Question: Groebner basis and polynomial ideals

Hi, I have a big system with 27 polynomial equations in 16 unknowns: f_1=...=f_27=0.  I can store these equations but I cannot calculate a Grobner basis of the ideal  J generated by my polynomials (allocation problem) - I use the library "with(FGb)"-  What interests me is whether my system is minimal in the following sense.

If, for example,  I remove f_1, is the ideal generated by (f_2,...f_27)  J again ? That is to say, is f_1 in the ideal generated by f_2,...,f_27 ? I would like to get an answer "yes" or "no" for each removed  f_i.

My question: can we solve the problem above  without calculating a Grobner basis of J?

Thanks in advance.

 

 

 

 

 

Please Wait...