1412 * t1466;
t2456 = m(4) * t1217 * t1472;
t2457 = t1447 * t1480;
t2459 = m(4) * t1233 * t1486;
t2460 = t2119 * t1498;
t2468 = t2453 + t2454 + t2456 + t2457 + t2459 + t2460 + t2403 * t31 + t1322 * t78 - t2412 * t160 - t1298 * t182 + (t2339 + t2341 - t2342 - t2348 - t2350 - t2351 + t2356 + t2357) * t91 + t2129 * t238;
t2469 = coeff * t2468;
t2472 = -t849 * exx(4) - t2166 * exy(4);
t2474 = t2472 * t83 * t85;
t2475 = t2124 * t88;
t2477 = -t1277 - t2166 * eyy(4);
t2479 = t2477 * t83 * t88;
t2480 = t2126 * t85;
t2483 = t849 * exz(4) + t2166 * eyz(4);
t2484 = t2483 * t91;
t2485 = t2469 + t1658 + t1662 + t1663 + t1667 + t1673 + t2474 - t2475 - t2479 - t2480 + t2484;
t2490 = -t83 ^ 2;
t2493 = -t26 * t194 + t1620 * t85 + t155 * t438 + t1621 * t85 + t2490 * t85 + t1622 * t85;
t2501 = -t26 * t198 - t1620 * t88 + t155 * t444 - t1621 * t88 - t2490 * t88 - t1622 * t88;
t2506 = -t31 * t26 - t160 * t155 - t91 * t83;
t2508 = t2493 * exx(4) + t2501 * exy(4) + 0.2e1 * t2506 * exz(4);
t2510 = t2508 * t83 * t85;
t2512 = t1625 * t91 * t85;
t2516 = -t2493 * exy(4) + t2501 * eyy(4) + 0.2e1 * t2506 * eyz(4);
t2518 = t2516 * t83 * t88;
t2520 = t1631 * t91 * t88;
t2524 = -t2493 * exz(4) - t2501 * eyz(4) + 0.2e1 * t2506 * ezz(4);
t2525 = t2524 * t91;
t2526 = -t1637 * t83;
t2527 = -t1674 - t1424 - t1675 - t1430 - t1438 - t2510 - t2512 + t2518 + t2520 - t2525 - t2526;
t2535 = t2472 * t194 + t1279 * t198 + t2477 * t198 - t1285 * t194 + t2483 * t31;
t2536 = t2535 * t2;
t2542 = t2472 * t438 + t1279 * t444 + t2477 * t444 - t1285 * t438 - t2483 * t160;
t2543 = t2542 * t9;
t2552 = t2508 * t194 + t1625 * t31 * t85 + t2516 * t198 - t1631 * t31 * t88 + t2524 * t31 - t1637 * t26;
t2553 = t2552 * t2;
t2562 = t2508 * t438 - t1625 * t160 * t85 + t2516 * t444 + t1631 * t160 * t88 - t2524 * t160 + t1637 * t155;
t2563 = t2562 * t9;
t2564 = t2469 + t2277 + t2278 + t2280 + t2281 + t2283 + t2284 - t2536 + t2543 - t2285 - t2114 - t2286 - t2115 - t2287 - t2116 + t2553 - t2563;
t2567 = 0.2e1 * t1412 * t1661;
t2569 = 0.2e1 * t1447 * t1666;
t2571 = 0.2e1 * t2119 * t1670;
t2573 = m(4) * t1409 * t1096;
t2574 = t1412 * t1423;
t2576 = m(4) * t1414 * t1472;
t2577 = t1447 * t1429;
t2579 = m(4) * t1391 * t1486;
t2580 = t2119 * t1435;
t2581 = t2469 + t2567 + t2569 + t2571 + t2536 - t2543 - t2573 - t2574 - t2576 - t2577 - t2579 - t2580 - t2553 + t2563;
t2584 = m(4) * t1661 * t1096;
t2585 = t1412 * t1683;
t2587 = m(4) * t1666 * t1472;
t2588 = t1447 * t1690;
t2590 = m(4) * t1670 * t1486;
t2591 = t2119 * t1694;
t2592 = t2535 * t31;
t2593 = -t2542 * t160;
t2595 = (t2474 - t2475 - t2479 - t2480 + t2484) * t91;
t2597 = 0.2e1 * t1702 * t1423;
t2599 = 0.2e1 * t1705 * t1429;
t2601 = 0.2e1 * t2304 * t1435;
t2602 = t2552 * t31;
t2603 = -t1644 * t26;
t2604 = -t2562 * t160;
t2605 = t1654 * t155;
t2607 = (t2510 + t2512 - t2518 - t2520 + t2525 + t2526) * t91;
t2608 = -t2318 * t83;
t2609 = t2469 + t2584 + t2585 + t2587 + t2588 + t2590 + t2591 + t2592 + t2593 + t2595 - t2597 - t2599 - t2601 - t2602 - t2603 - t2604 - t2605 - t2607 - t2608;
t2616 = t238 * t83;
t2618 = t91 * t99;
t2621 = t78 * t194 + t31 * t214 - t182 * t438 - t160 * t707 + t2616 * t85 + t2618 * t85 - t1611 * t257;
t2630 = t78 * t198 + t31 * t220 - t182 * t444 - t160 * t712 - t2616 * t88 - t2618 * t88 - t1611 * t260;
t2635 = t31 * t78 + t160 * t182 + t91 * t238;
t2637 = t2621 * exx(4) + t2630 * exy(4) + 0.2e1 * t2635 * exz(4);
t2639 = t2637 * t83 * t85;
t2641 = t1625 * t99 * t85;
t2642 = t2313 * t257;
t2646 = -t2621 * exy(4) + t2630 * eyy(4) + 0.2e1 * t2635 * eyz(4);
t2648 = t2646 * t83 * t88;
t2650 = t1631 * t99 * t88;
t2651 = t2315 * t260;
t2655 = -t2621 * exz(4) - t2630 * eyz(4) + 0.2e1 * t2635 * ezz(4);
t2656 = t2655 * t91;
t2657 = t1637 * t238;
t2658 = t1458 + t1467 + t1473 + t1481 - t1489 + t1501 + t2639 + t2641 - t2642 - t2648 - t2650 - t2651 + t2656 + t2657;
t2659 = coeff * t2658;
t2660 = t2659 + t1535 + t1536 + t1537 + t1538 - t1541 + t1560 - t1566 + t1571 - t1515 - t1520 - t1524 + t1528 + t1529 + t1530 - t1534;
t2662 = t2659 + t1606 + t1091 + t1607 + t1097 - t1640 - t1645 + t1650 - t1655 - t1579 + t1586 - t1593 - t1595 - t1599 - t1601 - t1605;
t2664 = t2659 + t1674 + t1446 + t1675 + t1448 + t1640 + t1645 - t1650 + t1655 - t1658 - t1662 - t1663 - t1667 - t1673 - t1586 + t1593;
t2666 = t2659 + t1704 + t1707 + t1708 + t1709 + t1710 + t1711 + t1713 - t1678 - t1684 - t1685 - t1691 - t1697 - t1698 - t1699 - t1701;
t2675 = t2637 * t194 + t1625 * t214 + t2646 * t198 + t1631 * t220 + t2655 * t31 + t1637 * t78;
t2676 = t2675 * t2;
t2677 = t1645 * t35;
t2684 = t2637 * t438 + t1625 * t707 + t2646 * t444 + t1631 * t712 - t2655 * t160 - t1637 * t182;
t2685 = t2684 * t9;
t2686 = t1655 * t35;
t2688 = coeff * (t2148 + t2149 + t2150 + t2151 + t2152 + t2153 - t2676 - t2677 + t2685 - t2686);
t2689 = t2688 + t1606 + t1060 + t1607 + t1066 + t1074 + t2208 + t2210 - t2216 - t2218 + t2223;
t2690 = t2224 - t1595 - t1599 - t1601 - t2169 - t1605 - t2174 + t2178 + t2179 + t2180 - t1579;
t2693 = t2688 + t2248 + t2249 + t2250 + t2251 + t2252 + t2253 - t2263 + t2273 - t2229 - t2231 - t2233 + t2240 - t2247;
t2695 = t2688 + t2285 + t2117 + t2286 + t2118 + t2287 + t2120 + t2263 - t2273 - t2277 - t2278 - t2280 - t2281 - t2283 - t2284 - t2240 + t2247;
t2697 = t2688 + t2301 + t2303 + t2306 + t2307 + t2308 + t2309 + t2310 + t2312 + t2319 - t2290 - t2291 - t2292 - t2293 - t2294 - t2295 - t2296 - t2297 - t2299;
t2701 = coeff * (t2453 + t2454 + t2456 + t2457 + t2459 + t2460 + t2676 + t2677 - t2685 + t2686);
t2702 = t2701 + t1674 + t1424 + t1675 + t1430 + t1438 + t2510 + t2512 - t2518 - t2520 + t2525;
t2703 = t2526 - t1658 - t1662 - t1663 - t1667 - t1673 - t2474 + t2475 + t2479 + t2480 - t2484;
t2706 = t2701 + t2285 + t2114 + t2286 + t2115 + t2287 + t2116 - t2553 + t2563 - t2277 - t2278 - t2280 - t2281 - t2283 - t2284 + t2536 - t2543;
t2708 = t2701 + t2573 + t2574 + t2576 + t2577 + t2579 + t2580 + t2553 - t2563 - t2567 - t2569 - t2571 - t2536 + t2543;
t2710 = t2701 + t2597 + t2599 + t2601 + t2602 + t2603 + t2604 + t2605 + t2607 + t2608 - t2584 - t2585 - t2587 - t2588 - t2590 - t2591 - t2592 - t2593 - t2595;
t2727 = coeff * (0.2e1 * t1702 * t1466 + 0.2e1 * t1705 * t1480 + 0.2e1 * t2304 * t1498 + t2675 * t31 + t1644 * t78 - t2684 * t160 - t1654 * t182 + (t2639 + t2641 - t2642 - t2648 - t2650 - t2651 + t2656 + t2657) * t91 + t2318 * t238);
cg1(1,1) = t374 * t35 / 0.2e1 + t374 * t47 / 0.2e1 + t374 * t40 / 0.2e1 + t374 * t206 / 0.2e1;
cg1(1,2) = (t491 + t786) * t35 / 0.2e1 + (t841 + t996) * t47 / 0.2e1 + (t1035 + t1052) * t40 / 0.2e1 + t1104 * t206 / 0.2e1;
cg1(1,3) = (t1141 + t1267) * t35 / 0.2e1 + (t1274 + t1384) * t47 / 0.2e1 + (t1411 + t1416) * t40 / 0.2e1 + t1455 * t206 / 0.2e1;
cg1(1,4) = t1572 * t35 / 0.2e1 + t1656 * t47 / 0.2e1 + t1676 * t40 / 0.2e1 + t1714 * t206 / 0.2e1;
cg1(2,1) = (t1779 + t1780) * t35 / 0.2e1 + (t1783 - t996) * t47 / 0.2e1 + (t1786 + t1787) * t40 / 0.2e1 + t1790 * t206 / 0.2e1;
cg1(2,2) = t1886 * t35 / 0.2e1 + t1886 * t47 / 0.2e1 + t1886 * t40 / 0.2e1 + t1886 * t206 / 0.2e1;
cg1(2,3) = (t1960 + t1993) * t35 / 0.2e1 + (-t2005 + t2015 - t2025 - t2027 + t2028 - t2030 - t2032 + t2033 + t2034 - t2036 + t2089) * t47 / 0.2e1 + (t2005 - t2015 + t2025 - t2093 + t2094 - t2096 - t2098 + t2099 + t2100 - t2102 + t2111) * t40 / 0.2e1 + t2145 * t206 / 0.2e1;
cg1(2,4) = (t2181 + t2225) * t35 / 0.2e1 + t2274 * t47 / 0.2e1 + t2288 * t40 / 0.2e1 + t2320 * t206 / 0.2e1;
cg1(3,1) = (t2361 + t2362) * t35 / 0.2e1 + (t2365 + t2366) * t47 / 0.2e1 + (t2369 + t2370) * t40 / 0.2e1 + t2373 * t206 / 0.2e1;
cg1(3,2) = (t2417 - t1993) * t35 / 0.2e1 + (t2416 + t2005 - t2015 + t2025 + t2027 - t2028 + t2030 + t2032 - t2033 - t2034 + t2421) * t47 / 0.2e1 + (t2416 - t2005 + t2015 - t2025 + t2093 - t2094 + t2096 + t2098 - t2099 - t2100 + t2425) * t40 / 0.2e1 + t2428 * t206 / 0.2e1;
cg1(3,3) = t2446 * t35 / 0.2e1 + t2446 * t47 / 0.2e1 + t2446 * t40 / 0.2e1 + t2446 * t206 / 0.2e1;
cg1(3,4) = (t2485 + t2527) * t35 / 0.2e1 + t2564 * t47 / 0.2e1 + t2581 * t40 / 0.2e1 + t2609 * t206 / 0.2e1;
cg1(4,1) = t2660 * t35 / 0.2e1 + t2662 * t47 / 0.2e1 + t2664 * t40 / 0.2e1 + t2666 * t206 / 0.2e1;
cg1(4,2) = (t2689 + t2690) * t35 / 0.2e1 + t2693 * t47 / 0.2e1 + t2695 * t40 / 0.2e1 + t2697 * t206 / 0.2e1;
cg1(4,3) = (t2702 + t2703) * t35 / 0.2e1 + t2706 * t47 / 0.2e1 + t2708 * t40 / 0.2e1 + t2710 * t206 / 0.2e1;
cg1(4,4) = t2727 * t35 / 0.2e1 + t2727 * t47 / 0.2e1 + t2727 * t40 / 0.2e1 + t2727 * t206 / 0.2e1;

﻿