Question: How I can use Differential Algebra package to obtain triangularization of a differential equation system?

Dear All

I need to reduce system of differential equation system into triangular system which I came to know can be done using Maple package "DifferentialAlgebra", but I do not know how to use this package for triangularization.

The differential system is DetSys derived from  some PDE:

 

with(PDEtools):

DepVars := [f(u(x, t)), u(x, t)]; 1; declare(f(u(x, t)), u(x, t))

[f(u(x, t)), u(x, t)]

 

f(u(x, t))*`will now be displayed as`*f

 

u(x, t)*`will now be displayed as`*u

(1)

PDE1 := diff(u(x, t), t, t)-(diff(u(x, t), x, x))-f(u) = 0

diff(diff(u(x, t), t), t)-(diff(diff(u(x, t), x), x))-f(u) = 0

(2)

G := [xi(x, t, u), tau(x, t, u), phi(x, t, u)]

[xi(x, t, u), tau(x, t, u), phi(x, t, u)]

(3)

declare(G)

phi(x, t, u)*`will now be displayed as`*phi

 

tau(x, t, u)*`will now be displayed as`*tau

 

xi(x, t, u)*`will now be displayed as`*xi

(4)

DetSys := DeterminingPDE(PDE1, G, integrabilityconditions = false)

{-2*(diff(diff(tau(x, t, u), t), u))+diff(diff(phi(x, t, u), u), u), 2*(diff(diff(tau(x, t, u), u), x))-2*(diff(diff(xi(x, t, u), t), u)), 2*(diff(diff(xi(x, t, u), u), x))-(diff(diff(phi(x, t, u), u), u)), 2*(diff(tau(x, t, u), x))-2*(diff(xi(x, t, u), t)), 2*(diff(xi(x, t, u), x))-2*(diff(tau(x, t, u), t)), diff(diff(tau(x, t, u), x), x)+2*(diff(diff(phi(x, t, u), t), u))-(diff(diff(tau(x, t, u), t), t))-3*(diff(tau(x, t, u), u))*f(u), diff(diff(xi(x, t, u), x), x)-2*(diff(diff(phi(x, t, u), u), x))-(diff(diff(xi(x, t, u), t), t))-f(u)*(diff(xi(x, t, u), u)), -(diff(diff(phi(x, t, u), x), x))+diff(diff(phi(x, t, u), t), t)-phi(x, t, u)*(diff(f(u), u))+(diff(phi(x, t, u), u))*f(u)-2*(diff(tau(x, t, u), t))*f(u), diff(diff(tau(x, t, u), u), u), diff(diff(xi(x, t, u), u), u), diff(tau(x, t, u), u), diff(xi(x, t, u), u)}

(5)

for EQ in sort([op(DetSys)], length) do EQ = 0 end do:

 

 

Download [1117]_Symmetries_determination.mw

Regards

Please Wait...