Question: how to prove with maple


"the set Q of rational numbers does not have the least-upper-bound property under the usual order. "

Proof:

"Consider the part A = {x in `&Qopf;`; 1<x^(2)<2<}, this part is not empty as [4/(3)]  in A; It is bounded by 2 as if x^(2)<4 then x<2. THe set of greatest elements of A, belonging to `&Qopf;`, is not empty."

Lemma:

"If [p/(q)]  in A with q  in `&Nopf;`^(*), then p>q for p>0 and p^(2)-2*q^(2)<0; or p^(2)-2*q^(2) in `&Zopf;`, thus"

p^2-2*q^2 <= -1

p^2-2*q^2 <= -1

(1)

"for all r  in `&Nopf;`^(*), put y=(r*p+1)/(r.p), we have :"

y > p/q

Now:

"y^(2)-2=supA/(r^(2)*q^(2)), with supA= r^(2)*p^(2)+2 r*p+1-2 r^(2)q^(2),"

otherwise; -1; s = r(p^2-2*q^2)+2*p+1

s = r(p^2-2*q^2)+2*p+1

(2)

"a good choice for r, for instance r=2*p+1, we get from (1)"

(2*p+1)(p^2-2*q^2) <= (2*p+1)(-1)

2*p(p^2-2*q^2) <= 2*p(-1)

(3)

thus:

(2*p+1)(p^2-2*q^2)+2*p <= -1

2*p(p^2-2*q^2)+2*p <= -2

(4)

(2*p+1)*[(2*p+1)(p^2-2*q^2)+2*p] <= -2*p-1

(2*p+1)*[2*p(p^2-2*q^2)+1+2*p] <= -2*p-1

(5)

(2*p+1)*[(2*p+1)(p^2-2*q^2)+2*p]+1 <= -2*p

(2*p+1)*[2*p(p^2-2*q^2)+1+2*p]+1 <= -2*p

(6)

"finally, supA<0"

`and`(thus*y^2 < 2, `in`(y, A*with*y^2) and A*with*y^2 > 1)

"so, for any x  in p/(q) in A, there exists y  in A such that y>x: in conclusion A does'nt admit a greatest element."

Now, given*m = p/q, `and`(not `in`(Typesetting:-delayDotProduct(a*greatest*element*of*A, Then)*m, A), we*get*thus):

`and`(p > q, p^2-2*q^2 >= 0)

as*the*equation*p^2-2*q^2 = (0*has)*no*solutions and `in`((0*has)*no*solutions, nonnegint*nonnegint), we*get:

2*p^2-2*q^2 >= 1:

"for any r  in `&Nopf;`^(*)let's put m'=(r*p)/((r*q+1)); we have:"

(diff(m(x), x))^2-2 = supA/(r*q+1)^2:

With*supA = r^2*p^2-2*(r*q+1)^2 and r^2*p^2-2*(r*q+1)^2 = r[r[p^2-2*q^2]-4*q]-2:

"for a good choice of r, for example r=4*q+1, we get (back to (2)):"

supA > (0*thus)*(diff(m(x), x))^2 and (0*thus)*(diff(m(x), x))^2 > 2:

"So, for any greatest element m of A, it exists m', greatest element of A such as:"

diff(m(x), x) < m(x):

"A does not admit a least upper bound."

``


Download rational_numbers.mw

"the set Q of rational numbers does not have the least-upper-bound property under the usual order. "

Proof:

"Consider the part A = {x in `&Qopf;`; 1<x^(2)<2<}, this part is not empty as [4/(3)]  in A; It is bounded by 2 as if x^(2)<4 then x<2. THe set of greatest elements of A, belonging to `&Qopf;`, is not empty."

Lemma:

"If [p/(q)]  in A with q  in `&Nopf;`^(*), then p>q for p>0 and p^(2)-2*q^(2)<0; or p^(2)-2*q^(2) in `&Zopf;`, thus"

p^2-2*q^2 <= -1

p^2-2*q^2 <= -1

(1)

"for all r  in `&Nopf;`^(*), put y=(r*p+1)/(r.p), we have :"

y > p/q

Now:

"y^(2)-2=supA/(r^(2)*q^(2)), with supA= r^(2)*p^(2)+2 r*p+1-2 r^(2)q^(2),"

otherwise; -1; s = r(p^2-2*q^2)+2*p+1

s = r(p^2-2*q^2)+2*p+1

(2)

"a good choice for r, for instance r=2*p+1, we get from (1)"

(2*p+1)(p^2-2*q^2) <= (2*p+1)(-1)

2*p(p^2-2*q^2) <= 2*p(-1)

(3)

thus:

(2*p+1)(p^2-2*q^2)+2*p <= -1

2*p(p^2-2*q^2)+2*p <= -2

(4)

(2*p+1)*[(2*p+1)(p^2-2*q^2)+2*p] <= -2*p-1

(2*p+1)*[2*p(p^2-2*q^2)+1+2*p] <= -2*p-1

(5)

(2*p+1)*[(2*p+1)(p^2-2*q^2)+2*p]+1 <= -2*p

(2*p+1)*[2*p(p^2-2*q^2)+1+2*p]+1 <= -2*p

(6)

"finally, supA<0"

`and`(thus*y^2 < 2, `in`(y, A*with*y^2) and A*with*y^2 > 1)

"so, for any x  in p/(q) in A, there exists y  in A such that y>x: in conclusion A does'nt admit a greatest element."

Now, given*m = p/q, `and`(not `in`(Typesetting:-delayDotProduct(a*greatest*element*of*A, Then)*m, A), we*get*thus):

`and`(p > q, p^2-2*q^2 >= 0)

as*the*equation*p^2-2*q^2 = (0*has)*no*solutions and `in`((0*has)*no*solutions, nonnegint*nonnegint), we*get:

2*p^2-2*q^2 >= 1:

"for any r  in `&Nopf;`^(*)let's put m'=(r*p)/((r*q+1)); we have:"

(diff(m(x), x))^2-2 = supA/(r*q+1)^2:

With*supA = r^2*p^2-2*(r*q+1)^2 and r^2*p^2-2*(r*q+1)^2 = r[r[p^2-2*q^2]-4*q]-2:

"for a good choice of r, for example r=4*q+1, we get (back to (2)):"

supA > (0*thus)*(diff(m(x), x))^2 and (0*thus)*(diff(m(x), x))^2 > 2:

"So, for any greatest element m of A, it exists m', greatest element of A such as:"

diff(m(x), x) < m(x):

"A does not admit a least upper bound."

``


Download rational_numbers.mw

Please Wait...