Question: How I can write a matrix of square size 15?

Hello

I try to write a matrix (15*15) by maple, but the maple programme doesn't run this.

 

Here I attached the worksheet.


restart

with(LinearAlgebra[Generic])

Q[`0`], Q[`1`], Q[`+`], Q[`-`], Q[`*`], Q[`/`], Q[`=`] := 0, 1, `+`, `-`, `*`, `/`, `=`

0, 1, `+`, `-`, `*`, `/`, `=`

(1)

``

Digits := 60

60

(2)

n:=14:

for v from 0 to n do

p[v,n]:=expand(binomial(n,v)*x^(v)*(1-x)^(n-v))

end do:

Phi := matrix(15, 1, [p[0, 14], p[1, 14], p[2, 14], p[3, 14], p[4, 14], p[5, 14], p[6, 14], p[7, 14], p[8, 14], p[9, 14], p[10, 14], p[11, 14], p[12, 14], p[13, 14], p[14, 14]])

Vector(15, {(1) = x^14-14*x^13+91*x^12-364*x^11+1001*x^10-2002*x^9+3003*x^8-3432*x^7+3003*x^6-2002*x^5+1001*x^4-364*x^3+91*x^2-14*x+1, (2) = -14*x^14+182*x^13-1092*x^12+4004*x^11-10010*x^10+18018*x^9-24024*x^8+24024*x^7-18018*x^6+10010*x^5-4004*x^4+1092*x^3-182*x^2+14*x, (3) = 91*x^14-1092*x^13+6006*x^12-20020*x^11+45045*x^10-72072*x^9+84084*x^8-72072*x^7+45045*x^6-20020*x^5+6006*x^4-1092*x^3+91*x^2, (4) = -364*x^14+4004*x^13-20020*x^12+60060*x^11-120120*x^10+168168*x^9-168168*x^8+120120*x^7-60060*x^6+20020*x^5-4004*x^4+364*x^3, (5) = 1001*x^14-10010*x^13+45045*x^12-120120*x^11+210210*x^10-252252*x^9+210210*x^8-120120*x^7+45045*x^6-10010*x^5+1001*x^4, (6) = -2002*x^14+18018*x^13-72072*x^12+168168*x^11-252252*x^10+252252*x^9-168168*x^8+72072*x^7-18018*x^6+2002*x^5, (7) = 3003*x^14-24024*x^13+84084*x^12-168168*x^11+210210*x^10-168168*x^9+84084*x^8-24024*x^7+3003*x^6, (8) = -3432*x^14+24024*x^13-72072*x^12+120120*x^11-120120*x^10+72072*x^9-24024*x^8+3432*x^7, (9) = 3003*x^14-18018*x^13+45045*x^12-60060*x^11+45045*x^10-18018*x^9+3003*x^8, (10) = -2002*x^14+10010*x^13-20020*x^12+20020*x^11-10010*x^10+2002*x^9, (11) = 1001*x^14-4004*x^13+6006*x^12-4004*x^11+1001*x^10, (12) = -364*x^14+1092*x^13-1092*x^12+364*x^11, (13) = 91*x^14-182*x^13+91*x^12, (14) = -14*x^14+14*x^13, (15) = x^14})

(3)

d := matrix*[[1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1], [0, -14, 18, -1092, 4004, -10010, 18018, -24024, 24024, -18018, 10010, -4004, 1092, -182, 14], [0, 0, 91, -1092, 6006, -20020, 45045, -72072, 84084, -72072, 45045, -20020, 6006, -1092, 91], [0, 0, 0, -364, 4004, -20020, 60060, -120120, 168168, -168168, 120120, -60060, 20020, -4004, 364], [0, 0, 0, 0, 1001, -10010, 45045, -120120, 210210, -252225, 210210, -120120, 45045, -10010, 1001], [0, 0, 0, 0, 0, -2002, 18018, -72072, 168168, -252225, 252225, -168168, 72072, -18018, 2002], [0, 0, 0, 0, 0, 0, 3003, -24024, 84084, 168168, 210210, -168168, 84084, -24024, 3003], [0, 0, 0, 0, 0, 0, 0, -3432, 24024, -72072, 120120, -120120, 72072, -24024, 3432], [0, 0, 0, 0, 0, 0, 0, 0, 3003, -18018, 45045, -60060, 45045, -18018, 3003], [0, 0, 0, 0, 0, 0, 0, 0, 0, -2002, 10010, -20020, 20020, -10010, 2002], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, -4004, 6006, -4004, 1001], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 1092, -1092, 364], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, -182, 91], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

matrix*[[1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1], [0, -14, 18, -1092, 4004, -10010, 18018, -24024, 24024, -18018, 10010, -4004, 1092, -182, 14], [0, 0, 91, -1092, 6006, -20020, 45045, -72072, 84084, -72072, 45045, -20020, 6006, -1092, 91], [0, 0, 0, -364, 4004, -20020, 60060, -120120, 168168, -168168, 120120, -60060, 20020, -4004, 364], [0, 0, 0, 0, 1001, -10010, 45045, -120120, 210210, -252225, 210210, -120120, 45045, -10010, 1001], [0, 0, 0, 0, 0, -2002, 18018, -72072, 168168, -252225, 252225, -168168, 72072, -18018, 2002], [0, 0, 0, 0, 0, 0, 3003, -24024, 84084, 168168, 210210, -168168, 84084, -24024, 3003], [0, 0, 0, 0, 0, 0, 0, -3432, 24024, -72072, 120120, -120120, 72072, -24024, 3432], [0, 0, 0, 0, 0, 0, 0, 0, 3003, -18018, 45045, -60060, 45045, -18018, 3003], [0, 0, 0, 0, 0, 0, 0, 0, 0, -2002, 10010, -20020, 20020, -10010, 2002], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, -4004, 6006, -4004, 1001], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 1092, -1092, 364], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, -182, 91], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

(4)

d1 := MatrixInverse[Q](d);

MatrixInverse[Q](Matrix*[[1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1], [0, -14, 18, -1092, 4004, -10010, 18018, -24024, 24024, -18018, 10010, -4004, 1092, -182, 14], [0, 0, 91, -1092, 6006, -20020, 45045, -72072, 84084, -72072, 45045, -20020, 6006, -1092, 91], [0, 0, 0, -364, 4004, -20020, 60060, -120120, 168168, -168168, 120120, -60060, 20020, -4004, 364], [0, 0, 0, 0, 1001, -10010, 45045, -120120, 210210, -252225, 210210, -120120, 45045, -10010, 1001], [0, 0, 0, 0, 0, -2002, 18018, -72072, 168168, -252225, 252225, -168168, 72072, -18018, 2002], [0, 0, 0, 0, 0, 0, 3003, -24024, 84084, 168168, 210210, -168168, 84084, -24024, 3003], [0, 0, 0, 0, 0, 0, 0, -3432, 24024, -72072, 120120, -120120, 72072, -24024, 3432], [0, 0, 0, 0, 0, 0, 0, 0, 3003, -18018, 45045, -60060, 45045, -18018, 3003], [0, 0, 0, 0, 0, 0, 0, 0, 0, -2002, 10010, -20020, 20020, -10010, 2002], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, -4004, 6006, -4004, 1001], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 1092, -1092, 364], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, -182, 91], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

(5)

NULL


Download ch512.mw

restart

with(LinearAlgebra[Generic])

Q[`0`], Q[`1`], Q[`+`], Q[`-`], Q[`*`], Q[`/`], Q[`=`] := 0, 1, `+`, `-`, `*`, `/`, `=`

0, 1, `+`, `-`, `*`, `/`, `=`

(1)

``

Digits := 60

60

(2)

n:=14:

for v from 0 to n do

p[v,n]:=expand(binomial(n,v)*x^(v)*(1-x)^(n-v))

end do:

Phi := matrix(15, 1, [p[0, 14], p[1, 14], p[2, 14], p[3, 14], p[4, 14], p[5, 14], p[6, 14], p[7, 14], p[8, 14], p[9, 14], p[10, 14], p[11, 14], p[12, 14], p[13, 14], p[14, 14]])

Vector(15, {(1) = x^14-14*x^13+91*x^12-364*x^11+1001*x^10-2002*x^9+3003*x^8-3432*x^7+3003*x^6-2002*x^5+1001*x^4-364*x^3+91*x^2-14*x+1, (2) = -14*x^14+182*x^13-1092*x^12+4004*x^11-10010*x^10+18018*x^9-24024*x^8+24024*x^7-18018*x^6+10010*x^5-4004*x^4+1092*x^3-182*x^2+14*x, (3) = 91*x^14-1092*x^13+6006*x^12-20020*x^11+45045*x^10-72072*x^9+84084*x^8-72072*x^7+45045*x^6-20020*x^5+6006*x^4-1092*x^3+91*x^2, (4) = -364*x^14+4004*x^13-20020*x^12+60060*x^11-120120*x^10+168168*x^9-168168*x^8+120120*x^7-60060*x^6+20020*x^5-4004*x^4+364*x^3, (5) = 1001*x^14-10010*x^13+45045*x^12-120120*x^11+210210*x^10-252252*x^9+210210*x^8-120120*x^7+45045*x^6-10010*x^5+1001*x^4, (6) = -2002*x^14+18018*x^13-72072*x^12+168168*x^11-252252*x^10+252252*x^9-168168*x^8+72072*x^7-18018*x^6+2002*x^5, (7) = 3003*x^14-24024*x^13+84084*x^12-168168*x^11+210210*x^10-168168*x^9+84084*x^8-24024*x^7+3003*x^6, (8) = -3432*x^14+24024*x^13-72072*x^12+120120*x^11-120120*x^10+72072*x^9-24024*x^8+3432*x^7, (9) = 3003*x^14-18018*x^13+45045*x^12-60060*x^11+45045*x^10-18018*x^9+3003*x^8, (10) = -2002*x^14+10010*x^13-20020*x^12+20020*x^11-10010*x^10+2002*x^9, (11) = 1001*x^14-4004*x^13+6006*x^12-4004*x^11+1001*x^10, (12) = -364*x^14+1092*x^13-1092*x^12+364*x^11, (13) = 91*x^14-182*x^13+91*x^12, (14) = -14*x^14+14*x^13, (15) = x^14})

(3)

d := matrix*[[1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1], [0, -14, 18, -1092, 4004, -10010, 18018, -24024, 24024, -18018, 10010, -4004, 1092, -182, 14], [0, 0, 91, -1092, 6006, -20020, 45045, -72072, 84084, -72072, 45045, -20020, 6006, -1092, 91], [0, 0, 0, -364, 4004, -20020, 60060, -120120, 168168, -168168, 120120, -60060, 20020, -4004, 364], [0, 0, 0, 0, 1001, -10010, 45045, -120120, 210210, -252225, 210210, -120120, 45045, -10010, 1001], [0, 0, 0, 0, 0, -2002, 18018, -72072, 168168, -252225, 252225, -168168, 72072, -18018, 2002], [0, 0, 0, 0, 0, 0, 3003, -24024, 84084, 168168, 210210, -168168, 84084, -24024, 3003], [0, 0, 0, 0, 0, 0, 0, -3432, 24024, -72072, 120120, -120120, 72072, -24024, 3432], [0, 0, 0, 0, 0, 0, 0, 0, 3003, -18018, 45045, -60060, 45045, -18018, 3003], [0, 0, 0, 0, 0, 0, 0, 0, 0, -2002, 10010, -20020, 20020, -10010, 2002], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, -4004, 6006, -4004, 1001], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 1092, -1092, 364], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, -182, 91], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

matrix*[[1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1], [0, -14, 18, -1092, 4004, -10010, 18018, -24024, 24024, -18018, 10010, -4004, 1092, -182, 14], [0, 0, 91, -1092, 6006, -20020, 45045, -72072, 84084, -72072, 45045, -20020, 6006, -1092, 91], [0, 0, 0, -364, 4004, -20020, 60060, -120120, 168168, -168168, 120120, -60060, 20020, -4004, 364], [0, 0, 0, 0, 1001, -10010, 45045, -120120, 210210, -252225, 210210, -120120, 45045, -10010, 1001], [0, 0, 0, 0, 0, -2002, 18018, -72072, 168168, -252225, 252225, -168168, 72072, -18018, 2002], [0, 0, 0, 0, 0, 0, 3003, -24024, 84084, 168168, 210210, -168168, 84084, -24024, 3003], [0, 0, 0, 0, 0, 0, 0, -3432, 24024, -72072, 120120, -120120, 72072, -24024, 3432], [0, 0, 0, 0, 0, 0, 0, 0, 3003, -18018, 45045, -60060, 45045, -18018, 3003], [0, 0, 0, 0, 0, 0, 0, 0, 0, -2002, 10010, -20020, 20020, -10010, 2002], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, -4004, 6006, -4004, 1001], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 1092, -1092, 364], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, -182, 91], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]

(4)

d1 := MatrixInverse[Q](d);

MatrixInverse[Q](Matrix*[[1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1], [0, -14, 18, -1092, 4004, -10010, 18018, -24024, 24024, -18018, 10010, -4004, 1092, -182, 14], [0, 0, 91, -1092, 6006, -20020, 45045, -72072, 84084, -72072, 45045, -20020, 6006, -1092, 91], [0, 0, 0, -364, 4004, -20020, 60060, -120120, 168168, -168168, 120120, -60060, 20020, -4004, 364], [0, 0, 0, 0, 1001, -10010, 45045, -120120, 210210, -252225, 210210, -120120, 45045, -10010, 1001], [0, 0, 0, 0, 0, -2002, 18018, -72072, 168168, -252225, 252225, -168168, 72072, -18018, 2002], [0, 0, 0, 0, 0, 0, 3003, -24024, 84084, 168168, 210210, -168168, 84084, -24024, 3003], [0, 0, 0, 0, 0, 0, 0, -3432, 24024, -72072, 120120, -120120, 72072, -24024, 3432], [0, 0, 0, 0, 0, 0, 0, 0, 3003, -18018, 45045, -60060, 45045, -18018, 3003], [0, 0, 0, 0, 0, 0, 0, 0, 0, -2002, 10010, -20020, 20020, -10010, 2002], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, -4004, 6006, -4004, 1001], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 1092, -1092, 364], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, -182, 91], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

(5)

NULL


Download ch512.mw

Could you please help me.

Please Wait...